亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        推遲灌拔節(jié)水條件下種植模式對(duì)冬小麥抗倒伏特性和產(chǎn)量的影響

        2021-03-31 13:52:02劉仲秋徐杭杭張浩男李全起
        關(guān)鍵詞:精播莖桿寬幅

        劉仲秋,徐杭杭,張浩男,2,吳 浩,李全起

        推遲灌拔節(jié)水條件下種植模式對(duì)冬小麥抗倒伏特性和產(chǎn)量的影響

        劉仲秋1,徐杭杭1,張浩男1,2,吳 浩1,李全起1※

        (1. 山東農(nóng)業(yè)大學(xué)水利土木工程學(xué)院,泰安 271018; 2. 沂沭河水利管理局沭河水利管理局,臨沂 276001)

        華北平原冬小麥在糧食生產(chǎn)中占據(jù)重要地位,受到灌溉用水短缺影響以及生育后期易倒伏減產(chǎn)的制約,冬小麥供需矛盾日益突出。該研究探究了推遲灌拔節(jié)水條件下不同種植模式對(duì)冬小麥抗倒伏特性的影響,設(shè)置寬幅精播(W)與常規(guī)種植(C)2種種植模式,每種種植模式設(shè)置灌拔節(jié)水60 mm(I1)和推遲10 d灌拔節(jié)水60 mm(I2)2種灌溉處理,研究冬小麥關(guān)鍵生育期莖稈物理指標(biāo),倒數(shù)第2節(jié)間莖桿力學(xué)、抗倒伏指數(shù)、蠕變變形量、產(chǎn)量及其組成等指標(biāo),探究冬小麥抗倒伏特性綜合調(diào)優(yōu)的種植模式和灌溉制度。結(jié)果表明,寬幅精播模式下推遲灌拔節(jié)水對(duì)抽穗期倒數(shù)第2節(jié)間莖桿抗折力有顯著提升的趨勢(shì),顯著提高了抗彎剛度,顯著降低了蠟熟期倒數(shù)第2節(jié)間莖桿抗折力和抗彎剛度,以及植株蠟熟期鮮質(zhì)量;寬幅精播模式下推遲灌拔節(jié)水顯著提高了抽穗期抗倒伏指數(shù),并提升了灌漿期抗倒伏指數(shù),該處理在抽穗期、灌漿期和蠟熟期的抗倒伏指數(shù)平均值分別為2.03、1.58和1.87 N/(m·g)。冬小麥倒數(shù)第2節(jié)間莖桿在施加小于其極限抗折力的不同比例荷載時(shí)具有蠕變特性,寬幅精播模式下推遲灌拔節(jié)水莖桿蠕變極值平均值在抽穗期最大,灌漿期表現(xiàn)仍然較好,均由減速蠕變過渡到穩(wěn)定蠕變階段,蠕變極值范圍介于0.6%~3.7%,蠕變極值平均值介于0.7%~2.5%。綜合考慮抗倒伏指數(shù)和蠕變?cè)囼?yàn)結(jié)果,冬小麥在寬幅精播模式下結(jié)合推遲10 d灌拔節(jié)水處理的抗倒伏特性最優(yōu)。研究結(jié)果可為華北平原冬小麥節(jié)水高產(chǎn)提供理論依據(jù)和技術(shù)支持。

        灌溉;種植模式;冬小麥;寬幅精播;抗倒伏指數(shù);蠕變

        0 引 言

        華北平原是中國重要的農(nóng)業(yè)生產(chǎn)區(qū)之一,冬小麥產(chǎn)量約占中國總產(chǎn)量的75%[1],同時(shí)華北平原也是世界上水資源短缺最為嚴(yán)峻的地區(qū)之一[2]。近年來,冬小麥產(chǎn)量水平不斷提高。為了進(jìn)一步提高冬小麥產(chǎn)量,余松烈院士團(tuán)隊(duì)[3]提出了寬幅精播種植模式,播種量相同的情況下,改傳統(tǒng)播種機(jī)播幅寬3.0~5.0 cm為6.0~8.0 cm,改生產(chǎn)上密集一條線條播為單粒分散式粒播,這一播種模式在北方冬麥區(qū)獲得了大面積單產(chǎn)最高紀(jì)錄。但是,高產(chǎn)冬小麥田群體數(shù)量大,在生育后期莖稈負(fù)荷力持續(xù)增大,倒伏問題加劇[4],增加真菌霉素污染儲(chǔ)存籽粒的可能性[5],還會(huì)帶來收獲困難等問題,制約了冬小麥的高產(chǎn)和穩(wěn)產(chǎn)。

        虧缺灌溉是有效的農(nóng)業(yè)節(jié)水措施,能合理利用有限的水資源[6]。研究表明,虧缺灌溉顯著改善了冬小麥旗葉光合特性和水分利用效率等生理指標(biāo),其形態(tài)結(jié)構(gòu)和產(chǎn)量亦會(huì)受到影響[7]。由拔節(jié)期灌溉推遲至拔節(jié)后10 天灌溉,冬小麥的水分利用效率和籽粒產(chǎn)量均顯著提高[8-9]。Pierre等[10]研究認(rèn)為,拔節(jié)期前水分脅迫可調(diào)節(jié)小麥植株節(jié)間長度、外徑和硬度。Ma等[11]研究發(fā)現(xiàn),拔節(jié)期水分虧缺處理提高了節(jié)間單位長度干質(zhì)量,提升了莖稈抗倒伏能力。植物莖稈是一種黏彈性材料,受到可變的外部壓力時(shí),可通過蠕變與松弛行為來調(diào)節(jié)自身機(jī)體的幾何結(jié)構(gòu)從而適應(yīng)外界變化[12]。Feng等[5]認(rèn)為,風(fēng)速是引起倒伏的主要因子,小麥倒伏主要是由基部節(jié)間上的風(fēng)引起的彎曲力矩導(dǎo)致的。Chen等[13]研究了21種冬小麥莖稈的應(yīng)力松弛特性,表明分?jǐn)?shù)階Zener模型能夠準(zhǔn)確描述應(yīng)力松弛現(xiàn)象。梁莉等[14]利用四元件Burgers模型精準(zhǔn)描述了蠟熟期小麥莖稈拉伸蠕變特性。有研究表明,應(yīng)力水平、應(yīng)力保持時(shí)間對(duì)拉伸蠕變有顯著影響[15]。到目前為止,推遲灌拔節(jié)水條件下寬幅精播冬小麥莖稈節(jié)間力學(xué)、抗倒伏指數(shù)和蠕變特性研究較少,制約了推遲灌拔節(jié)水和寬幅精播技術(shù)的進(jìn)一步發(fā)展。本研究以種植模式和拔節(jié)水灌溉時(shí)間為切入點(diǎn),分析冬小麥抗倒伏特性,以期為華北平原冬小麥節(jié)水高產(chǎn)提供理論依據(jù)和技術(shù)支持。

        1 材料與方法

        1.1 試驗(yàn)區(qū)概況

        本試驗(yàn)于2016年10月-2018年6月在山東農(nóng)業(yè)大學(xué)試驗(yàn)站(36°10′19″N,117°09′03″E)水分池內(nèi)進(jìn)行。水分池長×寬為3.0 m×3.0 m,深1.5 m,四周水泥抹面,不封底,池中土壤為壤質(zhì)黏土,0~20 cm土壤堿解氮、速效磷和速效鉀含量分別為108.1、16.1和92.4 mg/kg,有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)為1.4%,土壤容重為1.5 g/cm3,田間持水率為32.4%(體積含水率)。該試驗(yàn)點(diǎn)屬溫帶大陸性半季風(fēng)氣候區(qū),多年平均降水量為697.0 mm,約70%集中在7-9月。冬小麥生育期氣象數(shù)據(jù)由氣象站采集記錄,距離試驗(yàn)地約150 m。2016-2018年冬小麥生育期氣溫和降雨情況如圖1所示。自然降雨不能滿足冬小麥正常生長需水,冬小麥生育期間必須進(jìn)行補(bǔ)充灌溉。

        1.2 試驗(yàn)設(shè)計(jì)與過程

        供試冬小麥品種為濟(jì)麥22。試驗(yàn)采用裂區(qū)設(shè)計(jì),主區(qū)為2種種植模式:寬幅精播(W)與常規(guī)種植(C);副區(qū)為2個(gè)灌溉時(shí)間,灌溉拔節(jié)水60 mm(I1)的時(shí)間分別為2017年3月23日和2018年3月21日,推遲10 d灌溉拔節(jié)水60 mm(I2)的時(shí)間為2017年4月2日和2018年4月1日,采用水表嚴(yán)格控制水量。2種種植模式的播種量均為222粒/m2,采用人工點(diǎn)播。寬幅精播種植模式的行距為28 cm,播幅為6~8 cm;常規(guī)種植模式的行距為20 cm,播幅為2~3 cm。播種前,每個(gè)水分池底施尿素19.2 g/m2,磷酸二銨26.1 g/m2,硫酸鉀21.0 g/m2,拔節(jié)期追施尿素19.2 g/m2。2個(gè)生長季中,冬小麥生長期間不遮雨。本試驗(yàn)共4個(gè)處理,每處理重復(fù)3次,共12個(gè)水分池,隨機(jī)區(qū)組排列。

        1.3 指標(biāo)測定與計(jì)算

        于冬小麥抽穗期、灌漿期和蠟熟期,各小區(qū)連續(xù)取15株有代表性植株,采用精度10-2g電子天平測量其鮮質(zhì)量(M,g),精度1 mm的卷尺測量株高(,cm)和重心高度(H,cm)。截取倒數(shù)第2節(jié)間(剝離葉鞘),采用精度為10-4g的電子天平測量其鮮質(zhì)量(M2,g),精度為1 mm的直尺測量莖稈長度(L2,mm),精度為0.02 mm游標(biāo)卡尺測量長軸(D,mm)、短軸外徑(D,mm)和壁厚(,mm)。

        倒數(shù)第2節(jié)間莖桿外徑()(mm)計(jì)算公式為

        倒數(shù)第2節(jié)間莖稈鮮密度(ρ2,g/cm3)[16]計(jì)算公式為

        采用量程為0~200 N的微機(jī)控制電子萬能試驗(yàn)機(jī)對(duì)倒數(shù)第2節(jié)間進(jìn)行三點(diǎn)彎曲試驗(yàn)和蠕變?cè)囼?yàn),加載速度分別為50和0.5 mm/min,支點(diǎn)間距離()為5 cm,為中間加載點(diǎn)的彎曲撓度(cm)。彎曲試驗(yàn)測定的時(shí)間-應(yīng)力曲線峰值即為莖稈抗折力(B,N),蠕變?cè)囼?yàn)測定時(shí)間-應(yīng)變曲線,加載時(shí)間為400 s??紤]到莖桿個(gè)體差異性,蠕變?cè)囼?yàn)每個(gè)處理選取3個(gè)試樣,施加荷載采用每個(gè)處理平均抗折力的40%、60%和80%,達(dá)到額定荷載時(shí)保持力不變,測定時(shí)間-應(yīng)變曲線。

        倒數(shù)第2節(jié)間抗彎剛度(EI,N·cm2)[16]為

        冬小麥抗倒伏指數(shù)(R,N/(m·g))[17]計(jì)算公式為

        產(chǎn)量及產(chǎn)量構(gòu)成因素測定:在冬小麥成熟時(shí),每小區(qū)取除邊3行外生長均勻一致的1.5 m雙行考察穗數(shù),后風(fēng)干脫粒測產(chǎn)。另每小區(qū)連續(xù)選取具有代表性的20株,于室內(nèi)計(jì)數(shù)穗粒數(shù)和千粒質(zhì)量。

        1.4 數(shù)據(jù)處理與統(tǒng)計(jì)分析

        采用數(shù)據(jù)處理系統(tǒng)(Data Processing System)統(tǒng)計(jì)分析系統(tǒng)、Microsoft Excel 2016和Origin Pro 2017進(jìn)行數(shù)據(jù)處理和統(tǒng)計(jì)分析,采用最小顯著差數(shù)法(Least-Significant Difference method,LSD)進(jìn)行顯著性檢驗(yàn)。

        2 結(jié)果與分析

        2.1 莖稈物理指標(biāo)

        2016-2017生長季,抽穗期WI1處理的株高較CI1處理顯著降低了5.8%(表1);抽穗期CI1處理的植株鮮質(zhì)量顯著大于WI1和WI2處理,WI1處理的鮮質(zhì)量較CI1處理顯著降低了27.0%。蠟熟期WI1處理的鮮質(zhì)量最高。2017-2018生長季,灌漿期WI2處理的植株鮮質(zhì)量較CI1處理顯著降低了12.3%。從2個(gè)生長季來看,寬幅精播模式下推遲灌拔節(jié)水會(huì)顯著降低蠟熟期鮮質(zhì)量;2017-2018生長季各處理株高和重心高度均低于2016-2017生長季,而蠟熟期的鮮質(zhì)量均高于2016-2017生長季。

        2016-2017生長季,抽穗期CI2處理倒數(shù)第2節(jié)間鮮密度顯著高于其余處理(表2);灌漿期CI2處理壁厚顯著低于其余處理,蠟熟期WI2處理壁厚較CI2處理顯著增加40%。2017-2018生長季,灌漿期CI2處理鮮密度較WI1處理顯著增加31.9%,蠟熟期WI2鮮密度在各處理中最低;抽穗期WI2處理壁厚較CI1處理顯著增加25%,蠟熟期WI1處理的壁厚顯著大于CI1和CI2處理。從2個(gè)生長季來看,2016-2017生長季從抽穗期到灌漿期莖桿外徑逐漸增大;2017-2018生長季各處理莖桿鮮密度均高于2016-2017生長季;寬幅精播模式有提高蠟熟期倒數(shù)第2節(jié)間莖桿壁厚的傾向。

        表1 冬小麥不同生育期植株株高、重心高度和鮮質(zhì)量

        注:數(shù)據(jù)后不同字母表示同一生育期處理間差異(<0.05)。WI1、WI2、CI1、CI2分別為寬幅精播灌溉拔節(jié)水60 mm、寬幅精播推遲10 d灌溉拔節(jié)水60 mm、常規(guī)種植灌溉拔節(jié)水60 mm、常規(guī)種植推遲10 d灌溉拔節(jié)水60 mm。下同。

        Note: Different letters after the data indicate significant difference among treatments at same growth stage (<0.05) .WI1, WI2, CI1 and CI2 are wide precision planting pattern with 60 mm irrigation at jointing stage, wide precision planting pattern with 10-d delaying irrigation 60 mm at jointing stage, conventional cultivation planting pattern with 60 mm irrigation at jointing stage, conventional cultivation planting pattern with 10-d delaying irrigation 60 mm at jointing stage, respectively. The same below.

        表2 冬小麥不同生育期倒數(shù)第2節(jié)間莖稈外徑、鮮密度和壁厚

        2.2 莖稈力學(xué)指標(biāo)

        2016-2017生長季,抽穗期WI1處理倒數(shù)第2節(jié)間抗折力較CI1處理顯著降低了46.9%(圖2a),寬幅精播模式顯著降低了抗彎剛度(圖2b),灌漿期CI1處理抗折力和抗彎剛度均顯著高于其余處理;蠟熟期WI1處理抗折力和抗彎剛度均顯著高于其余處理。2017-2018生長季,抽穗期WI2處理抗折力顯著高于其余處理,CI1處理抗彎剛度顯著高于其余處理;灌漿期CI1處理抗折力和抗彎剛度均顯著高于其余處理;蠟熟期WI1處理抗折力顯著高于其余處理,CI2處理抗彎剛度顯著低于其余處理。從2個(gè)生長季來看,2017-2018生長季各處理抗折力和抗彎剛度均高于2016-2017生長季,抽穗期WI1處理抗折力和抗彎剛度最小,灌漿期CI1處理抗折力和抗彎剛度最大,蠟熟期WI1處理抗折力最大,CI2處理抗折力和抗彎剛度最小;寬幅精播模型下推遲灌溉拔節(jié)水對(duì)抽穗期抗折力有顯著提升的趨勢(shì),對(duì)抗彎剛度有顯著提升,對(duì)蠟熟期抗折力和抗彎剛度有顯著降低。

        2.3 冬小麥抗倒伏指數(shù)

        2016-2017生長季,抽穗期WI1處理抗倒伏指數(shù)顯著低于WI2和CI2處理(圖3),較WI2處理降低了29.9%;灌漿期CI1處理指數(shù)顯著高于其余處理,較WI2處理提高了55.4%;蠟熟期WI2處理指數(shù)顯著低于WI1處理。2017-2018生長季,抽穗期WI2處理指數(shù)顯著高于其余處理,灌漿期CI2處理指數(shù)顯著低于其余處理,蠟熟期WI1處理指數(shù)顯著低于CI1處理。從2個(gè)生長季來看,2017-2018生長季抗倒伏指數(shù)顯著大于2016-2017生長季;抽穗期WI2處理指數(shù)最高,灌漿期CI1處理指數(shù)最高,寬幅精播模式下推遲灌拔節(jié)水顯著提高了抽穗期抗倒伏指數(shù),并提升了灌漿期抗倒伏指數(shù);灌拔節(jié)水時(shí),寬幅精播模式抽穗期和灌漿期抗倒伏指數(shù)均可能小于常規(guī)種植模式;蠟熟期各處理年際差異較大,但寬幅精播模式下推遲灌拔節(jié)水表現(xiàn)在2017-2018年仍然較好,此模式下在抽穗期、灌漿期和蠟熟期抗倒伏指數(shù)2 a的平均值分別為2.03、1.58和1.87 N/(m·g)。

        2.4 冬小麥莖稈蠕變?cè)囼?yàn)

        一般材料蠕變?cè)囼?yàn)下時(shí)間-應(yīng)變曲線可分為瞬時(shí)變形、減速蠕變、穩(wěn)定蠕變和加速蠕變4個(gè)階段,主要與應(yīng)變率相關(guān)。當(dāng)曲線斜率逐漸增加,并有明顯的斜率增加突變值時(shí),即認(rèn)為進(jìn)入加速蠕變階段,此時(shí)莖桿的應(yīng)變會(huì)迅速增加。大部分莖桿材料在施加小于其極限抗折力的比例荷載時(shí)均表現(xiàn)為蠕變的前3個(gè)階段(圖4)。從2個(gè)生長季來看,生育后期含水率下降,莖稈變形量也相應(yīng)減少,減速與穩(wěn)定蠕變階段曲線符合General Kelvin模型中的Burgers模型。

        2016-2017生長季,不考慮加速蠕變曲線,抽穗期不同比例荷載下各處理加載400 s內(nèi)蠕變極值應(yīng)變范圍為0.8%~3.7%(表3),灌漿期和蠟熟期應(yīng)變范圍分別為0.6%~3.1%和0.7%~1.4%;共出現(xiàn)4次加速蠕變,分別為抽穗期CI1處理倒數(shù)第2節(jié)間加載到平均抗折力80%,灌漿期CI1處理加載到60%,以及蠟熟期WI2和CI1處理加載到80%。2017-2018生長季,抽穗期蠕變極值應(yīng)變范圍為0.7%~3.2%,灌漿期和蠟熟期應(yīng)變范圍分別為0.7%~2.6%和0.4%~3.5%;共出現(xiàn)6次加速蠕變,分別為抽穗期WI2、CI1和CI2處理加載到80%,灌漿期CI1處理加載到80%,以及蠟熟期CI1和CI2處理加載到80%。從2個(gè)生長季來看,2017-2018生長季出現(xiàn)加速蠕變的次數(shù)要大于2016-2017生長季,CI1處理出現(xiàn)的次數(shù)最多,達(dá)到了6次。從2 a不同比例荷載下蠕變極值的平均值來看,蠕變極值平均值介于0.7%~2.5%,WI2處理在抽穗期均為最大,灌漿期仍然表現(xiàn)較好。

        表3 冬小麥生育期倒數(shù)第2節(jié)間莖稈不同比例荷載下蠕變極值

        注:表中—表示出現(xiàn)加速蠕變情況。

        Note: “—” in the table indicates the occurrence of accelerated creep behavior.

        2.5 冬小麥產(chǎn)量及產(chǎn)量構(gòu)成因素

        如表4所示,2016-2017年,寬幅精播模式顯著提高了冬小麥產(chǎn)量,WI2較WI1產(chǎn)量顯著提高了4.2%,且穗數(shù)和穗粒數(shù)分別顯著提高了3.0%和4.9%;2017-2018年,寬幅精播模式顯著提高了冬小麥產(chǎn)量,WI2較WI1產(chǎn)量顯著提高了8.5%,且穗數(shù)、穗粒數(shù)和千粒質(zhì)量分別顯著提高了7.0%、2.2%和2.2%。從2個(gè)生長季來看,寬幅精播模式較常規(guī)種植模式顯著提高了冬小麥產(chǎn)量,該模式下實(shí)施拔節(jié)后10天灌水進(jìn)一步顯著提高了產(chǎn)量。

        表4 2016—2018年生育期冬小麥籽粒產(chǎn)量及其構(gòu)成因素

        3 討 論

        有研究表明,拔節(jié)期和抽穗期各灌60 mm,寬幅精播模式會(huì)顯著提高抽穗期株高,降低抽穗期和蠟熟期鮮質(zhì)量,降低各時(shí)期的抗折力,并降低蠟熟期抗倒伏指數(shù)[17-18]。本研究表明,寬幅精播模式下結(jié)合推遲灌拔節(jié)水相比于WI1處理降低了蠟熟期鮮質(zhì)量,說明推遲灌溉可對(duì)寬幅精播冬小麥蠟熟期鮮質(zhì)量累積起到一定的調(diào)控作用。但其對(duì)灌水量和灌溉時(shí)期的耦合響應(yīng)機(jī)制尚不清晰。寬幅精播模式下推遲灌拔節(jié)水顯著提升了抽穗期抗折力和抗彎剛度,并顯著降低了蠟熟期抗折力和抗彎剛度,這可能與拔節(jié)期水分適度激發(fā)作物生長補(bǔ)償效應(yīng)、促進(jìn)碳水化合物向籽粒轉(zhuǎn)移,有效縮減倒數(shù)第1、2節(jié)間長度、外徑,提高單位長度節(jié)間比例有關(guān)[11]。寬幅精播模式下推遲灌拔節(jié)水顯著提高了抽穗期抗倒伏指數(shù),并提升了灌漿期抗倒伏指數(shù),灌拔節(jié)水時(shí),寬幅精播模式較常規(guī)種植模式不具優(yōu)勢(shì)。冬小麥莖稈抗倒伏特性是多因素協(xié)同作用的結(jié)果[19],主要和株高、穗質(zhì)量、莖稈基部節(jié)間外徑、壁厚機(jī)械強(qiáng)度等密切相關(guān),本研究表明,冬小麥抗倒伏指數(shù)主要與重心高度、莖桿抗折力和抗彎剛度密切相關(guān),但密切相關(guān)性隨生育期的不同存在差異。

        在施加不同比例極限抗折力荷載時(shí),小麥莖桿不會(huì)瞬時(shí)折斷產(chǎn)生倒伏,此時(shí)風(fēng)荷載的持續(xù)時(shí)間會(huì)對(duì)小麥的倒伏產(chǎn)生較大影響[20],恒定風(fēng)荷載作用下莖桿隨時(shí)間的變形規(guī)律具有重要的研究價(jià)值。冬小麥莖稈具有黏彈性,水分作為增塑劑,在莖稈纖維素結(jié)構(gòu)中發(fā)揮了軟化緊密堅(jiān)硬結(jié)構(gòu)的作用[15],使得莖桿能夠產(chǎn)生較大變形;隨著生育期推后,植株含水率的降低,彎曲強(qiáng)度和彈性模量增加[21],從而減小外荷載下的變形,而加載過程中莖稈內(nèi)的黏性組織結(jié)構(gòu)對(duì)其持續(xù)變形的黏滯阻力逐漸增大,導(dǎo)致莖稈折斷和小麥倒伏。研究表明,冬小麥倒數(shù)第2節(jié)間莖桿在施加小于其極限抗折力的比例荷載時(shí)具有蠕變特性,如果此時(shí)莖桿在加載過程中出現(xiàn)加速蠕變現(xiàn)象,說明其仍然會(huì)瞬間折斷產(chǎn)生倒伏,其抵抗持續(xù)風(fēng)荷載能力最弱。寬幅精播模式下推遲灌拔節(jié)水莖桿蠕變極值平均值在抽穗期最大,灌漿期表現(xiàn)仍然較好,均由減速蠕變過渡到勻速穩(wěn)定蠕變階段,2 a試樣的減速蠕變階段基本在50 s以內(nèi),400 s內(nèi)的蠕變極值范圍介于0.6%~3.7%,蠕變極值平均值介于0.7%~2.5%,滿足彈性應(yīng)變范圍[15],且加速蠕變出現(xiàn)次數(shù)較少,抵抗持續(xù)風(fēng)荷載能力較強(qiáng)。

        在特定風(fēng)速大小和持續(xù)時(shí)間下,小麥莖桿可能在達(dá)到極限抗折力之前就會(huì)產(chǎn)生加速蠕變或大變形現(xiàn)象,從而引起倒伏,在抗倒伏評(píng)價(jià)中,除了抗倒伏指數(shù),增加額定時(shí)間下的蠕變變形判據(jù)具有實(shí)際意義。本試驗(yàn)中出現(xiàn)穩(wěn)定蠕變階段的應(yīng)變值范圍較小,莖桿不會(huì)由于產(chǎn)生大變形而破壞,因此結(jié)合抗倒伏指數(shù),抽穗期和灌漿期時(shí)寬幅精播模式下推遲灌拔節(jié)水對(duì)于抵抗瞬時(shí)破壞和蠕變破壞能力最好,在蠟熟期,各處理下未顯示出一致規(guī)律,有待進(jìn)一步研究。寬幅精播和推遲灌拔節(jié)水均對(duì)光合有效輻射的分布有一定促進(jìn)作用[22-23],寬幅精播模式下,推遲灌拔節(jié)水提高了冠層內(nèi)光合有效輻射截獲率,促進(jìn)了干物質(zhì)積累與轉(zhuǎn)運(yùn),提高產(chǎn)量[8];在未來全球變暖的氣候條件下,中國強(qiáng)風(fēng)出現(xiàn)可能性會(huì)上升,華北地區(qū)干旱災(zāi)害風(fēng)險(xiǎn)較大[24]。因此研究不同種植模式及灌溉處理對(duì)莖桿材料組成的影響,以及在持續(xù)風(fēng)荷載作用下的蠕變特性,對(duì)于分析小麥莖桿結(jié)構(gòu)在倒伏過程中的時(shí)間滯后機(jī)理,揭示冬小麥群體在風(fēng)雨作用下的力學(xué)響應(yīng)規(guī)律,具有重要意義。

        4 結(jié) 論

        1)寬幅精播模式下推遲灌拔節(jié)水,對(duì)抽穗期倒數(shù)第2節(jié)間莖桿抗折力有顯著提升的趨勢(shì),顯著提高了抗彎剛度,顯著降低了蠟熟期倒數(shù)第2節(jié)間莖桿抗折力和抗彎剛度,以及植株蠟熟期鮮質(zhì)量。

        2)寬幅精播模式下推遲灌拔節(jié)水,顯著提高了抽穗期抗倒伏指數(shù),并提升了灌漿期抗倒伏指數(shù)。該處理抽穗期、灌漿期和蠟熟期抗倒伏指數(shù)2 a的平均值分別為2.03、1.58和1.87 N/(m·g)。冬小麥倒數(shù)第2節(jié)間莖桿在施加小于其極限抗折力的不同比例荷載時(shí)具有蠕變特性,寬幅精播模式下推遲灌拔節(jié)水莖桿蠕變極值平均值在抽穗期最大,灌漿期表現(xiàn)仍然較好,均由減速蠕變過渡到勻速穩(wěn)定蠕變階段,蠕變極值范圍介于0.6%~3.7%,蠕變極值平均值介于0.7%~2.5%。

        3)寬幅精播模式較常規(guī)種植模式顯著提高了冬小麥產(chǎn)量,該模式下實(shí)施拔節(jié)后10 天灌水進(jìn)一步顯著提高了產(chǎn)量。結(jié)合抗倒伏指數(shù)和蠕變?cè)囼?yàn),寬幅精播模式下推遲拔節(jié)水灌溉處理抗倒伏特性最優(yōu)。

        [1]王學(xué),李秀彬,談明洪,等. 華北平原2001-2011年冬小麥播種面積變化遙感監(jiān)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(8):190-199.

        Wang Xue, Li Xiubin, Tan Minghong, et al. Remote sensing monitoring of changes in winter Wheat area in North China Plain from 2001 to 2011[J]. Transactions of the Chinese Society for Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 190-199. (in Chinese with English abstract)

        [2]Gleeson T, Wada Y, Bierkens M F P, et al. Water balance of global aquifers revealed by groundwater footprint[J]. Nature, 2012, 488(7410): 197-200.

        [3]余松烈,于振文,董慶裕,等. 小麥畝產(chǎn)789.9 kg高產(chǎn)栽培技術(shù)思路[J]. 山東農(nóng)業(yè)科學(xué),2010,429(4):11-12.

        Yu Songlie, Yu Zhenwen, Dong Qingyu, et al. Theory of cultivation techniques for wheat with yield of 789.9 kg per mu[J]. Shandong Agricultural Science, 2010, 429(4): 11-12. (in Chinese with English abstract)

        [4]劉忠陽,陳懷亮,胡程達(dá),等. 后期倒伏對(duì)冬小麥干物質(zhì)分配和產(chǎn)量的影響[J]. 中國農(nóng)業(yè)氣象,2017,38(5):321-329.

        Liu Zhongyang, Chen Huailiang, Hu Chengda et al. Effects of lodging at the late growth stage on dry matter distribution and yield of winter wheat[J]. Chinese Journal of Agrometeorology, 2017, 38(5): 321-329. (in Chinese with English abstract)

        [5]Feng S, Kong D, Ding W, et al. A novel wheat lodging resistance evaluation method and device based on the thrust force of the stalks[J]. PLoS One, 2019, 14(11): e0224732.

        [6]孟兆江,段愛旺,高陽,等. 調(diào)虧灌溉對(duì)冬小麥氮、磷、鉀養(yǎng)分吸收與利用的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(12):203-212.

        Meng Zhaojiang, Duan Aiwang, Gao Yang, et al. Effect of regulated deficit irrigation on uptake and utilization of nitrogen, phosphorus and potassium for winter wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 203-212. (in Chinese with English abstract)

        [7]劉小飛,李彪,孟兆江,等. 隔溝調(diào)虧灌溉對(duì)冬小麥旗葉生理特性與產(chǎn)量形成的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(9):320-328.

        Liu Xiaofei, Li Biao, Meng Zhaojiang, et al. Effects of regulated deficit irrigation under furrow irrigation on physiological characteristics of flag leaf after anthesis and yield formation of winter wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(9): 320-328. (in Chinese with English abstract)

        [8]Fan Yanli, Liu Junmei, Zhao Jiatao, et al. Effects of delayed irrigation during the jointing stage on the photosynthetic characteristics and yield of winter wheat under different planting patterns[J]. Agricultural Water Management, 2019, 221: 371-376.

        [9]郎坤,劉泉汝,卞城月,等. 推遲拔節(jié)水灌溉對(duì)寬幅精播麥田冠層溫度與葉片水分利用效率的影響[J]. 生態(tài)學(xué)報(bào),2015,35(15):5262-5268.

        Lang Kun, Liu Quanru, Bian Chengyue, et al. Effect of delayed irrigation at jointing stage on canopy temperature and leaf water use efficiency winter wheat in wide-precision planting pattern[J]. Acta Ecologica Sinica, 2015, 35(15): 5262-5268. (in Chinese with English abstract)

        [10]Pierre C S, Trethowan R, Reynolds M. Stem solidness and its relationship to water-soluble carbohydrates: Association with wheat yield under water deficit[J]. Functional Plant Biology, 2010, 37: 166-174.

        [11]Ma Shouchen, Duan Aiwang, Ma Shoutian, et al. Effect of early-stage regulated deficit irrigation on stem lodging resistance, leaf photosynthesis, root respiration and yield stability of winter wheat under pos-anthesis water stress conditions[J]. Irrigation and Drainage, 2016, 65(5): 673-681.

        [12]Niklas K J. Plant Biomechanics: An Engineering Approach to Plant Form and Function[M]. Chicago & London: The University of Chicago Press, 1992.

        [13]Chen Longjian, Liao Na, Xing Li, et al. Description of wheat straw relaxation behavior based on a fractional-order constitutive model[J]. Agronomy Journal, 2013, 105(1): 134-142.

        [14]梁莉,李玉萍,郭玉明. 小麥莖稈粘彈性力學(xué)性質(zhì)試驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2011,33(5):174-177.

        Liang Li, Li Yuping, Guo Yuming. Experimental research on the viscoelastic mechanical properties of winter wheat stalks[J]. Journal of Agricultural Mechanization Research, 2011, 33(5): 174-177. (in Chinese with English abstract)

        [15]馬瑞峻,蕭金慶,鄭普峰,等. 穴盤水稻秧苗莖稈蠕變與應(yīng)力松弛特性的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):43-53.

        Ma Ruijun, Xiao Jinqing, Zheng Pufeng, et al. Experimental study on characteristics of creep and stress relaxation for rice seedling stem raised in cell tray[J]. Transactions of the Chinese Society for Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 43-53. (in Chinese with English abstract)

        [16]孫訓(xùn)方. 材料力學(xué)(I)[M]. 北京:高等教育出版社,2009.

        [17]劉仲秋,劉馨惠,卞城月,等. 秸稈覆蓋條件下寬幅精播冬小麥莖稈抗倒性研究[J]. 灌溉排水學(xué)報(bào),2016,35(1):6-10.

        Liu Zhongqiu, Liu Xinhui, Bian Chengyue, et al. Research of stalk lodging resistance of winter wheat with wide-precision planting pattern under straw mulching[J]. Journal of Irrigation and Drainage, 2016, 35(1): 6-10. (in Chinese with English abstract)

        [18]劉仲秋,卞城月,劉馨惠,等. 種植模式及灌水頻次對(duì)冬小麥抗倒性的影響[J]. 排灌機(jī)械工程學(xué)報(bào),2015,33(4):338-345.

        Liu Zhongqiu, Bian Chengyue, Liu Xinhui, et al. Effect of different planting patterns and irrigation frequency on stalk lodging resistance of winter wheat[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(4): 338-345. (in Chinese with English abstract)

        [19]Shah L, Yahya M, Shah S M A, et al. Improving lodging resistance: Using wheat and rice as classical examples[J]. International Journal of Molecular Sciences. 2019, 20: 4211.

        [20]Joseph G M D, Mohammadi M, Sterling M, et al. Determination of crop dynamic and aerodynamic parameters for lodging prediction[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 202: 104169.

        [21]Esehaghbeygi A, Hoseinzadeh B, Khazaei M, et al. Bending and shearing properties of wheat stem of alvand variety[J]. World Applied Sciences Journal, 2009, 6(8): 1028-1032.

        [22]卞城月,馬長健,劉馨惠,等. 灌溉頻次與種植模式對(duì)冬小麥產(chǎn)量及水分利用效率的影響[J]. 灌溉排水學(xué)報(bào),2016,35(2):81-85.

        Bian Chengyue Ma Changjian, Liu Xinhui, et al. Effect of irrigation frequency and planting patterns on grain yield and water use efficiency of winter wheat[J]. Journal of Irrigation and Drainage, 2016, 35(2): 81-85. (in Chinese with English abstract)

        [23]Dong Hao, Xia Guangli, Ju Zhengchun, et al. Effects of irrigation quantity and term on water consumption and yield of winter wheat by wide precision sowing[J]. Agricultural Science & Technology, 2016, 17(9): 2051-2054.

        [24]秦大河. 中國極端天氣氣候事件和災(zāi)害風(fēng)險(xiǎn)管理與適應(yīng)國家評(píng)估報(bào)告[M]. 北京:科學(xué)出版社,2015.

        Effects of planting patterns on the lodging resistance characteristics and yield of winter wheat with delaying irrigation at the jointing stage

        Liu Zhongqiu1, Xu Hanghang1, Zhang Haonan1,2, Wu Hao1, Li Quanqi1※

        (1.,,271018,; 2.,276001,)

        Winter wheat is the primary cropping system in grain production in the North China Plain. In this study, two planting patterns were applied, including the precision planting pattern (W) and conventional cultivation planting pattern (C), in order to clarify the effect of different planting pattern on lodging resistance of winter wheat with delaying irrigation at the jointing stage. In each planting pattern, the winter wheat was irrigated with 60 mm at the jointing stage (I1), and delaying irrigation 60 mm for 10 d at the jointing stage (I2). The main physical indexes of winter wheat stalk were measured, including the plant height, gravity center height, and fresh weight, as well as the diameter, fresh density, and the wall thickness of the basic secondary internode. A systematic investigation was made on the internode mechanical indexes, such as the bending resistance and bending rigidity of basic secondary internode, lodging resistance index, the creep deformation in the basic secondary internode of winter wheat at heading, filling and dough growth stage. The planting pattern and irrigation schedule were explored for comprehensive optimization on the lodging resistance of winter wheat. The results showed that there was a significant trend to improve the bending resistance strength in the basic secondary internode, and the bending rigidity significantly increased at the heading stage under the wide precision planting pattern with delaying irrigation at the jointing stage. However, the bending resistance strength and bending rigidity in the basic secondary internode, and the fresh weight were significantly reduced at the dough stage in this treatment. The wide precision planting pattern with delaying irrigation at the jointing stage significantly increased the lodging resistance index at the heading stage, and thereby improved the lodging resistance index at the dough stage, where the average lodging resistance index at the heading, filling, and waxing stage were 2.03, 1.58and 1.87 N/(m·g), respectively. The basic secondary internode of winter wheat had creep characteristics under the proportional load less than its ultimate bending resistance strength. Specifically, the average maximum of creep strain was the highest at the heading stage, and it was still large at the filling stage under the wide precision planting pattern with delaying irrigation at the jointing stage. All of mechanical behavior was in the transition from the deceleration to stable creep stage, where the maximum creep strain ranged from 0.6%-3.7%, and the average maximum of creep strain ranged from 0.7%-2.5%. Combined with the lodging resistance index and creep test, the lodging resistance of winter wheat was the best under the condition of wide precision planting pattern with delaying irrigation for 10 d at the jointing stage. The findings can provide a promising theoretical basis and technical support for water saving and high yield of winter wheat in North China Plain.

        irrigation; planting pattern; winter wheat; wide precision planting pattern; lodging resistance index; creep

        劉仲秋,徐杭杭,張浩男,等. 推遲灌拔節(jié)水條件下種植模式對(duì)冬小麥抗倒伏特性和產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(1):101-107.doi:10.11975/j.issn.1002-6819.2021.01.013 http://www.tcsae.org

        Liu Zhongqiu, Xu Hanghang, Zhang Haonan, et al. Effects of planting patterns on the lodging resistance characteristics and yield of winter wheat with delaying irrigation at the jointing stage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 101-107. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.013 http://www.tcsae.org

        2020-07-15

        2020-10-01

        國家自然科學(xué)基金項(xiàng)目(31571603);山東省自然科學(xué)基金項(xiàng)目(ZR2014CQ033);山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019GSF109054)

        劉仲秋,博士,副教授,碩士生導(dǎo)師,研究方向?yàn)樗こ塘W(xué)問題。Email:zqliu08@sdau.edu.cn

        李全起,博士,教授,博士生導(dǎo)師,研究方向?yàn)楣嗯爬碚撆c技術(shù)、農(nóng)業(yè)水土資源與環(huán)境問題。Email:quanqili@sdau.edu.cn

        10.11975/j.issn.1002-6819.2021.01.013

        S318

        A

        1002-6819(2021)-01-0101-07

        猜你喜歡
        精播莖桿寬幅
        “資源一號(hào)”02衛(wèi)星可見近紅外相機(jī)、寬幅紅外相機(jī)在軌順利開機(jī)成像
        收割過后的芝麻地里
        遼河(2021年12期)2021-12-24 00:39:04
        冬小麥精播、半精播高產(chǎn)栽培技術(shù)
        寬幅預(yù)應(yīng)力混凝土矮塔斜拉橋設(shè)計(jì)
        上海公路(2017年2期)2017-03-12 06:23:38
        自由的吊燈
        大豆新品種鄭7051免耕覆秸精播高產(chǎn)栽培技術(shù)探析
        L型寬幅片材擠出機(jī)頭優(yōu)化設(shè)計(jì)及流場模擬
        玉米收獲后小麥栽培技術(shù)
        梁格法在寬幅獨(dú)塔斜拉橋分析中的應(yīng)用
        美研發(fā)碳纖維“風(fēng)力莖桿”發(fā)電機(jī)
        熟女性饥渴一区二区三区| 国产精品久久婷婷六月| 久久久亚洲av午夜精品| 欧洲美熟女乱av亚洲一区| 国产青草视频在线观看| 日本在线视频网站www色下载| 在线一区二区三区视频观看| 亚洲国产免费不卡视频| 97在线视频免费人妻| 狠狠色狠狠色综合日日不卡| 国产乱人视频在线观看播放器| 国产亚洲日本精品二区| 波多野结衣在线播放| 野花社区视频www官网| 亚洲AV无码久久精品成人| 精品中文字幕久久久人妻| 欧美又大粗又爽又黄大片视频| 成人免费看片又大又黄| 91爱爱视频| 国内精品少妇久久精品| 国产精品女同久久久久电影院| 在线永久免费观看黄网站| 国产三级精品美女三级| av新型国产在线资源| 欧美乱大交xxxxx潮喷| 欧美日韩精品一区二区在线视频 | 香蕉视频在线精品视频| 久久一区二区三区四区| 久久精品久久精品中文字幕| 国产suv精品一区二区四| 无码人妻丰满熟妇片毛片 | 激情亚洲一区国产精品久久| 精品亚洲一区二区三区在线观看 | 国产精品麻豆最新AV| 久久精品中文字幕亚洲| 粉嫩av最新在线高清观看| 香蕉人人超人人超碰超国产| 男人的天堂在线无码视频| 久久久精品人妻一区二区三区免费| 无码a级毛片免费视频内谢5j| 无尽动漫性视频╳╳╳3d|