趙雪花,張麗娟,祝雪萍
動(dòng)態(tài)參數(shù)SCS-RF模型在黃土丘陵區(qū)小流域產(chǎn)流模擬中的應(yīng)用
趙雪花,張麗娟,祝雪萍
(太原理工大學(xué)水利科學(xué)與工程學(xué)院,太原 030024)
降雨特征對產(chǎn)流過程有重要影響,而SCS(Soil Conservation Service)模型作為產(chǎn)流模擬的工具并未考慮該影響。SCS模型參數(shù)的選取直接影響產(chǎn)流過程的模擬精度,而目前在黃土丘陵溝壑區(qū)鮮有在率定該模型參數(shù)時(shí)考慮降雨特征的相關(guān)研究。該研究基于王家溝流域及其子流域汛期共計(jì)307場降雨-徑流數(shù)據(jù),通過RF(Random Forest)算法,將降雨特征作為決策樹的分裂屬性,以此確定模型參數(shù)徑流曲線數(shù)(Curve Number,CN)和初損率,提出動(dòng)態(tài)參數(shù)SCS-RF模型,并與未進(jìn)行參數(shù)改進(jìn)的SCS模型進(jìn)行對比。結(jié)果表明:SCS-RF模型與SCS模型驗(yàn)證集均方根誤差(Root Mean Square Error,RMSE)分別為1.06和6.64,納什效率系數(shù)NSE(Nash-Sutcliffe Efficiency)分別為0.84和?8.65,且SCS-RF模型在各流域模擬效果均達(dá)到良好級別,SCS-RF模型模擬效果明顯優(yōu)于SCS模型。SCS-RF模型在率定參數(shù)時(shí)考慮了降雨特征對產(chǎn)流的影響,簡化了參數(shù)率定過程的同時(shí)具有良好的地區(qū)適用性。流域不同治理措施使得參數(shù)分布取值存在明顯差異,流域經(jīng)過水土流失治理后初損率取值均小于標(biāo)準(zhǔn)值0.2。各流域CN與降雨量呈明顯的負(fù)相關(guān)關(guān)系,參數(shù)與降雨特征(降雨量、30 min降雨強(qiáng)度)的數(shù)據(jù)分布均有相對明顯的集中區(qū)域。
模型;徑流;SCS-RF;產(chǎn)流模擬;動(dòng)態(tài)參數(shù);黃土區(qū)
降雨產(chǎn)流會(huì)引發(fā)水土流失、洪澇災(zāi)害等一系列問題[1]。徑流形成主要受氣候變化和人類活動(dòng)等諸多因素的影響,其中,降雨為影響產(chǎn)流的決定性因素,另外人類活動(dòng)如水利工程、水土保持措施等改變了流域下墊面以及土壤入滲,進(jìn)而影響地表徑流的產(chǎn)生與變化。黃土丘陵溝壑區(qū)垂直節(jié)理發(fā)育,水土流失更為嚴(yán)重,將會(huì)影響區(qū)域水土資源利用和防洪安全,在此情況下,進(jìn)行黃土區(qū)降雨-徑流模擬,揭示兩者之間的密切關(guān)系對水土保持規(guī)劃、防洪減災(zāi)具有重要意義[2]。
降雨-徑流過程十分復(fù)雜且受多種因素影響,目前的專家學(xué)者多采用半經(jīng)驗(yàn)降雨-徑流模型進(jìn)行徑流模擬[3]。其中,美國農(nóng)業(yè)部研制的小流域水文模型(Soil Conservation Service,SCS)因其結(jié)構(gòu)簡單、參數(shù)少、所需資料便于獲取,且能反映土壤類型、土地利用、植被覆蓋等流域特性對徑流的影響[4],已廣泛應(yīng)用于水土流失治理、流域防洪、水質(zhì)模擬及城市水文等眾多領(lǐng)域[5-6]。SCS模型有徑流曲線數(shù)CN(Curve Number)和初損率這2個(gè)重要參數(shù)。CN是反映不同土壤,土地覆被利用情況下流域產(chǎn)流能力的無量綱流域參數(shù)[7],徑流對CN的取值十分敏感,CN改變10%,徑流計(jì)算結(jié)果會(huì)出現(xiàn)?45%~55%的變化。確定CN的方法通常為查表法和反推法。由于美國與中國下墊面差異較大,基于美國農(nóng)業(yè)小流域確定的CN檢索表在中國適用性較差,直接查表引用其數(shù)值應(yīng)用于半干旱流域結(jié)果不理想,模擬精度低[8];為了考慮不同時(shí)空尺度對CN的影響,研究學(xué)者一般通過實(shí)測的降雨-徑流資料反推CN,常用的反推法有最小二乘法、中位數(shù)法、平均值法、S對數(shù)頻率分布曲線法、漸近線法等方法[9-11],但上述方法模擬徑流深的精度仍有待進(jìn)一步提高,目前尚無統(tǒng)一的CN計(jì)算方法。是計(jì)算徑流峰值及時(shí)間分布的重要參數(shù),徑流對十分敏感,在干旱半干旱流域中更為明顯。確定的常用方法為標(biāo)準(zhǔn)值法和反推法。標(biāo)準(zhǔn)值法為根據(jù)美國的實(shí)測資料,的取值定為0.2,但該值在不同地區(qū)的適用性和有效性是未知的;Baltas等[12]利用希臘實(shí)驗(yàn)流域的資料得到,在該地區(qū)的平均值為0.014;Shi等[13]利用實(shí)測數(shù)據(jù)確定了三峽庫區(qū)小流域的取值范圍為0.095~0.38;Huang等[14]認(rèn)為在黃土高原取0.2不合適;Fu等[15]研究發(fā)現(xiàn)在黃土高原,=0.05時(shí)模擬效果優(yōu)于標(biāo)準(zhǔn)值??梢?,在不同流域取值不同。
以上研究用反推法確定CN和時(shí),考慮了區(qū)域化對參數(shù)的影響,但如果參數(shù)確定方法主要是依據(jù)實(shí)測資料進(jìn)行反推,會(huì)出現(xiàn)“異參同效”的現(xiàn)象,參數(shù)的唯一性與合理性難以確定[16-17],且現(xiàn)有文獻(xiàn)對單一參數(shù)的優(yōu)化率定研究較多,兩參數(shù)同時(shí)率定并結(jié)合機(jī)器學(xué)習(xí)算法的研究較少;另外SCS模型本身未考慮降雨強(qiáng)度和歷時(shí)對徑流的影響[18-19],而降雨特征與產(chǎn)流過程、產(chǎn)流量等存在緊密的關(guān)系,因此限制了模擬精度;雖然Hu等[20]在SCS中引入降雨強(qiáng)度修正系數(shù)并與=0.2和=0.05時(shí)的SCS模型進(jìn)行對比,結(jié)果表明SCS-方法的模擬精度更高,但其的選取具有一定的主觀性。目前,鮮有文獻(xiàn)在采用SCS模型時(shí)既考慮降雨強(qiáng)度、降雨歷時(shí)等對產(chǎn)流的影響,又實(shí)現(xiàn)同時(shí)對CN和這2個(gè)參數(shù)進(jìn)行優(yōu)選確定。綜上,本文充分考慮降雨特征和不同治理措施對產(chǎn)流的影響,采用機(jī)器學(xué)習(xí)算法—隨機(jī)森林(Random Forest,RF)與SCS模型進(jìn)行耦合,建立一種動(dòng)態(tài)參數(shù)模型—SCS-RF,該模型可根據(jù)不同的降雨特征同時(shí)率定出本次降雨事件適用的產(chǎn)流參數(shù)CN和,簡化了參數(shù)的率定過程,為SCS模型應(yīng)用于黃土丘陵溝壑區(qū)產(chǎn)流模擬提供一種新的思路。
王家溝(WS1)流域位于山西省呂梁市離石區(qū),東經(jīng)110°08¢~111°12¢,北緯37°32¢~37°34¢,海拔1 000~1 320 m,氣候類型為暖溫帶大陸性季風(fēng)氣候,屬于黃土丘陵溝壑區(qū)第一副區(qū),溝壑縱橫,土質(zhì)疏松,植被缺乏,水土流失嚴(yán)重。王家溝流域多年平均降雨量510.2 mm,5-9月(汛期)平均降雨量419.6 mm,占年降雨量的80.6%,汛期短歷時(shí)暴雨較多,年平均氣溫9 ℃,多年平均水面蒸發(fā)量1 700 mm,無霜期150~170 d,多年平均徑流深15.2 mm。為了分析有無水土保持措施對小流域產(chǎn)流的影響,選擇分水線相鄰,流向一致,自然條件相似的同步對比觀測小流域—羊道溝和插財(cái)主溝,羊道溝和插財(cái)主溝為王家溝流域的子流域。羊道溝(WS2)流域多年平均降雨量為544.2 mm,汛期平均降雨量390.6 mm,多年平均徑流深28.8 mm,完全未經(jīng)治理,其地形地貌與土地利用方式均保持自然狀態(tài),農(nóng)耕地占流域面積的58%,水土流失的發(fā)生與發(fā)展按照自然規(guī)律進(jìn)行。插財(cái)主溝(WS3)流域多年平均降雨量為544.1 mm,汛期平均降雨量391.0 mm,多年平均徑流深13.1 mm,治理前與羊道溝流域自然條件相似。流域從1956年開始進(jìn)行集中綜合治理并采取封禁措施,治理措施有梯田、地埂、造林、種牧草等,治理面積達(dá)到78.3%。流域地貌基本情況及水土保持治理情況見表1。
表1 流域地貌基本情況及土地利用情況
本文綜合考慮水土保持和降雨特征對產(chǎn)流的影響,通過在不同流域內(nèi)開展參數(shù)取值研究,確定有無水土保持措施對產(chǎn)流的影響和面積不同的水土流失治理流域?qū)Ξa(chǎn)流的影響,具體差異情況通過SCS-RF模型進(jìn)行徑流模擬率定出的產(chǎn)流參數(shù)體現(xiàn),參數(shù)率定過程中利用RF算法將降雨特征對產(chǎn)流的影響考慮在內(nèi)。WS2和WS3為面積、自然條件相近的對比流域,對比二者參數(shù)取值差異,分析有無水保措施對參數(shù)的影響。WS1和WS3為面積不同,但治理度相近的流域,對比二者參數(shù)取值差異,分析面積不同的治理流域?qū)?shù)的影響。
1.3.1 SCS模型
SCS模型包括一個(gè)水量平衡方程(式(1))和2個(gè)基本假設(shè)(式(2)和式(3)):
=I++(1)
I=(3)
由式(1)~式(3)得到模型產(chǎn)流計(jì)算式(4):
運(yùn)用SCS模型模擬徑流需要率定參數(shù)CN和,本文采用RF算法實(shí)現(xiàn)同時(shí)率定2參數(shù)。
1.3.2 RF算法
RF算法[21]是并行式集成學(xué)習(xí)Bagging與隨機(jī)子空間相結(jié)合的算法,通過構(gòu)建決策樹形成基學(xué)習(xí)器。首先,對初始訓(xùn)練數(shù)據(jù)集進(jìn)行隨機(jī)且有放回的Bootstrap sampling自助抽樣,抽樣數(shù)據(jù)形成多個(gè)訓(xùn)練數(shù)據(jù)子集,子集與初始訓(xùn)練數(shù)據(jù)集包含的樣本大小一致,RF算法的抽樣方法使得訓(xùn)練數(shù)據(jù)集隨機(jī)多樣化。然后,從屬性集合中隨機(jī)選擇則屬性作為決策樹的分裂屬性,根據(jù)劃分準(zhǔn)則確定決策樹節(jié)點(diǎn)最優(yōu)分裂屬性,在訓(xùn)練數(shù)據(jù)子集的基礎(chǔ)上建立決策樹,對應(yīng)訓(xùn)練出一個(gè)基學(xué)習(xí)器?;谏鲜鲞^程,RF算法中訓(xùn)練數(shù)據(jù)集和屬性集合“隨機(jī)”構(gòu)建,每棵決策樹獨(dú)立生長,將訓(xùn)練數(shù)據(jù)和相應(yīng)的屬性集合作為輸入,經(jīng)過基學(xué)習(xí)器的模擬,輸出結(jié)果,最終平均各基學(xué)習(xí)器的輸出值得到最終結(jié)果。
1.3.3動(dòng)態(tài)參數(shù)SCS-RF模型
為使模型訓(xùn)練和驗(yàn)證數(shù)據(jù)具有代表性,根據(jù)研究區(qū)降雨特點(diǎn),按照《降水量等級》(GB/T 28592-2012)中對降雨的等級劃分,可劃分為小雨、中雨、大雨和暴雨4個(gè)等級,選取各流域80%的次降雨-徑流數(shù)據(jù)組成訓(xùn)練集,用于訓(xùn)練SCS-RF模型,剩余數(shù)據(jù)組成驗(yàn)證集,訓(xùn)練集和驗(yàn)證集中均包含上述各降雨量等級的數(shù)據(jù)。
1.3.4 模型評價(jià)指標(biāo)
為了衡量模型的模擬效果,選取以下評價(jià)指標(biāo)對模型進(jìn)行評定。分別選用均方根誤差(Root Mean Square Error,RMSE)、納什效率系數(shù)NSE(Nash-Sutcliffe Efficiency)和實(shí)測值變異性大于平均誤差的次數(shù)(n)作為模型評價(jià)指標(biāo)。其中RMSE越接近0、NSE越接近于1、n越高,模型模擬效果越好。NSE計(jì)算式見式(6):
其中
表2 模型擬合優(yōu)度評價(jià)標(biāo)準(zhǔn)
注:n為實(shí)測值變異性大于平均誤差的次數(shù);NSE為納什效率系數(shù)。
Note:nis the time that the variation of the measured value is greater than the mean error; NSE: Nash-Sutcliffe Efficiency.
2.1.1 參數(shù)計(jì)算結(jié)果
對訓(xùn)練集和驗(yàn)證集確定的參數(shù)進(jìn)行分析,如圖3所示,各流域CN均值小于中位數(shù),為左偏分布;各流域λ均值略大于中位數(shù),僅WS1中在0.05的顯著性水平下通過Shapiro-Wilk檢驗(yàn),為正態(tài)分布。
相同治理?xiàng)l件下,流域面積不同,所確定的參數(shù)不同。對于綜合治理流域(WS1、WS3),其CN的分布形式相似,但面積大的流域WS1中CN波動(dòng)程度較大,WS1中位于70~90內(nèi)的CN比WS3增加53%,WS1中CN取值普遍較大。同樣在面積大的流域波動(dòng)程度較大,面積大的WS1中取值普遍較大,WS1中位于0.06~0.12內(nèi)的比WS3增加133%,WS1和WS3中均小于標(biāo)準(zhǔn)值0.2。
有無水土保持措施治理的對比觀測流域(WS2、WS3)參數(shù)分析,未治理流域WS2的CN波動(dòng)程度較小,WS2中位于70~90內(nèi)的CN比WS3增加144%,CN取值普遍較大;值在兩流域的分布形式相似,WS2中值有88.7%的小于0.2;WS3中有75%的數(shù)據(jù)位于0.02~0.08,治理流域WS3中的波動(dòng)程度變小。
黃土丘陵溝壑區(qū)地表植被稀疏,地形支離破碎,地下水位低,SCS模型適用于黃土區(qū)的產(chǎn)流計(jì)算,因此在該地區(qū)開展了大量相關(guān)研究。周淑梅等[23]確定橋子西溝流域?yàn)?.1,并得出應(yīng)利用當(dāng)?shù)財(cái)?shù)據(jù)率定研究區(qū)的結(jié)論;王英等[24]對黃土區(qū)徑流小區(qū)進(jìn)行參數(shù)優(yōu)化研究,優(yōu)化后取值0.01。以上研究表明取值均小于0.2,這與本文確定出大部分取值小于0.2的結(jié)論一致,但以上研究得到的參數(shù)均為流域統(tǒng)一的參數(shù),不能根據(jù)不同類型降雨特征得到適用的參數(shù)。水土保持措施改變了微地形與植被,加大降雨攔蓄、降低降雨侵蝕、提高降雨入滲,對徑流和流域蓄水能力都有較大影響[25]。黃土區(qū)小流域的治理措施和空間配置方式均會(huì)導(dǎo)致率定的參數(shù)間存在差異。
2.1.2 參數(shù)CN和與降雨特征的關(guān)系
黃土高原位于季風(fēng)區(qū)和非季風(fēng)區(qū)的過渡帶,夏秋季雨量集中,降雨和當(dāng)?shù)貤l件氣候密切相關(guān),以超滲產(chǎn)流為主。研究表明,黃土丘陵溝壑區(qū)的降雨過程中,以和30為代表的降雨特征與產(chǎn)流、產(chǎn)沙的關(guān)系最為密切[26-27]。本文的研究結(jié)果與上述結(jié)論一致,因此只選擇相關(guān)性較大的和30降雨特征結(jié)合參數(shù)進(jìn)行分析。由表3可知,在顯著性水平0.01時(shí),3個(gè)流域中與CN均表現(xiàn)為顯著相關(guān),CN隨著的增加逐漸減小,呈明顯的負(fù)相關(guān)關(guān)系。WS1中與顯著相關(guān),呈弱相關(guān)關(guān)系。WS2中CN與30顯著相關(guān),同樣呈弱相關(guān)關(guān)系。WS3中30和顯著相關(guān),呈中等程度相關(guān)關(guān)系。
表3 典型降雨特征與參數(shù)的皮爾遜相關(guān)分析
注:**表示在顯著性水平為0.01時(shí)顯著相關(guān)。為降雨量,30為30 min 降雨強(qiáng)度,下同。
Note: ** indicates a significant correlation at the significance level of 0.01.is rainfall, and30is rainfall intensity in 30 min, same as below.
如圖4a所示,WS1中介于0~20 mm,且30介于0~0.8 mm/h時(shí),CN取值范圍為52.89~93.06,有82%的CN取值大于65,取值范圍為0.03~0.13,有84%的取值介于0.05~0.15;介于20~40 mm,且30介于0~0.8 mm/h時(shí),CN取值范圍為30.07~73.62,有82%的CN取值大于40,取值范圍為0.05~0.13,均位于0.05~0.15區(qū)間內(nèi),有68%的取值介于0.05~0.10。如圖4b所示,WS2中介于0~20 mm,且30介于0~30 mm/h時(shí),CN取值范圍為69.86~96.58,有94%的CN取值大于80,取值范圍為0.09~0.23,有84%的取值介于0.10~0.20;介于20~40 mm,且30介于0~30 mm/h時(shí),CN取值范圍為57.76~85.11,有71%的CN取值介于60~80,取值范圍為0.09~0.21,有86%的取值介于0.10~0.20。如圖4c所示,WS3中介于0~20 mm,且30介于0~30 mm/h時(shí),CN取值范圍為48.75~86.26,有81%的CN取值大于60,取值范圍為0.03~0.10,有91%的取值介于0.04~0.10;介于20~40 mm,且30介于0~30 mm/h時(shí),CN取值范圍為36.51~72.96,有78%的CN取值大于50;取值范圍為0.05~0.10,有50%的取值介于0.06~0.10??梢?,不同治理措施的流域,降雨特征和30不同,率定的參數(shù)CN和是在動(dòng)態(tài)變化的。得出不同降雨特征區(qū)間的2參數(shù)取值范圍,為流域產(chǎn)流模擬提供數(shù)據(jù)參考。
在3個(gè)流域中分別使用SCS-RF和SCS模型進(jìn)行產(chǎn)流模擬,驗(yàn)證集評價(jià)結(jié)果表明:SCS-RF模型均達(dá)到良好級別,而SCS模型均為不可接受級別,使用SCS-RF模型進(jìn)行小流域產(chǎn)流模擬時(shí)精度較高,適用性良好,可使用SCS-RF模型作為黃土丘陵溝壑區(qū)小流域產(chǎn)流模擬的研究方法。綜合各個(gè)指標(biāo)及評價(jià)分級結(jié)果,SCS-RF模型相較于SCS模型明顯可獲得良好的模擬效果,使用RF算法確定參數(shù)較為合理。驗(yàn)證集模型具體評價(jià)結(jié)果見表4。SCS-RF模型和SCS模型驗(yàn)證集NSE分別為0.84和?8.65。
表4 各流域驗(yàn)證集模型評價(jià)結(jié)果
驗(yàn)證集實(shí)測徑流深與模擬徑流深對比如圖5所示,SCS-RF模型和SCS模型的RMSE分別為1.06和6.64。SCS模型模擬徑流深所得相關(guān)系數(shù)明顯小于SCS-RF模型,驗(yàn)證集77.0%的SCS模型模擬值小于實(shí)測值。采用SCS模型的模擬結(jié)果不理想,這是由于不同場次降雨均采用同一參數(shù)所致。首先,較小的對CN有高偏置作用[30],而實(shí)際中黃土丘陵區(qū)降雨量通常較小,WS1、WS2、WS3中>25.4 mm的次降雨事件分別占總場次的36.5%、24.3%、27.3%。其次,統(tǒng)一取為0.2,導(dǎo)致SCS模型中<I的情況普遍發(fā)生,驗(yàn)證集內(nèi)61場次降雨中產(chǎn)流模擬結(jié)果為0的情況占總數(shù)56%,而SCS-RF模擬結(jié)果均大于0,參數(shù)與當(dāng)?shù)亟涤晏卣鞑黄ヅ涫钱a(chǎn)生誤差,造成SCS模型模擬與實(shí)測值差別較大的主要原因。
Soil Conservation Service (SCS)模型在實(shí)際應(yīng)用時(shí)存在許多限制,模型并未考慮降雨特征對徑流的影響,同時(shí)模型參數(shù)也存在地區(qū)不適用的問題,本研究提出了動(dòng)態(tài)參數(shù)SCS-RF(Random Forest)模型,并在黃土丘陵溝壑區(qū)典型小流域進(jìn)行適用性研究,得到以下結(jié)論:
1)為了克服SCS模型沒有考慮降雨強(qiáng)度、降雨歷時(shí)等降雨特征的缺點(diǎn),結(jié)合機(jī)器學(xué)習(xí)中的RF算法,構(gòu)建動(dòng)態(tài)參數(shù)SCS-RF模型,將降雨特征作為屬性集,通過訓(xùn)練數(shù)據(jù)同時(shí)獲得不同降雨特征下場次降雨的2個(gè)參數(shù)。采用SCS-RF模型在王家溝流域、羊道溝流域、插財(cái)主溝流域進(jìn)行產(chǎn)流模擬時(shí)均能取得良好的效果,且效果明顯優(yōu)于SCS模型。SCS-RF模型考慮不同類型降雨特征對產(chǎn)流的影響,不同場次降雨使用不同的參數(shù),提高了模型模擬精度,因此模擬效果優(yōu)于SCS模型。
2)不同流域的徑流曲線數(shù)(Curve Number,CN)和初損率取值分布存在明顯差異,對比進(jìn)行綜合治理但面積不同的2個(gè)流域,CN的分布形式近似,面積較大的王家溝流域CN和取值波動(dòng)程度大,且取值較大。對比面積近似,未進(jìn)行治理的羊道溝流域和綜合治理的插財(cái)主溝流域,羊道溝流域CN取值波動(dòng)程度較小,而取值波動(dòng)程度較大,CN和取值較其他流域普遍較大。經(jīng)過水土流失治理后的流域取值均小于標(biāo)準(zhǔn)值0.2,黃土丘陵溝壑區(qū)的適宜取值小于0.2。
3)各流域CN與降雨量呈顯著的負(fù)相關(guān)關(guān)系,參數(shù)與典型降雨特征(、30 min降雨強(qiáng)度30)的數(shù)據(jù)分布均有相對明顯的集中區(qū)域,在實(shí)際應(yīng)用中,可根據(jù)降雨特征(、30)和參數(shù)的分布范圍估計(jì)適宜的參數(shù)取值。
[1]黃金柏,付強(qiáng),王斌,等. 黃土高原北部水蝕風(fēng)蝕交錯(cuò)帶坡面降雨分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(8):108-114.
Huang Jinbai, Fu Qiang, Wang Bin, et al. Rainfall analysis on slope land of wind-water erosion crisscross region in northern Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(8): 108-114. (in Chinese with English abstract)
[2]Verma S, Verma R K, Mishra S K, et al. A revisit of NRCS-CN inspired models coupled with RS and GIS for runoff estimation[J]. Hydrological Sciences Journal, 2017, 62(12): 1891-1930.
[3]Grimaldi S, Petroselli A, Romano N. Green-Ampt Curve-Number mixed procedure as an empirical tool for rainfall-runoff modelling in small and ungauged basins[J]. Hydrological Processes, 2013, 27(8): 1253-1264.
[4]李潤奎,朱阿興,陳臘嬌,等. SCS-CN模型中土壤參數(shù)的作用機(jī)制研究[J]. 自然資源學(xué)報(bào),2013,28(10):1778-1787.
Li Runkui, Zhu Axing, Chen Lajiao, et al. Effects of soil parameters in SCS-CN runoff model[J]. Journal of Natural Resource, 2013, 28(10): 1778-1787. (in Chinese with English abstract)
[5]Xu J, Yi Z, Zhong K, et al. Coupling modified linear spectral mixture analysis and Soil Conservation Service Curve Number (SCS-CN) models to simulate surface runoff: Application to the main urban area of Guangzhou, China[J]. Water, 2016, 8(12): 550.
[6]Bartlett M S, Parolari A J, Mcdonnell J J, et al. Beyond the SCS-CN method: A theoretical framework for spatially lumped rainfall-runoff response[J]. Water Resources Research, 2016, 52(6): 4608-4627.
[7]焦劍,宋伯巖,王世雷,等. 基于改進(jìn)徑流曲線數(shù)模型的北京密云坡地徑流估算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(21):194-199.
Jiao Jian, Song Boyan, Wang Shilei, et al. Runoff estimation for hillslope land in Miyun based on improved model of soil conservation service curve number[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 194-199. (in Chinese with English abstract)
[8]吳志宜,俞志強(qiáng),朱雪堅(jiān),等. SCS模型在不同土地類型地表產(chǎn)流計(jì)算中的應(yīng)用[J]. 浙江大學(xué)學(xué)報(bào)(理學(xué)版),2016,43(2):226-230.
Wu Zhiyi, Yu Zhiqiang, Zhu Xuejian, et al. Application of SCS model on computing the surface runoff of different land use type-A case study on Yuyao, Zhejiang Province[J]. Journal of Zhejiang University (Science Edition), 2016, 43(2): 226-230. (in Chinese with English abstract)
[9]王瑾杰,丁建麗,張成,等. 基于SCS模型的新疆博爾塔拉河流域徑流模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(7):129-135.
Wang Jinjie, Ding Jianli, Zhang Cheng, et al. Runoff simulation based on SCS mode in Bortala River Basin in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(7): 129-135. (in Chinese with English abstract)
[10]Shi W H, Wang N. Improved SMA-based SCS-CN method incorporating storm duration for runoff prediction on the Loess Plateau, China[J]. Hydrology Research, 2020, 51(3): 443-455.
[11]符素華,王向亮,王紅葉,等. SCS-CN徑流模型中CN值確定方法研究[J]. 干旱區(qū)地理,2012,35(3):415-421.
Fu Suhua, Wang Xiangliang, Wang Hongye, et al. Meathod of determining CN value in the SCS-CN method[J]. Arid Land Geography, 2012, 35(3): 415-421. (in Chinese with English abstract)
[12]Baltas E A, Dervos N A, Mimikou M A. Technical Note: Determination of the SCS initial abstraction ratio in an experimental watershed in Greece[J]. Hydrology and Earth System Science, 2007, 11(6): 1825-1829.
[13]Shi Z H, Chen L D, Fang N F, et al. Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China[J]. Catena, 2009, 77(1): 1-7.
[14]Huang M, Gallichand J, Dong C, et al. Use of soil moisture data and curve number method for estimating runoff in the Loess Plateau of China[J]. Hydrological Processes, 2007, 21(11): 1471-1481.
[15]Fu S H, Zhang G H, Wang L, et al. Initial abstraction ratio in the SCS-CN method in the Loess Plateau of China[J]. Transactions of the Asabe, 2011, 54(1): 163-169.
[16]高黎明,張耀南,馮起. 河西內(nèi)陸河地區(qū)徑流模型概述[J]. 冰川凍土,2016,38(1):259-269.
Gao Liming, Zhang Yaonan, Feng Qi. Summarizing the runoff simulation models in Hexi inland river basins[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 259-269. (in Chinese with English abstract)
[17]芮孝芳,蔣成煜,張金存. 流域水文模型的發(fā)展[J]. 水文,2006,26(3):22-26.
Rui Xiaofang, Jiang Chengyu, Zhang Jincun. Development of watershed hydrologic models[J]. Journal of China hydrology, 2006, 26(3): 22-26. (in Chinese with English abstract)
[18]Garen D C, Moore D S. Curve number hydrology in water quality modeling: Uses, abuses, and future directions[J]. Journal of the American Water Resources Association, 2005, 41(2): 377-388.
[19]Mishra S K, Singh V P, Singh P K. Revisiting the soil conservation service curve number method[C]//Singh V, Yadav S, Yadava R. Hydrologic Modeling. Singapore: Springer, 2018: 667-693.
[20]Hu P C, Tang J L, Fan J H, et al. Incorporating a rainfall intensity modification factor gamma into the I-a-S relationship in the NRCS-CN method[J]. International Soil and Water Conservation Research, 2020, 8(3): 237-244.
[21]Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32.
[22]Ritter A, Mu?oz-Carpena R. Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments[J]. Journal of Hydrology, 2013, 480: 33-45.
[23]周淑梅,雷廷武. 黃土丘陵溝壑區(qū)典型小流域SCS-CN方法初損率取值研究[J]. 中國農(nóng)業(yè)科學(xué),2011,44(20):4240-4247.
Zhou Shumei, Lei Tingwu. Calibration of SCS-CN initial abstraction ratio of a typical small watershed in the Loess Hilly-Gully region[J]. Scientia Agricultura Sinica, 2011, 44(20): 4240-4247. (in Chinese with English abstract)
[24]王英,黃明斌. 徑流曲線法模型參數(shù)在黃土地區(qū)的優(yōu)化研究[J]. 水土保持通報(bào),2008,28(1):54-58.
Wang Ying, Huang Mingbin. Optimizing parameters of SCS-CN method for application on the Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2008, 28(1): 54-58. (in Chinese with English abstract)
[25]王紅艷,張志強(qiáng),查同剛,等. 徑流曲線數(shù)(SCS-CN)模型估算黃土高原小流域場降雨徑流的改進(jìn)[J]. 北京林業(yè)大學(xué)學(xué)報(bào),2016,38(8):71-79.
Wang Hongyan, Zhang Zhiqiang, Zha Tonggang, et al. Modification of SCS-CN model for estimating event rainfall runoff for small watersheds in the Loess Plateau, China[J]. Journal of Beijing Forestry University, 2016, 38(8): 71-79. (in Chinese with English abstract)
[26]Fang H Y, Cai Q G, Chen H, et al. Effect of rainfall regime and slope on runoff in a gullied loess region on the Loess Plateau in China[J]. Environmental Management, 2008, 42(3): 402-411.
[27]Wei W, Chen L, Fu B, et al. The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China[J]. Journal of Hydrology, 2007, 335(3/4): 247-258.
[28]Hawkins R H, Ward T J, Woodward D E, et al. Curve Number Hydrology: State of the Practice[M]. Reston, Virginia: American Society of Civil Engineers, 2009.
[29]Muche M E, Hutchinson S L, Hutchinson J M S, et al. Phenology-adjusted dynamic curve number for improved hydrologic modeling[J]. Journal of Environmental Management, 2019, 235: 403-413.
[30]D’asaro F, Grillone G. Empirical investigation of curve number method parameters in the mediterranean area[J]. Journal of Hydrologic Engineering, 2012, 17(10): 1141-1152.
Runoff simulation of small watershed in loess hilly region using dynamic parameter SCS-RF model
Zhao Xuehua, Zhang Lijuan, Zhu Xueping
(,,030024,)
Rainfall and runoff events are two important parameters in the natural hydrological cycle. The rainfall also dominates the formation of runoff in many influence factors. In recent years, various human activities, such as the construction of projects for water conservancy, as well as conservation projects for soil sources, have posed a great impact on the soil infiltration and topography of basin, which further affected the evolution of surface runoff. Heavy rain and runoff can cause a series of natural disasters, such as water erosion and flood damage. Sediment loss from construction sites and soil erosion has become a serious source of water pollution in the loess hilly and gully area. The rapid situation can deeply deteriorate the water and soil resources, further to threaten the safety of flood control. Fortunately, Soil Conservation Service (SCS) model can be used to evaluate the impact of rainfall on runoff yield. The improved model was established to consider the impact of other rainfall characteristics in the supposed conditions and internal structure with the parameter calibration. However, the accuracy of runoff simulation depends mainly on the selection of model parameters, particularly on the regional characteristics of parameters. In this study, a dynamic parameter SCS-Random Forest (RF) model was constructed, according to the dataset from 307 times rainfall runoff in Wangjiagou basin and its sub basins in flood season. The rainfall characteristics were taken as splitting attributes of a decision tree, while the RF was used to determine the Curve Number(CN) and initial abstraction ratio in the model parameters. Various parameters were be calibrated, according to the rainfall characteristics of a same rainfall, and then compared with the SCS model without parameter improvement. The results showed that the Root Mean Square Error (RMSE) of SCS-RF model and SCS model were 1.06 and 6.64, while the Nash-Sutcliffe Efficiency (NSE) were 0.84 and ?8.65, respectively. Moreover, the SCS-RF model achieved an excellent performance in each basin, where the simulation effect of SCS-RF model was better than that of SCS model. The SCS-RF model also considered the influence of rainfall characteristics on runoff yield. The process of parameter calibration was simplified, thereby to enhance the universality of the model. The different treatment in the basin made the distribution of parameters significantly different from others. There was small fluctuation for the CN in Yangdaogou basin, and the initial abstraction ratio in the Chacaizhugou basin. The initial abstraction ratios were less than the standard value of 0.2, after the control of soil erosion. The distributions of CN were approximate, comparing with the two basins that were comprehensively treated but with different areas. Specifically, there was a large area fluctuation for the CN and initial abstraction ratio in the Wangjiagou basin, where the CNin Wangjiagou basin was larger than that of Chacaizhugou basin. The compared area was similar, where the Yangdaogou basin did not be treated, while the Chacaizhugou basin was treated. The initial abstraction ratio was small in the basin of Chacaizhugou, but fluctuated greatly in Yangdaogou basin, whereas, the CN fluctuation was small in Yangdaogou basin. It infers that the distribution of initial abstraction ratio was similar. There was a negative correlation between CN and rainfallin each basin. The data distribution of parameters and rainfall characteristics (, rainfall intensity in 30 min30) had a relatively obvious concentration area. The rainfall-runoff simulation can provide a theoretical basis for the conservation planning of soil and water, as well as the management of water resources.
models; runoff; SCS-RF; runoff simulation; dynamic parameters; loess region
趙雪花,張麗娟,祝雪萍. 動(dòng)態(tài)參數(shù)SCS-RF模型在黃土丘陵區(qū)小流域產(chǎn)流模擬中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(1):195-202.doi:10.11975/j.issn.1002-6819.2021.01.024 http://www.tcsae.org
Zhao Xuehua, Zhang Lijuan, Zhu Xueping. Runoff simulation of small watershed in loess hilly region using dynamic parameter SCS-RF model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 195-202. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.024 http://www.tcsae.org
2020-07-31
2020-12-15
國家重點(diǎn)研發(fā)計(jì)劃(2019YFC0408601);山西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(201903D321052);山西省自然科學(xué)基金(201901D111060)
趙雪花,博士,教授,主要從事水文水資源研究。Email: zhaoxuehua@tyut.edu.cn
10.11975/j.issn.1002-6819.2021.01.024
TV121
A
1002-6819(2021)-01-0195-08