[摘要] 目的 探究miR-21-5p調(diào)控成纖維細(xì)胞生長(zhǎng)因子18(FGF18)表達(dá)對(duì)結(jié)腸癌腫瘤干細(xì)胞生物學(xué)行為作用及機(jī)制。
方法 應(yīng)用流式細(xì)胞分選術(shù)篩選CD133+/CD44+結(jié)腸癌干細(xì)胞,并行細(xì)胞培養(yǎng)、分組及質(zhì)粒轉(zhuǎn)染。分別應(yīng)用CCK-8法、Transwell小室法、流式細(xì)胞術(shù)檢測(cè)細(xì)胞增殖、遷移和侵襲能力及凋亡率。應(yīng)用實(shí)時(shí)熒光定量PCR(qRT-PCR)檢測(cè)miR-21-5p及FGF18 mRNA表達(dá)水平,Western blotting檢測(cè)CD44、CD133和FGF18蛋白表達(dá)水平。
結(jié)果 FGF18為miR-21-5p靶基因。與空白(Blank)組和陰性對(duì)照(NC)組相比,miR-21-5p模擬物(miR-21-5p mimic)組CD133+/CD44+細(xì)胞增殖抑制率和凋亡率顯著降低,遷移、侵襲能力顯著提升,CD44、CD133和FGF18表達(dá)水平顯著上升(F=11.23~886.10,P均lt;0.05);miR-21-5p抑制劑(miR-21-5p inhibitor)組和FGF18沉默表達(dá)(si-FGF18)組細(xì)胞增殖抑制率和凋亡率顯著升高,遷移、侵襲能力顯著降低,CD44、CD133和FGF18表達(dá)水平顯著下調(diào)(F=10.23~764.70,P均lt;0.05);而si-FGF18+miR-21-5p mimic組與Blank組和NC組比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P均gt;0.05)。
結(jié)論 下調(diào)miR-21-5p表達(dá)并沉默F(xiàn)GF18表達(dá),可抑制結(jié)腸癌腫瘤干細(xì)胞增殖、遷移和侵襲,并促進(jìn)其凋亡。
[關(guān)鍵詞] 結(jié)腸腫瘤;腫瘤干細(xì)胞;微RNAs;基因,F(xiàn)GF18;基因沉默;細(xì)胞增殖;細(xì)胞凋亡;細(xì)胞運(yùn)動(dòng)
[中圖分類(lèi)號(hào)] R735.35;R342.2
[文獻(xiàn)標(biāo)志碼] A
[文章編號(hào)] 2096-5532(2021)06-0886-06
doi:10.11712/jms.2096-5532.2021.57.191
[開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版] https://kns.cnki.net/kcms/detail/37.1517.R.20211229.1628.004.html;2021-12-30 14:25:24
EFFECT OF MIR-21-5P ON THE BIOLOGICAL BEHAVIOR OF COLON CANCER STEM CELLS BY REGULATING THE EXPRESSION OF FIBROBLAST GROWTH FACTOR 18
XI Xiaozhong, LI Guoqiang, XIAO Lei, YAO Kunhou
(Department of Oncological Surgery, Xinyang Central Hospital, Xinyang 464000, China)
[ABSTRACT]Objective To investigate the effect of miR-21-5p on the biological behavior of colon cancer stem cells by regulating the expression of fibroblast growth factor 18 (FGF18) and related mechanism.
Methods Flow cytometry sorting was used to screen out CD133+/CD44+ colon cancer stem cells, and cell culture, grouping, and plasmid transfection were performed. CCK-8 assay, Transwell chamber assay, and flow cytometry were used to measure cell proliferation/migration/invasion abilities and cell apoptosis. Quantitative real-time PCR was used to measure the expression levels of miR-21-5p and FGF18, and Western blotting was used to measure the protein expression levels of CD44, CD133, and FGF18.
Results FGF18 was the target gene of miR-21-5p. Compared with the blank group and the negative control (NC) group, the miR-21-5p mimic group had significant reductions in the proliferation inhibition rate and apoptosis rate of CD133+/CD44+ cells and significant increases in the migration and invasion abilities of CD133+/CD44+ cells, as well as significant increases in the expression levels of CD44, CD133, and FGF18 (F=11.23-886.10,Plt;0.05); the miR-21-5p inhibitor group and the si-FGF18 group had significant increases in the proliferation inhibition rate and apoptosis rate of CD133+/CD44+ cells, significant reductions in the migration and invasion abilities of CD133+/CD44+ cells, and significant reductions in the expression levels of CD44, CD133, and FGF18 (F=10.23-764.70,Plt;0.05); there were no significant differences between the si-FGF18+miR-21-5p mimic group and the blank/NC groups (Pgt;0.05).
Conclusion Downregulating the expression of miR-21-5p and silencing the expression of FGF18 can inhibit the proliferation, migration, and invasion of colon cancer stem cells and promote their apoptosis.
[KEY WORDS]colonic neoplasms; neoplastic stem cells; microRNAs;genes, FGF18; gene silencing; cell proliferation; apoptosis; cell movement
結(jié)腸癌是消化道癌癥主要表型,其惡性程度較高[1],病死率位居惡性腫瘤前列,且呈逐年上升趨勢(shì),地域和人群差異顯著[2]。研究表明,腫瘤干細(xì)胞分離和鑒定極大地推動(dòng)了實(shí)體腫瘤如肺癌、消化道癌、生殖系統(tǒng)癌癥等的深入研究[3-5]。細(xì)胞表面標(biāo)志物,如CD133、CD44等,已被廣泛用于各類(lèi)惡性腫瘤干細(xì)胞的鑒定,如消化道癌等[6]。此外,miRNA是一類(lèi)可以通過(guò)阻斷mRNA翻譯或者降解目標(biāo)mRNA,從而發(fā)揮基因抑制的內(nèi)源性非編碼的小RNA。miRNA異常表達(dá)已被證實(shí)與癌細(xì)胞增殖、凋亡及轉(zhuǎn)移等關(guān)聯(lián)密切,并參與惡性腫瘤進(jìn)程,其中miR-21在結(jié)腸癌中高表達(dá)[7]。本研究基于生物學(xué)預(yù)測(cè)網(wǎng)站發(fā)現(xiàn)成纖維細(xì)胞生長(zhǎng)因子18(FGF18)為促癌基因[8],是miR-21-5p靶基因之一,然而有關(guān)其在結(jié)腸癌中的研究尚未見(jiàn)報(bào)道?;诖?,本研究主要探究了miR-21-5p調(diào)控FGF18表達(dá)對(duì)結(jié)腸癌腫瘤干細(xì)胞增殖、遷移和侵襲的作用及其機(jī)制。
1 材料和方法
1.1 實(shí)驗(yàn)材料
結(jié)腸癌HT29細(xì)胞(中國(guó)科學(xué)院上海細(xì)胞生物學(xué)研究所提供);胰蛋白酶(Hyclone公司,USA);DMEM/F12培養(yǎng)基(Gibco公司,USA);細(xì)胞轉(zhuǎn)染序列(上海奇駿牛物科技有限公司);分光光度計(jì)(上海美譜達(dá)儀器有限公司);倒置光學(xué)顯微鏡(寧波舜宇光學(xué)科技(集團(tuán))有限公司);細(xì)胞凋亡檢測(cè)試劑盒(Sigma公司,USA);miR-21-5p、FGF18引物合成(Takara,大連寶生物工程有限公司);熒光定量PCR儀(ABI,USA);BCA試劑盒(廣州威佳生物科技有限公司);Western blotting試劑盒(北京普利萊基因技術(shù)有限公司)。
1.2 實(shí)驗(yàn)方法
1.2.1 CD133+/CD44+結(jié)腸癌干細(xì)胞分選 將結(jié)腸癌HT29細(xì)胞進(jìn)行常規(guī)消化,參照既往文獻(xiàn)的方法[9],采用流式細(xì)胞分選技術(shù)分離篩選CD133+/CD44+結(jié)腸癌干細(xì)胞。將分選后細(xì)胞重懸,在37 ℃、含體積分?jǐn)?shù)0.05 CO 2條件下于6孔板中培養(yǎng)。以供后續(xù)細(xì)胞增殖、遷移和侵襲及凋亡等實(shí)驗(yàn)應(yīng)用。
1.2.2 CD133+/CD44+細(xì)胞培養(yǎng)、分組及質(zhì)粒轉(zhuǎn)染
觀察CD133+/CD44+細(xì)胞的生長(zhǎng)狀況,置于37 ℃、含體積分?jǐn)?shù)0.05 CO 2條件下繼續(xù)培養(yǎng)。細(xì)胞傳代培養(yǎng)過(guò)程中,對(duì)細(xì)胞進(jìn)行離心和消化處理,吹打成單個(gè)細(xì)胞。重復(fù)上述操作,離心、棄細(xì)胞沉淀,吹打混勻成單細(xì)胞懸液后,轉(zhuǎn)至6孔板相同條件繼續(xù)培養(yǎng)備用。選取傳代后3~5 d處于對(duì)數(shù)生長(zhǎng)期的狀態(tài)良好的細(xì)胞凍存?zhèn)溆谩?/p>
取細(xì)胞分為如下6組:空白對(duì)照組(A組,Blank組)、陰性對(duì)照組(B組,NC組)、miR-21-5p模擬物組(C組,miR-21-5p mimic組)、miR-21-5p抑制劑組(D組,miR-21-5p inhibitor組)、FGF18沉默表達(dá)組(E組,si-FGF18組)、FGF18沉默表達(dá)+ miR-21-5p模擬物組(F組,si-FGF18+miR-21-5p mimic組)。按照不同分組轉(zhuǎn)染質(zhì)粒,具體轉(zhuǎn)染操作如下。①Blank組:不轉(zhuǎn)染任何序列。②NC組:轉(zhuǎn)染空白質(zhì)粒。③miR-21-5p mimic組:轉(zhuǎn)染miR-21-5p mimic質(zhì)粒。④miR-21-5p inhibitor組:轉(zhuǎn)染miR-21-5p inhibitor質(zhì)粒。⑤si-FGF18組:轉(zhuǎn)染si-FGF18質(zhì)粒。⑥si-FGF18+miR-21-5p mimic組:轉(zhuǎn)染si-FGF18和 miR-21-5p mimic質(zhì)粒。
1.2.3 CCK-8法檢測(cè)細(xì)胞增殖抑制率 細(xì)胞增殖測(cè)定根據(jù)細(xì)胞計(jì)數(shù)試劑盒說(shuō)明書(shū)進(jìn)行操作。取各組轉(zhuǎn)染細(xì)胞混懸液加入96孔板中,每組設(shè)6個(gè)復(fù)孔,置于常規(guī)細(xì)胞培養(yǎng)箱培養(yǎng)。每孔加入CCK8溶液10 μL,繼續(xù)培養(yǎng)。采用分光光度計(jì)測(cè)量450 nm波長(zhǎng)處吸光度值,計(jì)算細(xì)胞增殖抑制率。
1.2.4 Transwell小室法檢測(cè)細(xì)胞的遷移和侵襲能力 取各組轉(zhuǎn)染細(xì)胞,消化離心后重懸計(jì)數(shù)。按常規(guī)操作程序分別進(jìn)行細(xì)胞遷移和侵襲實(shí)驗(yàn)。細(xì)胞遷移實(shí)驗(yàn)步驟如下:細(xì)胞培養(yǎng)后取Transwell小室,使用40 g/L多聚甲醛固定,5 g/L結(jié)晶紫溶液染色并拭去未遷移細(xì)胞,光學(xué)顯微鏡下觀察并求取平均值。細(xì)胞侵襲實(shí)驗(yàn)過(guò)程中,應(yīng)用Matrigel稀釋液包被Transwell小室底部膜的上室,并在37 ℃條件下將實(shí)驗(yàn)樣品自然風(fēng)干,其余操作同細(xì)胞遷移實(shí)驗(yàn)。比較各組細(xì)胞遷移和侵襲能力。
1.2.5 流式細(xì)胞術(shù)檢測(cè)細(xì)胞凋亡率 各組細(xì)胞轉(zhuǎn)染48 h后收集細(xì)胞于流式管,胰蛋白酶消化液處理細(xì)胞,低溫離心處理后調(diào)節(jié)細(xì)胞密度。采集細(xì)胞懸液,按照Annexin-V-FITC細(xì)胞凋亡檢測(cè)試劑盒說(shuō)明進(jìn)行操作,檢測(cè)細(xì)胞凋亡率。
1.2.6 實(shí)時(shí)熒光定量PCR(qRT-PCR)檢測(cè)miR-21-5p表達(dá)及FGF18 mRNA表達(dá) 經(jīng)細(xì)胞RNA沉淀、洗滌、溶解和濃度測(cè)定后,分別提取各組轉(zhuǎn)染后CD133+/CD44+細(xì)胞總RNA。將RNA逆轉(zhuǎn)錄成cDNA,參照說(shuō)明書(shū)進(jìn)行。取反應(yīng)液進(jìn)行熒光定量PCR,參照說(shuō)明書(shū)進(jìn)行操作。采用相對(duì)定量法分別計(jì)算目的基因miR-21-5p和FGF18相對(duì)于內(nèi)參照(U6)的相對(duì)表達(dá)量。
1.2.7 Western blotting檢測(cè)CD133、CD44以及FGF18蛋白表達(dá) 待細(xì)胞生長(zhǎng)至匯合狀態(tài)(80%),收集細(xì)胞加入裂解緩沖液,離心處理后提取各組CD133+/CD44+細(xì)胞總蛋白,用BCA試劑盒測(cè)定蛋白濃度。根據(jù)不同濃度進(jìn)行定量,待樣本處理完畢后進(jìn)行聚丙烯酰胺凝膠電泳分離蛋白,轉(zhuǎn)膜、室溫下脫脂奶粉中置于搖床中封閉。滴加一抗兔抗人CD133、CD44和鼠抗人FGF18,4 ℃過(guò)夜,PBS洗滌,然后應(yīng)用HRP標(biāo)記的羊抗兔IgG抗體孵育(全程避光)。內(nèi)參照為GAPDH。顯影和定影后,采用Image J系統(tǒng)分析計(jì)算蛋白相對(duì)含量。
1.3 統(tǒng)計(jì)學(xué)分析
采用SPSS 18.0統(tǒng)計(jì)學(xué)軟件進(jìn)行分析。計(jì)量資料數(shù)據(jù)采用±s形式表示,多組間比較采用單因素方差分析,多組間兩兩比較采用q檢驗(yàn)。以Plt;0.05為差異有顯著性。
2 結(jié)果
2.1 miR-21-5p與FGF18靶向關(guān)系
通過(guò)在線分析軟件分析顯示,F(xiàn)GF18基因與miR-21-5p序列間存在特異結(jié)合區(qū)域(圖1),確定FGF18是miR-21-5p的靶基因。這一靶向關(guān)聯(lián)為本文細(xì)胞實(shí)驗(yàn)奠定理論基礎(chǔ)。
2.2 miR-21-5p調(diào)控FGF18表達(dá)對(duì)結(jié)腸癌干細(xì)胞增殖的影響
CCK-8檢測(cè)結(jié)果顯示,與Blank組和NC組相比,miR-21-5p mimic組CD133+/CD44+細(xì)胞增殖抑制率明顯降低(F=16.28,Plt;0.05),miR-21-5p inhibitor組和si-FGF18組明顯升高(F=26.53、23.96,P均lt;0.05),si-FGF18+miR-21-5p mimic組無(wú)明顯差異(Pgt;0.05)。而與si-FGF18組相比,si-FGF18+miR-21-5p mimic組CD133+/CD44+細(xì)胞增殖抑制率下降,差異有顯著性(t=6.181,Plt;0.05)。見(jiàn)表1。
2.3 miR-21-5p調(diào)控FGF18表達(dá)對(duì)結(jié)腸癌干細(xì)胞遷移和侵襲影響
Transwell實(shí)驗(yàn)結(jié)果顯示,與Blank組和NC組相比,miR-21-5p mimic組CD133+/CD44+細(xì)胞遷移和侵襲能力顯著升高;miR-21-5p inhibitor組和si-FGF18組細(xì)胞遷移和侵襲能力顯著降低,差異具有統(tǒng)計(jì)學(xué)意義(F 遷移=11.23~19.55,F(xiàn) 侵襲=21.68~52.85,P均lt;0.05);si-FGF18+miR-21-5p mimic組細(xì)胞遷移和侵襲能力無(wú)明顯差異(P均gt;0.05)。而與si-FGF18組細(xì)胞相比,si-FGF18+miR-21-5p mimic組細(xì)胞遷移和侵襲能力明顯上升(t=4.927、8.073,P均lt;0.05)。見(jiàn)圖2。
2.4 miR-21-5p調(diào)控FGF18表達(dá)對(duì)結(jié)腸癌干細(xì)胞凋亡的影響
流式細(xì)胞術(shù)檢測(cè)結(jié)果顯示,與Blank組和NC組相比,miR-21-5p mimic組CD133+/CD44+細(xì)胞早、晚期凋亡率呈下降趨勢(shì);而miR-21-5p inhibitor組和si-FGF18組凋亡率則上升(F 早期=17.22~35.88,F(xiàn) 晚期=24.12~109.80,P均lt;0.05);si-FGF18+miR-21-5p mimic組凋亡率差異無(wú)顯著性(P均gt;0.05)。
而與si-FGF18組相比,si-FGF18+miR-21-5p mimic組CD133+/CD44+細(xì)胞早、晚期凋亡下降(t=10.73、13.47,P均lt;0.05)。見(jiàn)表1。
2.5 miR-21-5p調(diào)控FGF18表達(dá)對(duì)miR-21-5p和FGF18相對(duì)表達(dá)影響
qRT-PCR檢測(cè)結(jié)果顯示,與Blank組和NC組相比,miR-21-5p mimic組FGF18 mRNA和miR-21-5p的表達(dá)水平均顯著上升,miR-21-5p inhibitor組FGF18 mRNA和miR-21-5p表達(dá)水平均顯著下調(diào)(F FGF18=29.44、886.10, F miR-21-5p=12.18、764.70,P均lt;0.05);si-FGF18組miR-21-5p表達(dá)差異無(wú)顯著性(Pgt;0.05),而FGF18 mRNA表達(dá)水平顯著下降(F=32.90,Plt;0.05);且si-FGF18+miR-21-5p mimic組miR-21-5p表達(dá)水平顯著上升(F=509.10,Plt;0.05),而FGF18表達(dá)無(wú)顯著差異(Pgt;0.05)。見(jiàn)表1。
2.6 miR-21-5p調(diào)控FGF18表達(dá)對(duì)CD44、CD133和FGF18蛋白表達(dá)影響
Western blotting結(jié)果顯示,與Blank組和NC組細(xì)胞相比較,miR-21-5p mimic組CD44、CD133和FGF18蛋白表達(dá)水平均顯著上升(F=109.00~551.90,P均lt;0.05);miR-21-5p inhibitor組和si-FGF18組的蛋白表達(dá)水平則顯著下降(F=9.31~36.45, P均lt;0.05),si-FGF18+miR-21-5p mimic組的蛋白表達(dá)水平無(wú)明顯變化(P均gt;0.05)。與si-FGF18組相比,si-FGF18+miR-21-5p mimic組CD44、CD133和FGF18表達(dá)均呈上升趨勢(shì)(t=3.253~10.18,P均lt;0.05)。見(jiàn)圖3。
3 討論
本研究首先通過(guò)生物學(xué)預(yù)測(cè)軟件確定FGF18是miR-21-5p的靶基因。進(jìn)而采用細(xì)胞培養(yǎng)并構(gòu)建質(zhì)粒轉(zhuǎn)染方法,探究miR-21-5p調(diào)控FGF18表達(dá)對(duì)結(jié)腸癌腫瘤干細(xì)胞生物學(xué)行為的影響。本研究選用流式細(xì)胞分選技術(shù)篩選CD133+/CD44+結(jié)腸癌干細(xì)胞的臨床意義在于,上皮來(lái)源的惡性腫瘤的發(fā)生可能與腫瘤干細(xì)胞的增殖、分化等潛能存在關(guān)聯(lián)性[10]。針對(duì)腫瘤細(xì)胞的惡性特征,既往眾多研究已發(fā)現(xiàn)腫瘤的進(jìn)程可歸因于腫瘤干細(xì)胞的特征,如其可自我更新、增殖分裂等,從而導(dǎo)致腫瘤細(xì)胞的耐藥性、治療失敗、癌癥復(fù)發(fā)等不良后果。腫瘤治療多采用外源性干預(yù)手段抑制此類(lèi)干細(xì)胞的自我更新,從而阻斷細(xì)胞增殖、誘導(dǎo)細(xì)胞凋亡,最終實(shí)現(xiàn)逆轉(zhuǎn)腫瘤細(xì)胞增殖分化、轉(zhuǎn)移等[11]。作為腫瘤細(xì)胞的標(biāo)志物,CD133、CD44已被證實(shí)在肝癌、骨肉瘤等中呈顯著高表達(dá),其表達(dá)上調(diào)可能與激活下游信號(hào)通路、抑制腫瘤細(xì)胞凋亡等相關(guān)聯(lián)[12-13]。另外,miR-21-5p已被報(bào)道與人類(lèi)消化道癌癥等密切相關(guān)[14-15],并通過(guò)作用眾多的基因靶點(diǎn)參與腫瘤進(jìn)展,為腫瘤靶向治療提供新途徑。WU等[16]研究顯示,miR-21-5p高表達(dá)可通過(guò)抑制PTEN、激活P13K/Akt信號(hào)通路、誘導(dǎo)上皮間質(zhì)轉(zhuǎn)化等機(jī)制促進(jìn)食管癌發(fā)生進(jìn)程。因此,作者推測(cè)miR-21-5p有可能通過(guò)特定靶基因,干預(yù)結(jié)腸癌干細(xì)胞生物學(xué)進(jìn)程。FGF18作為成纖維細(xì)胞因子,屬于纖維細(xì)胞因子(FGF)家族,是典型的促癌基因。FGF家族成員在血管生成、組織細(xì)胞增殖、成纖維細(xì)胞增生等方面發(fā)揮重要作用,通過(guò)翻譯轉(zhuǎn)錄可發(fā)揮多種潛在功能[17]。FGF18在癌癥中呈高表達(dá),如在卵巢高級(jí)漿膜癌中呈顯著高表達(dá),促進(jìn)癌癥進(jìn)展[18]。
本研究結(jié)果表明,下調(diào)miR-21-5p表達(dá)和沉默F(xiàn)GF18表達(dá)后CD133+/CD44+細(xì)胞增殖抑制率和凋亡率顯著提升,而遷移和侵襲能力顯著降低;而上調(diào)miR-21-5p表達(dá)結(jié)果與此相反;且在上調(diào)miR-21-5p表達(dá)基礎(chǔ)上沉默F(xiàn)GF18表達(dá),逆轉(zhuǎn)了沉默F(xiàn)GF18表達(dá)對(duì)細(xì)胞增殖、凋亡、遷移和侵襲能力的作用。本文結(jié)果提示,miR-21-5p低表達(dá)可在結(jié)腸癌干細(xì)胞增殖、遷移和轉(zhuǎn)移中發(fā)揮正向作用;同時(shí),下調(diào)miR-21-5p表達(dá)可抑制FGF18表達(dá),進(jìn)一步凸顯了對(duì)結(jié)腸癌干細(xì)胞生物學(xué)行為的調(diào)控作用。此外,上調(diào)miR-21-5p表達(dá)后導(dǎo)致FGF18、CD133、CD44蛋白表達(dá)水平顯著上升;而下調(diào)miR-21-5p表達(dá),靶向抑制FGF18,上述因子的表達(dá)水平均顯著逆轉(zhuǎn)。就其機(jī)制而言,微小RNA通常通過(guò)靶基因調(diào)節(jié)轉(zhuǎn)錄后表達(dá)。我們推測(cè)其可能與FGF18為miR-21-5p靶基因,miR-21-5p通過(guò)與其3′端非翻譯區(qū)特異性結(jié)合,抑制作為促癌基因FGF18的表達(dá)水平,從而達(dá)到抑制腫瘤細(xì)胞增殖、促進(jìn)細(xì)胞凋亡的結(jié)果。LU等[19]報(bào)道,過(guò)表達(dá)miR-21-5p可靶向15-PGDH,促進(jìn)膽管癌生長(zhǎng)。YAN等[20]亦在其研究中通過(guò)基因組微陣列數(shù)據(jù)和靶向預(yù)測(cè)miR-21-5p可靶向PIK3R1,抑制腫瘤細(xì)胞遷移和侵襲,降低PI3K/AKT信號(hào)轉(zhuǎn)導(dǎo)并逆轉(zhuǎn)上皮間質(zhì)轉(zhuǎn)化,在乳癌中發(fā)揮重要作用。本研究亦通過(guò)類(lèi)似機(jī)制性探討,初步顯示miR-21-5p與其靶基因FGF18在結(jié)腸癌腫瘤干細(xì)胞中的作用,為臨床探究結(jié)腸癌治療提供了一定的實(shí)驗(yàn)依據(jù)。
綜上所述,本研究證實(shí)抑制miR-21-5p表達(dá)并沉默F(xiàn)GF18表達(dá),可抑制結(jié)腸癌腫瘤干細(xì)胞增殖、遷移和侵襲,并促進(jìn)細(xì)胞凋亡。本實(shí)驗(yàn)為靶向miR-21-5p和FGF18的分子治療策略提供了實(shí)驗(yàn)基礎(chǔ)。同時(shí),本研究有待進(jìn)一步的動(dòng)物移植瘤實(shí)驗(yàn)驗(yàn)證,并佐以進(jìn)一步的實(shí)驗(yàn)探究抑制miR-21-5p表達(dá)對(duì)腫瘤細(xì)胞藥物敏感性以及臨床病人預(yù)后方面的影響。
[參考文獻(xiàn)]
[1]VASCONCELOS-DOS-SANTOS A, LOPONTE H F, MANTUANO N R, et al. Hyperglycemia exacerbates colon cancer malignancy through hexosamine biosynthetic pathway[J].Oncogenesis, 2017,6(3):e306.
[2]ARNOLD M, SIERRA M S, LAVERSANNE M, et al. Glo-bal patterns and trends in colorectal cancer incidence and mortality[J].Gut, 2017,66(4):683-691.
[3]YU W K, WANG Z G, FONG C C, et al. Chemoresistant lung cancer stem cells display high DNA repair capability to remove cisplatin-induced DNA damage[J].British Journal of Pharmacology, 2017,174(4):302-313.
[4]RASSOULI F B, MATIN M M, SAEINASAB M. Cancer stem cells in human digestive tract malignancies[J].Tumour Biology, 2016,37(1):7-21.
[5]HUANG R X, ROFSTAD E K. Cancer stem cells (CSCs), cervical CSCs and targeted therapies[J].Oncotarget, 2017,8(21):35351-35367.
[6]王艷華,劉冬蘭,熊彥. CD44+CD133+在胃癌干細(xì)胞分離與鑒定中的作用研究[J].江西醫(yī)藥, 2016,51(8):755-758,768.
[7]鞏波,李東風(fēng),謝子鈞,等. 上/下調(diào)miR-21對(duì)結(jié)腸癌細(xì)胞的生物學(xué)作用及對(duì)西妥昔單抗藥物敏感性的影響[J].中國(guó)病理生理雜志, 2014,30(4):609-614.
[8]FLANNERY C A, FLEMING A G, CHOE G H, et al. Endometrial cancer-associated FGF18 expression is reduced by bazedoxifene in human endometrial stromal cells in vitro and in murine endometrium[J].Endocrinology, 2016,157(10):3699-3708.
[9]劉美,陳宓,艾亮,等. 人結(jié)腸癌CW-2干細(xì)胞獲取方法研究[J].世界科技研究與發(fā)展, 2010,32(2):235-238,215.
[10]MRGARITESCU C, PIRICI D, CHERCIU I, et al. CD133/CD166/Ki-67 triple immunofluorescence assessment for putative cancer stem cells in colon carcinoma[J].Journal of Gastrointestinal and Liver Diseases: JGLD, 2014,23(2):161-170.
[11]ZHOU X, YUE Y, WANG R X, et al. MicroRNA-145 inhi-
bits tumorigenesis and invasion of cervical cancer stem cells[J].International Journal of Oncology, 2017,50(3):853-862.
[12]ROZEIK M S, HAMMAM O A, ALI A I, et al. Evaluation of CD44 and CD133 as markers of liver cancer stem cells in Egyptian patients with HCV-induced chronic liver diseases versus hepatocellular carcinoma[J].Electronic Physician, 2017,9(7):4708-4717.
[13]HE A N, YANG X J, HUANG Y J, et al. CD133+CD44+ cells mediate in the lung metastasis of osteosarcoma[J].Journal of Cellular Biochemistry, 2015,116(8):1719-1729.
[14]LIU Q, YANG W L, LUO Y S, et al. Correlation between miR-21 and miR-145 and the incidence and prognosis of colo-
rectal cancer[J].Journal of B U ON: Official Journal of the Balkan Union of Oncology, 2018,23(1):29-35.
[15]任約翰,葉星照,厲金雷,等. 結(jié)直腸癌中miR-21表達(dá)與臨床病理因素及預(yù)后的關(guān)系[J].浙江醫(yī)學(xué), 2017,39(18):1544-1547.
[16]WU Y R, QI H J, DENG D F, et al. MicroRNA-21 promotes cell proliferation, migration, and resistance to apoptosis through PTEN/PI3K/AKT signaling pathway in esophageal cancer[J].Tumour Biology, 2016,37(9):12061-12070.
[17]SUN Y Z, FAN X L, ZHANG Q, et al. Cancer-associated fibroblasts secrete FGF-1 to promote ovarian proliferation, migration, and invasion through the activation of FGF-1/FGFR4 signaling[J].Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine, 2017,39(7):1010428317712592.
[18]EL-GENDI S, ABDELZAHER E, MOSTAFA M F, et al. FGF18 as a potential biomarker in serous and mucinous ova-
rian tumors[J].Tumor Biology, 2016,37(3):3173-3183.
[19]LU L, BYRNES K, HAN C, et al. miR-21 targets 15-PGDH and promotes cholangiocarcinoma growth[J].Molecular Can-
cer Research: MCR, 2014,12(6):890-900.
[20]YAN L X, LIU Y H, XIANG J W, et al. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer[J].International Journal of Oncology, 2016,48(2):471-484.
(本文編輯 于國(guó)藝)