付興濤,王奇花,王錦志
降雨條件下晉西黃綿土坡面室內(nèi)外徑流侵蝕試驗差異分析
付興濤1,王奇花1,王錦志2
(1. 太原理工大學(xué)水利科學(xué)與工程學(xué)院,太原 030024;2. 山西省水土保持科學(xué)研究所,太原 310045)
目前多利用室內(nèi)模型試驗所得土壤侵蝕模數(shù)乘以面積預(yù)測野外實地水土流失,為了探討晉西黃綿土坡面室內(nèi)外徑流侵蝕差異,該研究采用室內(nèi)模型模擬與野外原位模擬試驗方法,分析了不同降雨與坡面面積條件下,室內(nèi)與野外坡面徑流模數(shù)、侵蝕模數(shù)、單寬輸沙率及細(xì)溝發(fā)育差異性,結(jié)果顯示:室內(nèi)模型試驗結(jié)果均大于野外原位模擬試驗,當(dāng)野外坡面面積為室內(nèi)的4倍時,徑流量與侵蝕產(chǎn)沙量不呈4倍關(guān)系,且面積越大野外與室內(nèi)侵蝕量比值越小,說明簡單地用室內(nèi)試驗結(jié)果乘以面積預(yù)測野外實地水土流失是不合理的,且雨強(qiáng)對徑流侵蝕的影響較面積大;相同降雨條件下室內(nèi)坡面較野外坡面更易產(chǎn)生細(xì)溝,且發(fā)育程度大,更傾向于溝底下切,增強(qiáng)了室內(nèi)坡面徑流侵蝕力;一定雨強(qiáng)、坡長條件下,野外單寬輸沙率在10~14 min首次出現(xiàn)峰值,之后趨于穩(wěn)定,而室內(nèi)多在4 min即出現(xiàn)峰值,且峰值為野外的1.58~10.40倍,說明室內(nèi)模型試驗單寬輸沙率及其波動性大于野外,且響應(yīng)時間更短。
降雨;徑流;侵蝕;晉西;黃綿土;室內(nèi)外;差異分析
天然降雨下野外徑流小區(qū)觀測是土壤流失資料獲取的主要途徑,但由于天然降雨的有限性與偶發(fā)性,以及受人力、物力、財力等限制,導(dǎo)致野外觀測難度較大。因此,將野外土壤侵蝕現(xiàn)象按一定比尺關(guān)系對應(yīng)于室內(nèi)徑流槽模型模擬試驗是當(dāng)前土壤侵蝕機(jī)理研究中普遍采用的一種快捷且易操作的科學(xué)方法[1-5]。雷阿林等[6]基于物理學(xué)方法推導(dǎo)出一個土壤侵蝕試驗中的降雨相似性法則,并指出土壤不宜做縮小比尺的模擬,模型土壤應(yīng)保持與天然土壤最接近的容重、質(zhì)地、結(jié)構(gòu)等。事實上,室內(nèi)模型試驗用土很難做到與野外原狀土完全一致,因此,即使在相似的降雨條件下,室內(nèi)與野外侵蝕產(chǎn)沙試驗結(jié)果仍不可避免地存在差異。高建恩等[7-8]在前人研究基礎(chǔ)上,基于相似論的原理對黃土高原小流域水力侵蝕調(diào)控實體模擬試驗的相似條件進(jìn)行研究,并在據(jù)此所建造的康家屹嶗小流域模型進(jìn)行驗證,指出幾何比尺為100時,降雨、匯流、產(chǎn)沙及輸沙均與實際基本相符;隨后,李書欽等[9]在比尺為2.5時的試驗結(jié)果顯示,徑流流態(tài)、阻力系數(shù)和床面變形也是基本相似的,但其原型與模型采用的是室內(nèi)大型和小型土槽;而更多學(xué)者關(guān)注土壤侵蝕的空間尺度效應(yīng)問題[10],如坡面尺度、流域尺度的土壤侵蝕問題。諸多研究均為模型向原型定量轉(zhuǎn)換這個難點問題的解決奠定了一定的基礎(chǔ),但總體上依然未能很好解決模型相似準(zhǔn)則問題[11],且研究結(jié)果具有一定的研究區(qū)局限性。
在目前水力侵蝕模型模擬與原型相似準(zhǔn)則尚無實質(zhì)性突破的情況下,鑒于侵蝕機(jī)理的復(fù)雜性,對于室內(nèi)模型模擬與野外原狀土試驗的研究多基于幾何相似,通過探討徑流與輸沙的差異性,進(jìn)而為室內(nèi)模型模擬結(jié)論向原型的定量轉(zhuǎn)換尋求突破點。由于模擬降雨試驗會弱化降雨因子對土壤侵蝕的影響[12],且室內(nèi)模型試驗土壤條件很難與野外完全保持一致,使得室內(nèi)模型與野外原狀土模擬降雨試驗結(jié)果存在明顯差異。管新建等[13]利用模糊貼近度計算方法對邙山黃土的室內(nèi)外侵蝕產(chǎn)沙過程進(jìn)行分析研究,結(jié)果表明一定雨強(qiáng)下容重較大的土樣與原狀土貼近度更高。紅壤坡面的試驗結(jié)果表明,室內(nèi)與野外侵蝕模數(shù)并不按面積比例呈倍數(shù)關(guān)系,室內(nèi)模型試驗結(jié)果反而遠(yuǎn)大于野外實地試驗結(jié)果[14],這與Mamisao等[15]的研究結(jié)論相似,Schiettecatte等[16]在黃土坡耕地的試驗結(jié)果也顯示在模擬降雨條件下室內(nèi)產(chǎn)沙量要高于野外。
綜上所述,盡管學(xué)者們通過大量試驗分析了室內(nèi)模型與野外原型相似比尺關(guān)系,揭示出室內(nèi)模型試驗與野外實地水土流失確實存在差異,但由于研究條件與研究區(qū)域不同,研究結(jié)論難以推廣應(yīng)用,尤其針對晉西典型的離石黃土母質(zhì)上發(fā)育的黃綿土,缺乏室內(nèi)外侵蝕產(chǎn)沙差異的系統(tǒng)研究。鑒于此,本研究采用人工模擬試驗方法,通過對比分析降雨條件下室內(nèi)模型與野外實地土壤侵蝕結(jié)果,探索模擬降雨試驗后室內(nèi)外坡面地貌形態(tài)差異性以及單寬輸沙率隨產(chǎn)流歷時的變化規(guī)律,試圖揭示導(dǎo)致室內(nèi)外土壤侵蝕差異性的原因,以期為晉西室內(nèi)模型試驗結(jié)果準(zhǔn)確應(yīng)用于野外實地水土流失預(yù)測提供科學(xué)依據(jù)。
試驗區(qū)位于晉西呂梁市離石縣王家溝流域,該流域為三川河中游左岸一條支溝,屬黃土丘陵溝壑區(qū)第一副區(qū),流域面積9.10 km2,地理坐標(biāo)為東經(jīng)111°11′,北緯37°31′。年平均氣溫8.90 ℃,多年平均降雨量490.30 mm,降雨多集中于7-9月,歷時短,強(qiáng)度大,極易造成嚴(yán)重水土流失并加速侵蝕,實測多年平均輸沙模數(shù)7 651 t/km2。研究區(qū)土壤母質(zhì)為新生界第四系中更新統(tǒng)離石黃土或晚更新統(tǒng)馬蘭黃土與中更新統(tǒng)離石黃土的混合土,為典型的離石黃土母質(zhì)上發(fā)育的黃綿土,顆粒細(xì)小,質(zhì)地疏松,不具層理,具有直立性,并含有碳酸鈣,遇水容易溶解、崩塌,地面坡度較大且坡面植被稀疏。表層土壤容重1.37 g/cm3(野外)、1.35 g/cm3(室內(nèi)),有機(jī)質(zhì)含量13.42 g/kg,pH值8.15,根據(jù)國際制粒級劃分標(biāo)準(zhǔn),土壤黏粒(<0.002 mm)、粉砂粒(0.002~<0.02 mm)、砂粒(0.02~<2 mm)質(zhì)量分?jǐn)?shù)分別為1.75%、14.20%和84.05%。研究區(qū)土壤、氣候在晉西黃土高原地區(qū)有較好的典型性和代表性。
模擬降雨在太原理工大學(xué)實驗室內(nèi)與王家溝流域野外坡面徑流小區(qū)分別進(jìn)行,坡面土地利用方式為裸坡(圖1)。山西省水保所徑流測驗資料(1955-1981年)指出,當(dāng)?shù)剞r(nóng)田主要分布在山坡上部坡度20°左右,其中16°~20°耕地面積占比最大(25.60%),因此,試驗設(shè)計坡度為20°。此外,山坡上果園種植行距一般為3和4 m[17],檸條種植間距為4 m[18],為了研究該坡長范圍內(nèi)土壤侵蝕規(guī)律,設(shè)計試驗坡長為2、3、4、5 m,坡面寬度分別為0.50 m(室內(nèi))、2.00 m(野外),徑流槽內(nèi)土壤深度為0.50 m(室內(nèi))。根據(jù)山西省水文局降雨徑流監(jiān)測資料,該流域暴雨強(qiáng)度多集中于60~90 mm/h之間,汛期最大降雨強(qiáng)度達(dá)90.30 mm/h,因此,試驗設(shè)計雨強(qiáng) 50、60、70、80、90、100、110、120 mm/h。降雨監(jiān)測系統(tǒng)選擇由中國科學(xué)院水利部水土保持研究所與西安清遠(yuǎn)測控技術(shù)有限公司共同研發(fā)的便攜式全自動人工模擬降雨器。噴頭高度離地面10 m左右,根據(jù)付興濤[19]對降雨均勻性測定及雨強(qiáng)標(biāo)定,得出本試驗所用人工模擬降雨器的降雨均勻系數(shù)在85%以上,雨滴分布及終速等指標(biāo)均符合試驗要求,可以開展試驗。
徑流槽內(nèi)土壤取自野外試驗小區(qū)附近坡面上。將土壤按原狀土順序分層(10 cm一層,共5層)裝袋并運回室內(nèi),風(fēng)干后去除雜質(zhì)備用。為盡量保證徑流槽底部土壤透氣透水性接近天然狀態(tài),先均勻撒5 cm厚細(xì)沙并鋪上透水紗布,然后裝填45 cm厚供試土壤。裝土前采用烘干法測定土壤含水率,盡量保證土壤容重接近自然狀態(tài)。9 cm為一層,共分5層均勻地將土壤裝入徑流槽。每填完并壓實一層后用齒耙耙松土表,以保證上下2個土層接觸面均勻一致。將土壤全部裝入徑流槽后,用平尺刮平土表,壓實土壤與徑流槽接觸的邊壁,以減小邊壁邊際效應(yīng)對徑流、產(chǎn)沙過程的影響。徑流槽裝填完畢后,至少靜置1個月并定期灑水,環(huán)刀法測定沉實后槽內(nèi)土壤容重,直到其接近野外天然狀態(tài)時進(jìn)行人工模擬降雨試驗。
為保證室內(nèi)外各自降雨試驗土壤前期水分含量(絕對含水率)相對一致,每場降雨前在坡面不同部位取土樣進(jìn)行測定(室內(nèi)試驗均在13.99%左右,野外則在15%左右)。試驗過程中用秒表記錄產(chǎn)流開始時刻,之后每隔2 min用標(biāo)有刻度的1 L塑料瓶采集一次徑流泥沙樣,同時量測水溫(用于查詢粘滯系數(shù)),產(chǎn)流開始后持續(xù)降雨30 min,場降雨共采集15組徑流泥沙樣。每場降雨試驗后,將所有徑流泥沙樣靜置24 h量測徑流體積,然后倒去上清液,將泥沙烘干稱質(zhì)量(105 ℃的條件下烘12 h)得到每2 min流出小區(qū)出口的泥沙量。由于室內(nèi)試驗4個坡長的徑流槽并排放置,所以每場模擬降雨4個坡長同時進(jìn)行,每場降雨重復(fù)2次,共降雨16場。野外模擬試驗小區(qū)分布比較散,所以每個小區(qū)分別進(jìn)行試驗,每場降雨重復(fù)2次,共降雨64場。
將場降雨流出徑流小區(qū)的流量作為最終地表徑流量,徑流中所含泥沙作為最終土壤流失量,對室內(nèi)與野外試驗土壤侵蝕模數(shù)、徑流模數(shù)進(jìn)行描述性統(tǒng)計分析,并做侵蝕模數(shù)、徑流模數(shù)與面積、雨強(qiáng)的Pearson相關(guān)分析;繪制細(xì)溝形態(tài)特征指標(biāo)柱狀圖及不同雨強(qiáng)下室內(nèi)外坡面單寬輸沙率隨產(chǎn)流歷時變化曲線。
試驗盡量控制室內(nèi)與野外模擬降雨試驗土壤、降雨特性、坡長、坡度最大程度保持相似,但室內(nèi)與野外土壤侵蝕模數(shù)與徑流模數(shù)隨雨強(qiáng)的變化過程表明(圖2、圖3),室內(nèi)模型試驗結(jié)果均大于野外原位模擬試驗結(jié)果。雨強(qiáng)由50 mm/h增大到120 mm/h時,室內(nèi)土壤侵蝕模數(shù)與徑流模數(shù)分別在0.297×10-2~0.110 kg/(m2·min)、0.017×10-2~0.241×10-2m3/(m2·min)之間變化,野外變化范圍為0.260×10-3~0.039 kg/(m2·min)、0.100×10-3~0.116×10-2m3/(m2·min),野外侵蝕模數(shù)與徑流模數(shù)最大、最小值分別僅為室內(nèi)的8.70%~35.80%、48.10%~58.80%。當(dāng)野外徑流小區(qū)面積為室內(nèi)徑流槽面積的4倍時,其徑流量與侵蝕產(chǎn)沙量并非呈4倍關(guān)系(表1),相同雨強(qiáng)下,徑流小區(qū)面積越大,野外與室內(nèi)侵蝕產(chǎn)沙量比值越小。
表1 野外與室內(nèi)產(chǎn)沙量比和徑流量比
導(dǎo)致室內(nèi)與野外試驗結(jié)果差異性的原因,可能主要在于土壤特性、入滲和風(fēng)的影響。首先,次降雨過程中土壤侵蝕的發(fā)生是降雨與表層土壤之間的相互響應(yīng)[20],降雨侵蝕力與土壤可蝕性相互依存,降雨侵蝕力的大小取決于降雨特性[21],如雨強(qiáng)、雨滴直徑等,而土壤可蝕性則主要取決于土壤理化特性,如土壤顆粒組成、水穩(wěn)性團(tuán)粒結(jié)構(gòu)、滲透性、有機(jī)質(zhì)含量等,在降雨特性相似的情況下可蝕性低的土壤易遭侵蝕[22]。試驗采用可控雨強(qiáng)的人工模擬降雨裝置,所以室內(nèi)與野外模擬降雨強(qiáng)度、雨量基本保持一致,但由于室內(nèi)模型試驗槽為人工裝填,盡管按照野外原狀土層次分層裝填并層層壓實,但與質(zhì)地堅硬、具有較多結(jié)皮的野外原位自然坡面相比,室內(nèi)模型坡面表層土壤疏松顆粒較多,易被雨滴濺蝕及徑流攜帶[23],其可蝕性是野外原狀土的4倍左右[24],試驗測得野外原狀土表層土壤容重為1.37 g/cm3,室內(nèi)模型試驗為1.35 g/cm3,略有偏差。其次,模型試驗與原位模擬試驗邊界的差異。導(dǎo)致室內(nèi)外模擬試驗的降雨入滲有區(qū)別,相比至少垂直深50 cm邊界限制的室內(nèi)土槽,野外原位土壤可沿著垂向及側(cè)向滲透,其滲透量較室內(nèi)大。最后,野外試驗雖然盡量選擇在早上5:00-9:00風(fēng)比較小時進(jìn)行,但試驗過程中觀察到仍然會受到風(fēng)的間斷性影響,陳洪松等[25]在野外模擬試驗中也指出這一點。結(jié)果顯示,室內(nèi)外不同面積徑流小區(qū)土壤侵蝕模數(shù)隨雨強(qiáng)的增大均呈顯著增大趨勢(圖2、圖3),相比野外原位模擬試驗相對緩慢的變化趨勢,室內(nèi)模型試驗增幅更加顯著,如雨強(qiáng)由50 mm/h增大到120 mm/h時,室內(nèi)2.5 m2面積土壤侵蝕模數(shù)增幅為0.107 kg/(m2·min),野外10 m2面積增幅為0.039 kg/(m2·min),即野外徑流小區(qū)侵蝕模數(shù)增幅僅為前者的37.00%。然而,侵蝕模數(shù)隨面積的增大室內(nèi)與野外均呈現(xiàn)波動變化趨勢,徑流模數(shù)表現(xiàn)出與侵蝕模數(shù)相似的變化過程,野外徑流模數(shù)隨面積、雨強(qiáng)的增大波動性更大。方差分析顯示,雨強(qiáng)對土壤侵蝕模數(shù)有顯著影響,室內(nèi)外模擬試驗統(tǒng)計量對應(yīng)的值為0.000,均遠(yuǎn)小于0.05,而面積對土壤侵蝕模數(shù)影響并不顯著。進(jìn)一步相關(guān)分析表明(表2),侵蝕模數(shù)、徑流模數(shù)在室內(nèi)與野外模擬試驗條件下與雨強(qiáng)在0.01水平上均呈極顯著正相關(guān),相關(guān)系數(shù)不小于0.838,而與面積的相關(guān)性較小。侵蝕模數(shù)與徑流模數(shù)在0.01水平上呈極顯著正相關(guān),室內(nèi)模型試驗相關(guān)性較野外大,其相關(guān)系數(shù)分別為0.947、0.715,說明相比侵蝕面積,降雨與徑流仍然是導(dǎo)致土壤流失的主要因素。然而,當(dāng)雨強(qiáng)較小時,由于雨滴直徑較小,在間斷性風(fēng)的影響下發(fā)生水平移動[26],甚至被吹到徑流小區(qū)邊界外面,使得降落到小區(qū)內(nèi)的雨量減少,一方面影響徑流量,另一方面影響降雨侵蝕力,從而導(dǎo)致野外試驗結(jié)果小于室內(nèi)。因此,本試驗初步得出不能簡單地用室內(nèi)模型模擬試驗結(jié)果與面積相乘預(yù)測野外實地土壤侵蝕量。
表2 侵蝕模數(shù)、徑流模數(shù)與面積、雨強(qiáng)的相關(guān)性分析
注:**<0.01,*<0.05(32個實測值).
Note:**<0.01,*<0.05 (32 measured values).
細(xì)溝是在坡面徑流差異性侵蝕(由于地面凹凸不平而產(chǎn)生的對徑流的分配作用和地表土壤抗侵蝕力的空間差異,使徑流在坡面上呈現(xiàn)不均勻分布)條件下,坡面上產(chǎn)生的一種小溝槽地形。土壤抗侵蝕力和降雨徑流侵蝕力是影響細(xì)溝侵蝕的最直接因素,當(dāng)降雨徑流侵蝕力大于土壤抗侵蝕力時細(xì)溝形成并得以發(fā)展,坡面產(chǎn)流產(chǎn)沙過程也隨之發(fā)生改變[27]。早在1984年,F(xiàn)oster等[28]根據(jù)田間實際形成的細(xì)溝,在室內(nèi)制作細(xì)溝形態(tài)相同的模型(0.91 m×4.27 m),研究細(xì)溝流速與溝岸擴(kuò)張溝道下切的影響。鄭粉莉等[29]也依據(jù)野外調(diào)查,在5.0 m×1.5 m的徑流小區(qū)進(jìn)行試驗,表明土壤、地形以及土地管理措施等都會影響細(xì)溝侵蝕量,且這些影響基本與野外調(diào)查結(jié)果相符。本研究對室內(nèi)模型與野外原狀坡面降雨試驗后細(xì)溝形態(tài)特征對比發(fā)現(xiàn),相同降雨條件下室內(nèi)坡面較野外坡面更容易產(chǎn)生細(xì)溝(圖4)。以90 mm/h降雨為例,試驗過程中對坡面地貌形態(tài)觀察發(fā)現(xiàn),室內(nèi)外坡面下部隨降雨的進(jìn)行均有不同程度的細(xì)溝出現(xiàn),野外相較室內(nèi)坡面細(xì)溝不太發(fā)育,故未對細(xì)溝的形態(tài)特征(長、寬、深等)進(jìn)行測量,管新建等[24]在野外25°陡坡進(jìn)行的雨強(qiáng)為0.51~2.32 mm/min,歷時30 min的人工模擬降雨試驗也得出這一結(jié)論。而室內(nèi)試驗在坡長為3 m降雨強(qiáng)度小于90 mm/h時,沒有明顯細(xì)溝出現(xiàn),可能由于坡長較短導(dǎo)致坡面匯水面積小,坡面即使出現(xiàn)跌坎尚未貫通形成細(xì)溝[30]。然而,當(dāng)雨強(qiáng)達(dá)到90 mm/h時,4和5 m長度坡面上細(xì)溝明顯發(fā)育,且鄰近的細(xì)溝合并,細(xì)溝平均長度分別達(dá)到120、169 cm,平均寬度3、4 cm,平均深度1.5、4 cm。5 m坡長在90 mm/h降雨條件下,測得最長的一條細(xì)溝甚至長240.8 cm。
為了進(jìn)一步分析室內(nèi)試驗坡面細(xì)溝發(fā)育形態(tài),本研究探討了細(xì)溝割裂度(表征坡面破碎程度與細(xì)溝侵蝕強(qiáng)度)與細(xì)溝寬深比(表征細(xì)溝形狀變化)隨坡長、雨強(qiáng)的變化,結(jié)果顯示,細(xì)溝割裂度整體隨降雨強(qiáng)度和坡長的增大而增大,細(xì)溝寬深比則隨二者的增大而減小,沈海鷗等[31-32]在室內(nèi)人工模擬降雨試驗中也得出相同的結(jié)論,說明降雨強(qiáng)度、坡長與細(xì)溝發(fā)育程度有著密切的關(guān)系,且溝底下切程度較溝岸擴(kuò)展程度大。另外,在降雨強(qiáng)度、土壤前期含水率、土壤容重等相似的情況下,除野外試驗中風(fēng)對降雨侵蝕力及徑流量的影響外,室內(nèi)試驗擾動后土壤的水穩(wěn)性團(tuán)粒結(jié)構(gòu)、滲透性等[33-36]與野外自然坡面土壤有較大差異,導(dǎo)致坡面細(xì)溝發(fā)育程度在室內(nèi)外對比試驗中產(chǎn)生了較大差異。如目前常采用室內(nèi)模擬降雨和放水沖刷試驗研究坡面細(xì)溝侵蝕的水動力學(xué)條件和特征[37-40],但大多數(shù)模擬試驗中供試土壤是經(jīng)過風(fēng)干、過篩的,試驗坡面也都經(jīng)平整處理,與自然條件下細(xì)溝侵蝕發(fā)生的地表條件相差甚遠(yuǎn),蔡強(qiáng)國[41]在對細(xì)溝發(fā)生臨界條件的研究中也指出室內(nèi)與野外實際情況有一定差異。細(xì)溝形態(tài)的差異性導(dǎo)致室內(nèi)試驗產(chǎn)流量與產(chǎn)沙量均較野外試驗大。
降雨條件下坡面徑流侵蝕是一個復(fù)雜的過程,產(chǎn)沙量預(yù)報的困難在于對從侵蝕到沉積或產(chǎn)沙過程的整體了解。選取60、90、120 mm/h 3個典型雨強(qiáng),對比分析不同降雨強(qiáng)度條件下,室內(nèi)與野外坡面單寬輸沙率隨產(chǎn)流歷時變化過程(圖5)。結(jié)果顯示,野外與室內(nèi)單寬輸沙率總體隨產(chǎn)流歷時先增大后趨于穩(wěn)定并表現(xiàn)出“多峰多谷”這一相似的變化趨勢。但一定降雨強(qiáng)度和坡長條件下,室內(nèi)模型單寬輸沙率及其波動性總是大于野外,且響應(yīng)很快。同時,室內(nèi)模擬試驗單寬輸沙率在產(chǎn)流4 min時已達(dá)到相應(yīng)條件下峰值的52.50%以上(雨強(qiáng)為60 mm/h,坡長為5 m時除外),且多集中在80.00%附近。而野外試驗中其值在產(chǎn)流初期呈線性增長,至第10~14 min才首次出現(xiàn)峰值,且在首次達(dá)到峰值時,室內(nèi)試驗值是野外的1.58~10.40倍。
分析產(chǎn)生上述結(jié)果的原因,首先是室內(nèi)外土壤抗蝕性差異。產(chǎn)流初期雨滴動能直接作用于土表,土粒被分散、濺起,在坡面上被搬運、沉積甚至隨徑流流出出口斷面,在此過程中,野外坡面堅實的土層和土表較多的結(jié)皮會增強(qiáng)表土抗蝕性,而室內(nèi)試驗由于是擾動土壤,表層疏松顆粒較多,因此,在產(chǎn)流初期室內(nèi)單寬輸沙率較野外試驗大且在短時間內(nèi)達(dá)到峰值;第二是降雨條件下室內(nèi)外坡面細(xì)溝形成差異,坡面徑流深隨降雨的進(jìn)行逐漸增大,雨滴對土表的濺蝕減小至可忽略,產(chǎn)流量和徑流挾沙能力也逐漸達(dá)到穩(wěn)定,然而,細(xì)溝的形成使得坡面水流匯集于細(xì)溝內(nèi)部,流速有較大增加,流速作為細(xì)溝流侵蝕力的重要指標(biāo),對坡面剝蝕幾率有很大影響[42]。坡面微地貌、降雨強(qiáng)度、土壤理化性質(zhì)等都能影響細(xì)溝的演變和發(fā)展,致使坡面單寬輸沙率的變化過程存在較大的波動性,王志偉等[43]在沂蒙山區(qū)典型土壤坡面也得出這一結(jié)論。由2.2可知,室內(nèi)模型試驗坡面細(xì)溝發(fā)育狀況較野外原位試驗存在較大差異,故一定雨強(qiáng)、坡長條件下室內(nèi)單寬輸沙率及其波動性總是大于野外。而室內(nèi)試驗單寬輸沙率在坡長大于2 m時明顯增大,其原因是在試驗條件下坡長大于2 m時發(fā)生了細(xì)溝侵蝕(圖4),進(jìn)一步顯示出細(xì)溝侵蝕的重要作用。第三,室內(nèi)試驗單寬輸沙率增大較野外試驗響應(yīng)快,可能由于野外試驗受風(fēng)的影響。試驗過程中觀察到,當(dāng)降雨強(qiáng)度一定時,野外試驗由于受風(fēng)的影響落到小區(qū)內(nèi)的雨量減少,坡面產(chǎn)流量相應(yīng)減少,產(chǎn)流時刻也相對室內(nèi)滯后,而研究顯示坡面徑流單寬輸沙率隨著產(chǎn)流量的增加而增加[44];另外,雨滴直徑隨雨強(qiáng)的增大而增大,因此,雨強(qiáng)越大雨滴受風(fēng)的影響相對減小,降落到試驗小區(qū)的雨量更接近實際,但圖5顯示,室內(nèi)外單寬輸沙率總體隨坡長的延長而增大。對于室內(nèi)模擬試驗,60 mm/h雨強(qiáng)條件下坡長為5 m時單寬輸沙率整體間于3~4 m坡長之間,而野外原位模擬試驗,雨強(qiáng)60、90 mm/h條件下,5 m坡長單寬輸沙率較其他坡長小,除了因為室內(nèi)外試驗環(huán)境不同外,可能還與徑流剝蝕和搬運土粒所需能量有關(guān)[45]。但隨著降雨強(qiáng)度的增大,雨滴對表土顆粒的濺蝕作用增大,為坡面侵蝕產(chǎn)沙提供了更多的物質(zhì)來源,同時徑流量增大,徑流紊動性也得到加強(qiáng)[46],侵蝕能力和挾沙能力相應(yīng)增大,所以室內(nèi)試驗當(dāng)雨強(qiáng)大于60 mm/h、野外試驗雨強(qiáng)大于90 mm/h時,5 m坡長坡面單寬輸沙率大于4 m坡長。
在室內(nèi)模型模擬與野外原位模擬試驗基礎(chǔ)上,本文對比了降雨條件下室內(nèi)與野外坡面土壤侵蝕模數(shù)與徑流模數(shù)隨試驗坡面面積、雨強(qiáng)的變化,并通過坡面侵蝕細(xì)溝與單寬輸沙率進(jìn)一步分析導(dǎo)致其差異性的原因,初步得出不能簡單地用室內(nèi)試驗結(jié)果乘以面積預(yù)測野外實地水土流失量的結(jié)論,主要結(jié)論如下:
1)室內(nèi)模型試驗土壤侵蝕模數(shù)與徑流模數(shù)均大于野外原位模擬試驗結(jié)果,當(dāng)野外徑流小區(qū)面積為室內(nèi)徑流槽面積的4倍時,徑流量與侵蝕產(chǎn)沙量不呈4倍關(guān)系,面積越大,野外與室內(nèi)結(jié)果比值越小,因此,建議將室內(nèi)試驗結(jié)果通過合理的轉(zhuǎn)換后預(yù)測野外實際水土流失將更加客觀。
2)雨強(qiáng)對室內(nèi)外侵蝕模數(shù)、徑流模數(shù)有顯著影響,均呈極顯著正相關(guān)(相關(guān)系數(shù)不小于0.838),而與面積的相關(guān)性較小;侵蝕模數(shù)與徑流模數(shù)相關(guān)性達(dá)0.947(室內(nèi))、0.715(野外),說明相比侵蝕面積,降雨以及產(chǎn)生的徑流仍然是導(dǎo)致土壤侵蝕的主要因素。
3)相同降雨條件下室內(nèi)坡面較野外坡面更容易產(chǎn)生細(xì)溝,雨強(qiáng)大于90 mm/h、坡長大于3 m時,室內(nèi)外坡面下部均產(chǎn)生不同發(fā)育程度的細(xì)溝,但相較野外坡面,室內(nèi)坡面細(xì)溝發(fā)育程度大,且更趨向于溝底下切,說明細(xì)溝發(fā)育與雨強(qiáng)、坡長有關(guān),且溝底下切程度較溝岸擴(kuò)展程度大,導(dǎo)致室內(nèi)試驗徑流量與產(chǎn)沙量較野外試驗大。
4)一定雨強(qiáng)和坡長條件下,室內(nèi)外單寬輸沙率均隨產(chǎn)流歷時先增大后趨于穩(wěn)定,但室內(nèi)模型試驗單寬輸沙率及其波動性大于野外,且響應(yīng)時間更短,產(chǎn)流4 min時單寬輸沙率已達(dá)到相應(yīng)條件下峰值的52.50%以上,而野外試驗至第10~14 min才首次出現(xiàn)峰值,且室內(nèi)試驗峰值是野外的1.58~10.40倍;室內(nèi)外單寬輸沙率總體隨坡長的延長而增大,但坡長為5 m時,室內(nèi)雨強(qiáng)大于60 mm/h,野外雨強(qiáng)大于90 mm/h時坡面單寬輸沙率才大于4 m坡長。
本研究雖然就晉西黃綿土坡面室內(nèi)模型與野外原位條件下徑流侵蝕產(chǎn)沙進(jìn)行了模擬,得出其差異性,并分析了導(dǎo)致差異性產(chǎn)生的原因,但相較于天然降雨,野外人工模擬降雨仍然不能完全反映天然降雨的全部性質(zhì),一方面在后續(xù)的研究中期望通過長序列天然降雨徑流水文監(jiān)測數(shù)據(jù)的分析,進(jìn)一步驗證野外試驗的可靠性。更重要的是期望開展模型向原型轉(zhuǎn)換方面的研究,切實解決基于室內(nèi)試驗結(jié)果合理預(yù)測野外實地水土流失問題。
[1] 徐向舟,張紅武,張羽,等. 坡面水土流失比尺模型相似性的試驗研究[J]. 水土保持學(xué)報,2005,19(1):25-27.
Xu Xiangzhou, Zhang Hongwu, Zhang Yu, et al. Laboratory rainfall simulations for similarity criterion of scale model on interrill erosion[J]. Journal of Soil and Water Conservation, 2005, 19(1): 25-27. (in Chinese with English abstract)
[2] 管新建,李占斌,王民,等. 坡面徑流水蝕動力參數(shù)室內(nèi)試驗及模糊貼近度分析[J]. 農(nóng)業(yè)工程學(xué)報,2007,23(6):1-6.
Guan Xinjian, Li Zhanbin, Wang Min, et al. Laboratory experiment and fuzzy nearness degree analysis of runoff hydrodynamic erosion factors on slope land surface[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(6): 1-6. (in Chinese with English abstract)
[3] 王瑄,李占斌,尚佰曉,等. 坡面土壤剝蝕率與水蝕因子關(guān)系室內(nèi)模擬試驗[J]. 農(nóng)業(yè)工程學(xué)報,2008,24(9):22-26.
Wang Xuan, Li Zhanbin, Shang Baixiao, et al. Indoor simulation experiment of the relationship between soil detachment rate and water erosion factor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(9): 22-26. (in Chinese with English abstract)
[4] 和繼軍,呂燁,宮輝力,等. 細(xì)溝侵蝕特征及其產(chǎn)流產(chǎn)沙過程試驗研究[J]. 水利學(xué)報,2013,44(4):398-405.
He Jijun, Lv Ye, Gong Huili, et al. Experimental study on rill erosion characteristics and its runoff and sediment yield process[J]. Journal of Hydraulic Engineering, 2013, 44(4): 398-405. (in Chinese with English abstract)
[5] 張攀,姚文藝,唐洪武,等. 模擬降雨條件下坡面細(xì)溝形態(tài)演變與量化方法[J]. 水科學(xué)進(jìn)展,2015,26(1):51-58.
Zhang Pan, Yao Wenyi, Tang Hongwu, et al. Evolution and quantization methods of rill morphology on the slope under rainfall simulation[J]. Advances in Water Science, 2015, 26(1): 51-58. (in Chinese with English abstract)
[6] 雷阿林,史衍璽. 土壤侵蝕模型實驗中的土壤相似性問題[J]. 科學(xué)通報,1996,41(19):1801-1804.
Lei Alin, Shi Yanxi. Soil similarity in soil erosion model experiment[J]. Chinese Science Bulletin, 1996, 41(19): 1801-1804. (in Chinese with English abstract)
[7] 高建恩,楊世偉,吳普特,等. 水力侵蝕調(diào)控物理模擬試驗相似律的初步確定[J]. 農(nóng)業(yè)工程學(xué)報,2006,22(1):27-31.
Gao Jian’en, Yang Shiwei, Wu Pute, et al. Preliminary study on similitude law in simulative experiment for controlling hydraulic erosion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(1): 27-31. (in Chinese with English abstract)
[8] 高建恩,吳普特,牛文全,等. 黃土高原小流域水力侵蝕模擬試驗設(shè)計與驗證[J]. 農(nóng)業(yè)工程學(xué)報,2005,21(10):41-45.
Gao Jian’en, Wu Pute, Niu Wenquan, et al. Simulation experiment design and verification of controlling water erosion on small watershed of loess plateau[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(10): 41-45. (in Chinese with English abstract)
[9] 李書欽,高建恩,趙春紅,等. 坡面水力侵蝕比尺模擬試驗設(shè)計與驗證[J]. 中國水土保持科學(xué),2010,8(1):6-12.
Li Shuqin, Gao Jian’en, Zhao Chunhong, et al. Design and verification of water erosion scale simulation experiment on slope[J]. Science of Soil and Water Conservation, 2010, 8(1): 6-12. (in Chinese with English abstract)
[10] 符素華,椹卓嵐,張志蘭,等. 水土流失綜合治理優(yōu)先小流域識別的空間尺度效應(yīng)[J]. 水土保持通報,2020,40(2):148-153.
Fu Suhua, Shen Zhuolan, Zhang Zhilan, et a1. Scale effect on identifying priority watershed for comprehensive control of soil and water loss[J]. Bulletin of Soil and Water Conservation, 2020, 40(2): 148-153. (in Chinese with English abstract)
[11] 孫三祥,張云霞. 降雨及坡面徑流模擬試驗相似準(zhǔn)則[J].農(nóng)業(yè)工程學(xué)報,2012,28(11):93-98.
Sun Sanxiang, Zhang Yunxia. Similarity criterion in physical simulation of rainfall and sheet flow[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(11): 93-98. (in Chinese with English abstract)
[12] 柯奇畫,張科利. 人工降雨模擬試驗的相似性和應(yīng)用性探究[J]. 水土保持學(xué)報,2018,32(3):16-20.
Ke Qihua, Zhang Keli. An exploration on the similarity and applicability of simulated rainfall experiments[J]. Journal of Soil and Water Conservation, 2018, 32(3): 16-20. (in Chinese with English abstract)
[13] 管新建,李勉,胡彩虹,等. 室內(nèi)外陡坡降雨侵蝕產(chǎn)沙過程相似性模擬分析[J]. 水土保持通報,2011,31(5):191-195.
Guan Xinjian, Li Mian, Hu Caihong, et al. Similarity between erosion and sediment yield processes on steep slopes with simulated rainfalls under indoor and outdoor conditions[J]. Bulletin of Soil and Water Conservation, 2011, 31(5): 191-195. (in Chinese with English abstract)
[14] Fu X T, Zhang L P, Wang Y. Effect of slope length and rainfall intensity on runoff and erosion conversion from laboratory to field[J]. Water Resources, 2019, 46(4): 530-541.
[15] Mamisao J P. Development of Agricultural Watershed by Similitude[D]. Iowa State: Iowa State College, 1952.
[16] Schiettecatte W, Verbist K, Hartmann R, et al. Sediment Load in runoff under laboratory and field simulated eainfall[J]. Agricultural Sciences in China, 2004, 3(1): 31-36.
[17] 楊才敏. 晉西黃土丘陵溝壑區(qū)水土流失綜合治理開發(fā)研究[M]. 北京:中國科學(xué)技術(shù)出版社,1995.
[18] 霍貴中. 檸條在黃土丘陵溝壑區(qū)生態(tài)建設(shè)中的示范研究[J]. 山西水土保持科技,2014(3):36-37.
Huo Guizhong. Demonstration study on caragana korshinskii kom in ecological construction in loess hilly and gully region[J]. Soil and Water Conservation Science and Technology in Shanxi, 2014(3): 36-37. (in Chinese with English abstract)
[19] 付興濤. 晉西黃綿土坡面徑流流態(tài)與輸沙特征試驗研究[J]. 水利學(xué)報,2017,48(6):738-747.
Fu Xingtao. Characteristics of flow pattern and sediment transport processes on loessal slope in western Shanxi Province[J]. Journal of Hydraulic Engineering, 2017, 48(6): 738-747. (in Chinese with English abstract)
[20] 閆峰陵,李朝霞,史志華,等. 紅壤團(tuán)聚體特征與坡面侵蝕定量關(guān)系[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(3):37-41.
Yan Fengling, Li Zhaoxia, Shi Zhihua, et al. Quantitative relationship between aggregate characteristics of red soil and slope erosion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(3): 37-41. (in Chinese with English abstract)
[21] 殷水清,薛筱嬋,岳天宇,等. 中國降雨新勢力的時空分布及重現(xiàn)期研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(9):105-113.
Yin Shuiqing, Xue Xiaochan, Yue Tianyu, et al. Spatiotemporal distribution and return period of rainfall erosivity in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 105-113. (in Chinese with English abstract)
[22] 成玉婷,李鵬,徐國策,等. 凍融條件下土壤可蝕性可對坡面氮磷流失的影響[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(24):141-149.
Cheng Yuting, Li Peng, Xu Guoce, et al. Effect of soil erodibility on nitrogen and phosphorus loss under condition of freeze-thaw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 141-149. (in Chinese with English abstract)
[23] 吳淑芳,劉勃洋,雷琪,等. 基于三維重建技術(shù)的坡面細(xì)溝侵蝕演變過程研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(9):114-120.
Wu Shufang, Liu Boyang, Lei Qi, et al. Evolution process of slope rill erosion based on 3D photo reconstruction technique[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 114-120. (in Chinese with English abstract)
[24] 管新建,姚文藝,李勉,等. 坡面水蝕比尺模型室內(nèi)外相似性試驗研究[J]. 水土保持學(xué)報,2007,21(6):43-46.
Guan Xinjian, Yao Wenyi, Li Mian, et al. Study on similarity to laboratory and field experiment of scale model on inerrill erosion[J]. Journal of Soil and Water Conservation, 2007, 21(6): 43-46. (in Chinese with English abstract)
[25] 陳洪松,邵明安,張興昌,等. 野外模擬降雨條件下坡面降雨入滲、產(chǎn)流試驗研究[J]. 水土保持學(xué)報,2005,19(2):5-8.
Chen Hongsong, Shao Ming'an, Zhang Xingchang, et al. Field experiment on hillslope rainfall infiltration and runoff under simulated rainfall conditions[J]. Journal of Soil and Water Conservation, 2005, 19(2): 5-8. (in Chinese with English abstract)
[26] 蘇小勇,高太長,劉西川,等. 水平風(fēng)作用下雨滴水平速度的數(shù)值仿真[J]. 氣象科學(xué),2013,33(3):282-288.
Su Xiaoyong, Gao Taichang, Liu Xichuan, et al. Numerical simulation of the raindrop horizontal velocity affected by the wind[J]. Journal of the Meteorological Sciences, 2013, 33(3): 282-288. (in Chinese with English abstract)
[27] 張攀,唐洪武,姚文藝,等. 細(xì)溝形態(tài)演變對坡面水沙過程的影響[J]. 水科學(xué)進(jìn)展,2016,27(4):535-541.
Zhang Pan, Tang Hongwu, Yao Wenyi, et al. Rill morphology evolution and runoff and sediment yielding processes[J]. Advances in Water Science, 2016, 27(4): 535-541. (in Chinese with English abstract)
[28] Foster G R, Huggins L F, Meyer L D. A Laboratory study of rill hydraulics. I. velocity relationships[J]. Transactions of the ASAE, 1984, 27(3): 797-804.
[29] 鄭粉莉,唐克麗,周佩華. 坡耕地細(xì)溝侵蝕影響因素的研究[J]. 土壤學(xué)報,1989,26(2):109-116.
Zheng Fenli, Tang Keli, Zhou Peihua. Study on factors affecting rill erosion on cultivated slope land[J]. Acta Pedologica Sinica, 1989, 26(2): 109-116. (in Chinese with English abstract)
[30] 裴冠博,龔冬琴,付興濤. 晉西黃綿土坡面細(xì)溝形態(tài)及其對產(chǎn)流產(chǎn)沙的影響[J]. 水土保持學(xué)報,2017,31(6):79-84.
Pei Guanbo, Gong Dongqin, Fu Xingtao. Rill morphology and its effect on runoff and sediment yield on loessal soil slope in western Shanxi Province[J]. Journal of Soil and Water Conservation, 2017, 31(6): 79-84. (in Chinese with English abstract)
[31] 沈海鷗,鄭粉莉,溫磊磊,等. 降雨強(qiáng)度和坡度對細(xì)溝形態(tài)特征的綜合影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2015,46(7):162-170.
Shen Haiou, Zheng Fenli, Wen Leilei, et al. Effects of rainfall intensity and slope gradient on rill morphological characteristics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 162-170. (in Chinese with English abstract)
[32] 孔亞平,張科利. 黃土坡面侵蝕產(chǎn)沙沿程變化的模擬試驗研究[J]. 泥沙研究,2003(1):33-38.
Kong Yaping, Zhang Keli. The distribution of soil loss on the surface of loess slope[J]. Journal of Sediment Research, 2003(1): 33-38. (in Chinese with English abstract)
[33] 宋景全. 擾動與未擾動試驗區(qū)土壤理化特性分析[J]. 中國水土保持,1988(12):44-47,66.
Song Jingquan. Analysis of soil physical and chemical properties in disturbed and undisturbed test areas[J]. Soil and Water Conservation in China, 1988(12): 44-47, 66. (in Chinese with English abstract)
[34] Tuli A, Hopmans J W, Rolston D E, et al. Comparison of air and water permeability between disturbed and undisturbed Soils[J]. Soil Science Society of America Journal, 2005, 69(5): 1361-1371.
[35] 賀小容,何丙輝,秦偉,等. 不同坡長條件下擾動地表對土壤養(yǎng)分的影響[J]. 水土保持學(xué)報,2013,27(5):154-158.
He Xiaorong, He Binghui, Qin Wei, et al. Effect of disturbance surface on soil nutrient under different slope length[J]. Journal of Soil and Water Conservation, 2013, 27(5): 154-158. (in Chinese with English abstract)
[36] 郭曉朦,何丙輝,姚云,等. 擾動地表下不同坡面土壤物理性質(zhì)及水分入滲特征[J]. 西北農(nóng)林科技大學(xué)學(xué)報:自然科學(xué)版,2017,45(7):57-65.
Guo Xiaomeng, He Binhui, Yao Yun, et al. Soil physical properties and infiltration characteristics of different slope length under disturbed surface[J]. Journal of Northwest A & F University: Natural Science Edition, 2017, 45(7):57-65. (in Chinese with English abstract)
[37] 王志強(qiáng),楊萌,張巖,等. 暴雨條件下黃土高原長陡坡耕地細(xì)溝侵蝕特征[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(12):129-135.
Wang Zhiqiang, Yang Meng, Zhang Yan, et al. Rill erosion of long and steep cropland on the Loess Plateau under heavy rainstorm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(12): 129-135. (in Chinese with English abstract)
[38] 陳超,雷廷武,班云云,等. 東北黑土坡耕地不同水力條件下坡長對土壤細(xì)溝侵蝕的影響[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(5):163-170.
Chen Chao, Lei Tingwu, Ban Yunyun, et al. Effects of slope lengths on rill erosion under different hydrodynamic conditions in black soil sloping farmland of Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 155-162. (in Chinese with English abstract)
[39] 張科利,唐克麗. 黃土坡面細(xì)溝侵蝕能力的水動力學(xué)試驗研究[J]. 土壤學(xué)報,2000,37(1):9-15.
Zhang Keli, Tang Keli. A study on hydraulic characteristics of flow for prediction of rill detachment capacity on loess slope[J]. Acta Pedologica Sinica, 2000, 37(1): 9-15. (in Chinese with English abstract)
[40] 李占斌,秦百順,亢偉,等. 陡坡面發(fā)育的細(xì)溝水動力學(xué)特性室內(nèi)試驗研究[J]. 農(nóng)業(yè)工程學(xué)報,2008,24(6):64-68.
Li Zhanbin, Qin Baishun, Kang Wei, et al. Indoor experimental studies on hydrodynamic characteristics of runoff in rill erosion procession steep slope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(6): 64-68. (in Chinese with English abstract)
[41] 蔡強(qiáng)國. 坡面細(xì)溝發(fā)生臨界條件研究[J]. 泥沙研究,1998(1):52-59.
Cai Qiangguo. Research of rill initiation condition on loess hillslopes[J]. Journal of Sediment Research, 1998(1): 52-59. (in Chinese with English abstract)
[42] 王龍生,蔡強(qiáng)國,蔡崇法,等. 黃土坡面細(xì)溝與細(xì)溝間水流水動力學(xué)特性研究[J]. 泥沙研究,2013(6):45-52.
Wang Longsheng, Cai Qiangguo, Cai Chongfa, et al. Study of hydrodynamic characteristics of rill and inter-rill flows on loess slopes[J]. Journal of Sediment Research, 2013(6): 45-52. (in Chinese with English abstract)
[43] 王志偉,陳志成,艾釗,等. 不同雨強(qiáng)與坡度對沂蒙山區(qū)典型土壤坡面侵蝕產(chǎn)沙的影響[J]. 水土保持學(xué)報,2012,26(6):17-20.
Wang Zhiwei, Chen Zhicheng, Ai Zhao, et al. Erosion and desertification with Mountain Yimeng typical surface soil caused by differernt rainfall intensity and slope[J]. Journal of Soil and Water Conservation, 2012, 26(6): 17-20. (in Chinese with English abstract)
[44] 李鵬,李占斌,鄭良勇. 黃土坡面徑流侵蝕產(chǎn)沙動力過程模擬與研究[J]. 水科學(xué)進(jìn)展,2006,17(4):444-449.
Li Peng, Li Zhanbin, Zheng Liangyong. Hydrodynamics process of soil erosion and sediment yield by runoff on loess slope[J]. Advances in Water Science, 2006, 17(4): 444-449. (in Chinese with English abstract)
[45] 李君蘭,蔡強(qiáng)國,孫莉英,等. 坡面水流速度與坡面含砂量的關(guān)系[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(3):73-78.
Li Junlan, Cai Qiangguo, Sun Liying, et al. Relationship between the spatial distribution of flow velocity and sediment concentration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(3): 73-78. (in Chinese with English abstract)
[46] 吳淑芳,吳普特,原立峰. 坡面徑流調(diào)控薄層水流水力學(xué)特性試驗[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(3):14-19.
Wu Shufang, Wu Pute, Yuan Lifeng. Hydraulic characteristics of sheet flow with slope runoff regulation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(3): 14-19. (in Chinese with English abstract)
Laboratory and field erosion differences under rainfall on Loessal slope in Western Shanxi, China
Fu Xingtao1, Wang Qihua1, Wang Jinzhi2
(1.,,030024,;2.,310045,)
Soil erosion modulus from laboratory modeling is often used to predict soil and water loss for a specific area in the field. Therefore, this study aims to investigate the erosion difference between laboratory and field simulation under various intensities of rainfall and areas on a loessal slope in western Shanxi, China. An emphasis was placed on the laboratory modeling and in-situ simulated rainfall events in the field. A systematic analysis was made on runoff modulus, erosion modulus, sediment discharge of unit width and rill development between laboratory and field. The intensities of simulated rainfall were set as 50, 60, 70, 80, 90, 100, 110, 120 mm/h, combined with natural rainfall events in the study region. A coefficient of uniformity above 85% was, considered in the simulated rainfall, similar to the raindrop distribution and size in the natural rainfall. Calibration of rainfall intensities was conducted at the beginning of each experiment. In the field, the runoff/erosion catchment plots were established in the size of 2, 3, 4, 5 m (length) and 2 m (width) in Wangjiagou small watershed in western Shanxi, while in the laboratory, that in the size of 2, 3, 4, 5 m (length) and 0.5 m (width) in the Taiyuan University of Technology. The soil surface was bare, where the soil type was loessal, and the slope gradient was 20°. Initial water content of soil was determined all the same in simulated experiments. Each rainfall event was repeated two times. The period from the rainfall beginning to runoff occurrence was recorded as “runoff occurrence time” during each rainfall event, where the duration of each rainfall simulation was 30 min from the appearance of runoff. All samples of runoff and sediment were collected in the polyethylene bottles with the volume of 1 L at the bottom end of the plot at 2 min intervals, as the final runoff volume and sediment yield. The erosion modulus and runoff modulus were analyzed with the rainfall intensity and area, in the field and laboratory, indicating significant correlation between rainfall intensity (slope length) and sediment yield. Rill morphology and sediment discharge of unit width were further measured to explore difference between field and laboratory. The results showed that laboratory measurements were greater than those of field in-situ simulation. When the slope area of field was 4 times that of the laboratory, the runoff and sediment yield were not 4 times, where the larger the area was, the smaller the ratio of erosion was, indicating that the amount of soil erosion in the field cannot be predicted simply by the laboratory measurements. The rainfall intensity had also greater impact on the runoff erosion than the area. Under the same rainfall condition, the rill was more likely to occur on the laboratory slope surface, and more developed than on the field, which was more inclined to cut rill deep to enhance the runoff erosion force of laboratory slope. Under certain rainfall intensity and slope length conditions, the mass flux tended to be stable after the first peak at the 10-14 min in the field, while the peak appeared at 4 min in the laboratory, where the value was 1.58-10.40 times of that in the field.It showed that the sediment discharge of unit width and its fluctuation in laboratory were higher than that in the field, and the response time was shorter.
rainfall; runoff; erosion; western Shanxi; Loessal; laboratory and field; differences analysis
付興濤,王奇花,王錦志. 降雨條件下晉西黃綿土坡面室內(nèi)外徑流侵蝕試驗差異分析[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(1):116-124.doi:10.11975/j.issn.1002-6819.2021.01.015 http://www.tcsae.org
Fu Xingtao, Wang Qihua, Wang Jinzhi. Laboratory and field erosion differences under rainfall on Loessal slope in Western Shanxi, China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 116-124. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.015 http://www.tcsae.org
2020-09-09
2020-11-21
國家自然科學(xué)基金(51309173);山西省水利科學(xué)技術(shù)研究與推廣項目(201820)
付興濤,博士,副教授,主要從事土壤侵蝕與水土保持、河流生態(tài)水文研究。Email:fuxingtao@tyut.edu.cn
10.11975/j.issn.1002-6819.2021.01.015
S157.1
A
1002-6819(2021)-01-0116-09