呂孟岡,劉艾嘉,李慶偉,蘇鵬
綜 述
RHR轉(zhuǎn)錄因子家族起源、功能以及進化機制的研究進展
呂孟岡1,2,劉艾嘉1,2,李慶偉1,2,蘇鵬1,2
1. 遼寧師范大學生命科學學院,大連 116081 2. 遼寧師范大學七鰓鰻研究中心,大連 116081
轉(zhuǎn)錄因子是一類能夠通過與基因特異性序列進行結合,從而調(diào)控基因轉(zhuǎn)錄與表達的蛋白質(zhì),對細胞的生物學活性具有重要的調(diào)節(jié)作用。RHR (Rel-homology region, RHR)轉(zhuǎn)錄因子家族屬于IF (immunoglobulin fold)轉(zhuǎn)錄因子超家族最主要的成員,其成員含有保守的Rel結構域和IPT (immunoglobulin-like fold)結構域。作為古老的轉(zhuǎn)錄因子家族,RHR家族成員隨著物種演化,通過基因的復制、突變和沉默,不斷分化出新型同源基因的同時也伴隨著基因的丟失。自然選擇導致了各家族成員不同的進化速率,并且在一些功能結構域上展現(xiàn)出了特殊的進化機制。然而,目前有關RHR家族起源和分化的綜述比較少見。本文綜述了RHR家族各成員的分布、分類、功能及家族進化等方面的研究成果,以期為研究整個轉(zhuǎn)錄因子家族的演化機制和物種之間的進化關系提供參考和新的思路。
轉(zhuǎn)錄因子;RHR家族;進化;基因復制;同源基因
轉(zhuǎn)錄因子(transcription factors, TFs)即反式作用因子在基因轉(zhuǎn)錄過程中結合其順式作用元件,參與靶基因的轉(zhuǎn)錄調(diào)控,對細胞的免疫,分化和死亡起著重要的調(diào)節(jié)作用[1]。轉(zhuǎn)錄因子一般包括兩個主要功能域,即DNA特定序列結合域(DNA binding do-main, DBD)和轉(zhuǎn)錄激活結構域(transcriptional activa-tion domain, TAD)。根據(jù)DNA結合域的最新分類,將轉(zhuǎn)錄因子分為10個超家族,主要包含鋅指結構域(zinc finger domain, ZFD)超家族、螺旋–轉(zhuǎn)角–螺旋(helix-turn-helix domain, HTH)超家族、堿性結構域(basic domain, BD)超家族和免疫球蛋白折疊(immu-noglobulin fold, IF)超家族等[2]。其中對于轉(zhuǎn)錄因子中ZFD超家族和HTH超家族的研究較為廣泛[3],但是有關IF超家族的綜述類研究卻比較少見。RHR (Rel-homology region),也被稱為RHD (Rel-homology domain,即Rel同源結構域)家族屬于IF超家族最主要的成員,其都含有保守的Rel結構域和IPT (immu-noglobulin-like fold, IPT)結構域[2]。它們具有結合特異性DNA序列,形成二聚體和蛋白質(zhì)結合等功能[4,5]。RHR家族主要包含NF-κB (nuclear factor-κB)、NFAT (nuclear factor of activated T-cells)、EBF (early B-cell factor)和RBP (recombination signal binding protein)等亞家族。它們在真核生物中分布十分廣泛,并且隨著物種由簡單到復雜,分別進化出多種類型的旁系同源基因(圖1)。本文以RHR家族為代表,總結了其4個亞家族成員的分類、功能、起源與進化機制,以期為IF轉(zhuǎn)錄因子超家族的演化研究提供參考。
圖1 RHR家族蛋白的在12種真核生物中的分布情況
根據(jù)已有文獻和NCBI數(shù)據(jù)庫中的數(shù)據(jù)對RHR轉(zhuǎn)錄因子家族蛋白繪制分布圖。含有“0”、“1”、“2”蛋白個數(shù),分別用亮灰色、玫紅色和藍色表示。
NF-κB是一類在細胞基因誘導調(diào)控中起著廣泛作用的轉(zhuǎn)錄因子,被Sen等[6]首次發(fā)現(xiàn)于B淋巴細胞提取物中,因其能與κ輕鏈基因附近的核因子特異性結合而得名。在哺乳動物中,NF-κB家族成員主要包括:RelA(p65)、RelB、c-Rel、NF-κB1(p105)和NF-κB2(p100)[7]。該家族成員N端具有高度同源的Rel結構域[8]和IPT結構域,此外還具有核定位序列(nuclear localization sequence, NLS)。哺乳動物中NF-κB家族分為兩類:第一類包括RelA(p65)、RelB和c-Rel,沒有前體,除了Rel結構域之外,C末端具有轉(zhuǎn)錄激活結構域(TAD)。第二類包括NF-κB1 (p105)和NF-κB2(p100),其C末端區(qū)域含有ANK結構域(ankyrin repeat, ANK)[9]。ANK結構域是多個殘基串聯(lián)的基序,它們協(xié)同折疊成結構,通過蛋白質(zhì)間相互作用來介導分子識別[10,11]。NF-κB家族成員可以形成同源二聚體或異源二聚體,并且它們通常也是以二聚體的形式發(fā)揮作用[12]。當細胞受到外界信號刺激后引發(fā)一系列反應,使IKK(inhibitor of kappa B kinase, IKK)活化。活化的IKK,誘導IκB (inhibitor of kappa B, IκB)蛋白快速降解。釋放出NF-κB復合物,從細胞質(zhì)轉(zhuǎn)移到細胞核發(fā)揮調(diào)節(jié)轉(zhuǎn)錄作用[13]。
在進化過程中RelA、RelB和c-Rel具有一個高度保守的RFRYXCEG序列,能夠識別DNA[14]。???)是已知的一種在該序列的關鍵位置具有Cys/Ser多態(tài)性的物種[15]。研究發(fā)現(xiàn)海葵中的等位基因Nv-NF-κB Cys與DNA的結合能力要高于Nv-NF-κB Ser。??腘F-κB這種多態(tài)性為研究NF-κB家族的Cys/Ser等位基因在自然界中是如何進化提供了可能[15]。此外,研究人員收集了403只不同種群的??ㄟ^對Nv-NF-κB基因研究,鑒定出309個Cys/Cys純合子,23個Ser/Ser純合子和71個Cys/Ser雜合子,并計算出了遺傳分化指數(shù)(st)為0.56,這表明該多態(tài)性在各亞群之間存在高度的分化[15]。研究還表明,Nv-NF-κB Ser對過氧化物和烷化劑等化合物具有更強的耐受性,這些化合物往往是在河口或者沼澤等地方含量較高,而在這種環(huán)境中分布了更多的Nv-NF-κB Ser型???。因此,這很可能是由環(huán)境因素導致了這兩個類群的分化,體現(xiàn)了受適應性輻射影響的特點,同時這也是一種自然選擇的結果。通過對RelA、RelB、c-Rel家族基因的進化速率的分析,它們表現(xiàn)出了非常相似的進化速度,RelA、RelB、c-Rel分別在0.77、0.79和1.01 PAU,其中RelB的進化速率稍快[16]。此外,如上所述,NF-κB家族成員之間可以通過相互作用形成同源二聚體和異源二聚體:c-Rel、RelA/p65、RelB、p50/p105和p52/p100,共同調(diào)節(jié)目的基因的表達[17],因此它們之間可能存在一種協(xié)同進化的關系[18]。研究表明,他們首次出現(xiàn)分化的證據(jù)是在果蠅()中被鑒定出了Dif和Dorsal基因,果蠅的這兩個基因在同一條染色體的相鄰位置,并且都具有Rel同源結構域和相似的基因結構,因此這兩個基因很有可能是在進化過程中通過復制產(chǎn)生的[19]。Dif和Dorsal基因的產(chǎn)生,也伴隨著新功能的獲得,這體現(xiàn)在它們與另外一種家族成員Relish在免疫信號通路的調(diào)節(jié)上存在著差異。當行使免疫調(diào)節(jié)功能時,Dorsal和Dif被Cactus磷酸化之后,才能進行基因表達調(diào)控,而Relish的活化需要Ird5 (immune response-deficient 5, Ird5)蛋白將其C端的ANK結構域進行切割,從而釋放Relish入核[20]。隨后,進化至硬骨魚階段出現(xiàn)了成熟的RelA、RelB、c-Rel的基因分型[21]。在哺乳動物中,與RelA和c-Rel不同的是,RelB發(fā)揮激活轉(zhuǎn)錄調(diào)控功能還需要LZ (leucine zipper, LZ)結構的參與[22],這個結構域?qū)τ赗elB與DNA序列的結合和蛋白質(zhì)的相互作用是不可或缺的,而RelA和c-Rel并不具備這樣的輔助結構域[23]。然而,有關于RelB中的LZ結構起源和演化的分子機制尚沒有明確的報道。值得一提的是,NF-κB家族基因和MyD88 (myeloid differentiation pri-mary response 88)基因在線蟲()基因組中是缺失的,這提示線蟲可能是通過其他轉(zhuǎn)錄因子和信號轉(zhuǎn)導途徑來行使免疫應答的[24,25]。哺乳動物的NF-κB家族中另外的兩個成員NF-κB1和NF-κB2在C末端含有具有抑制性作用的ANK結構域。由于早在細菌中就發(fā)現(xiàn)了僅含有ANK結構域的蛋白(簡稱ANK蛋白)[26],表明脊椎動物NF-κB1和NF-κB2的進化是逐漸演變而來的。原始僅含有Rel結構域蛋白的NF-κB (簡稱Rel蛋白)和更為古老的ANK蛋白在NF-κB家族蛋白進化早期有可能發(fā)生了特異性的相互作用。這導致在單細胞原生動物中產(chǎn)生了極為簡單的Rel-ANK融合型NF-κB蛋白[27]。隨后,研究發(fā)現(xiàn)海葵形成了Rel蛋白和IκB蛋白,這可能是基因裂解或丟失C-末端ANK結構域的結果[28]。然而,目前還沒有足夠的序列信息來確定Rel蛋白的真正起源。
NFAT(nuclear factor of activated T cells)蛋白首次在T細胞中被發(fā)現(xiàn)[29,30]。NFAT家族有5位成員分別為NFAT1(NFATc2或NFATp)、NFAT2(NFATc1)、NFAT3(NFATc4)、NFAT4(NFATc3)和NFAT5[31]。NFAT家族蛋白包含兩個TAD結構域,一個調(diào)節(jié)結構域(NFAT homology region,NHR),一個高度保守的Rel結構域和一個羧基末端結構域[32]。NFAT家族分為兩類,分別為經(jīng)典家族和非經(jīng)典家族。NFAT蛋白的經(jīng)典的家族成員包括:NFAT1、NFAT2、NFAT3和NFAT4,具有鈣調(diào)蛋白結合位點,受Ca2+和鈣調(diào)蛋白的調(diào)控[33,34]。大量研究表明,鈣調(diào)神經(jīng)磷酸酶與經(jīng)典的NFAT蛋白結合并使其脫磷酸化,從而誘導其進入細胞核并發(fā)揮轉(zhuǎn)錄活性,非經(jīng)典家族成員僅包括NFAT5,其并不需要鈣調(diào)神經(jīng)磷酸酶參與其活性[35]。NFAT5可以形成同源二聚體,其同源二聚對與DNA結合和轉(zhuǎn)錄活性至關重要[36]。
通過物種之間的NFAT基因同源性分析顯示,在單細胞真核生物如釀酒酵母(),短毛啤酒酵母()和海綿()生物的基因組中未能發(fā)現(xiàn)NFAT的同源基因,而是在??蚪M中存在一個與人NFAT5相似的NFAT基因[37],不過在線蟲基因組中發(fā)生了缺失。在進化過程中,NFAT家族經(jīng)過了多次基因的復制和功能的分化,在無脊椎動物和脊索動物(玻璃海鞘,文昌魚)基因組中只含有一個NFAT同源基因,從無頜類脊椎動物的海七鰓鰻()開始,逐漸出現(xiàn)了更多的分化。隨后在象鯊()的基因組中發(fā)現(xiàn)了4個旁系同源基因[38]。從魚類如青鳉()、斑馬魚()、三刺魚()、紅鰭東方鲀()等開始[39~43],再到非洲爪蟾()和哺乳動物(大家鼠,家鼠)基因組中出現(xiàn)了5個完整的NFAT家族基因分型[44~47]。因此,??械念怤FAT5基因有可能是該家族的最原始成員。此外,Graef等[48]和Gauthier等[11]的研究顯示,因為NFAT和NF-κB都含有Rel同源結構域,并在硬骨魚NFAT的基因結構中發(fā)生了易位外顯子和Rel結構域編碼基因的重組,因此它們可能含有共同的祖先基因。然而,在線蟲中NFAT和NF-κB都有所缺失,并且NFAT3在鳥類如原雞()、火雞()的基因組中也發(fā)生了丟失,而NFAT和NF-κB還表現(xiàn)出基因組結構多樣化和功能分化的特征,因此NFAT和NF-κB的協(xié)同進化關系還需要進一步的確認[49,50]。為了研究NFAT家族基因的演化動力學特點,研究人員對這些基因構建了系統(tǒng)發(fā)育樹。結果顯示NFAT家族基因被分為3個類群:NFAT1群(包含NFAT1和NFAT2)、NFAT4群(包含NFAT3和NFAT4)和NFAT5,NFAT1群和NFAT4群僅存在于脊椎動物中。由此判斷,在脊索動物出現(xiàn)之前,至少發(fā)生了一次基因復制,這次復制導致了NFAT5類群和NFAT1-4類群這個兩個分群的產(chǎn)生。這次復制也使得NFAT5和NFAT1-4在結構域上產(chǎn)生了不同,經(jīng)典的NFAT形成了鈣調(diào)磷酸酶結合域,這個結構域調(diào)節(jié)它的入核,而NFAT5的核穿梭是由核輸出序列(nuclear export sequence, NES)、核輸出結構域(auxiliary export domain, AED)和核定位信號(NLS)共同介導的,這表示NFAT5和NFAT1-4功能上產(chǎn)生了差異[51]。PAML選擇壓力分析表明,許多NFAT家族基因分支顯示了強烈的正向選擇,在基因復制時加速了原始NFAT基因序列的突變,從而產(chǎn)生了新的分型[42]。因此,再結合全基因組復制(whole genome duplication,WGD)理論表明,完整的NFAT家族基因很有可能經(jīng)歷3輪全基因組復制事件[52,53]。首先,在第一次復制時產(chǎn)生了類NFAT5和類NFAT;隨著第二次復制,類NFAT分化產(chǎn)生NFAT1和NFAT4;最后一次復制,NFAT1分化成了NFAT1和NFAT2,而NFAT4分化成了NFAT3和NFAT4[42]。
EBF (early B-cell factor)轉(zhuǎn)錄因子家族,也被稱為COE (collier (col) and olfactory-1/early-B-cell factor)轉(zhuǎn)錄因子,早期從果蠅和小鼠體內(nèi)分離[54~56],具有指導多種神經(jīng)元組織細胞分化的功能。哺乳動物中EBF家族成員包括EBF1、EBF2、EBF3和EBF4。在哺乳動物中EBF轉(zhuǎn)錄因子家族成員含有DBD結構域,IPT結構域、非經(jīng)典HLH(helix-loop-helix)結構域和TAD結構域,這些結構域在進化上具有保守性[57]。其中在DBD結構域中,含有一個非典型的鋅指(H-X3-C-X2-C-X5-C)基序,并且對于DNA結合起重要作用[57,58]。IPT可能通過同源二聚或異同源二聚作用參與EBF家族與其他蛋白質(zhì)的結合[57]。此外,EBF家族的非經(jīng)典HLH結構域,是由三個α-螺旋(H1-H2d-H2a)組成,其結構域在H1和H2之間的loop環(huán)中存在一個PXXPXXP基序,該基序在蛋白結合方面扮演重要角色[59]。
目前尚未發(fā)現(xiàn)EBF基因存在于真菌、植物或任何一個原生動物中。研究表明在無脊椎動物中,如??⒕€蟲、果蠅、海鞘和文昌魚中均發(fā)現(xiàn)了單一的EBF同源基因[55,60~63]。其中,通過對尾索動物和頭索動物的EBF序列分析發(fā)現(xiàn),這很有可能是脊椎動物EBF的祖先。而隨著物種進化,在最原始的脊椎動物七鰓鰻中出現(xiàn)了EBF的同源基因的分型,分別將其命名為COE-A和COE-B,這兩個同源基因在HLH結構域的核苷酸序列之間存在剪切差異[64]。進化至硬骨魚階段,在斑馬魚和蟾蜍()中都分化出了3個類型的EBF家族基因[65,66]。直到高等脊椎動物人和小鼠中,出現(xiàn)成熟的4個EBF旁系同源基因。而各物種中EBF基因的功能在某些方面也是存在差異性的,其中果蠅和線蟲中EBF轉(zhuǎn)錄因子能夠調(diào)節(jié)肽能神經(jīng)元的發(fā)育,爪蟾和雞的胚胎中的EBF轉(zhuǎn)錄因子具有促進神經(jīng)元分化的功能,小鼠體內(nèi)EBF轉(zhuǎn)錄因子在神經(jīng)系統(tǒng)發(fā)育方面也扮演著不同的角色,EBF1對于面部肌肉遷移以及紋狀體和視網(wǎng)膜神經(jīng)元分化起著的關鍵作用,而EBF2則側(cè)重于對小腦和嗅覺上皮神經(jīng)元細胞的遷移和分化[67]。EBF轉(zhuǎn)錄因子DBD結構域中的鋅指基序是一種非典型的基序,其所含有的H157、C161、C164和C170可以形成穩(wěn)定的loop(H-X3-C-X2-C-X5-C)結構,與經(jīng)典的鋅指結構類似,具有識別DNA序列以及形成二聚體的作用[57]。晶體學結構分析顯示,盡管EBF的DBD結構域與NF-κB和NFAT家族蛋白的Rel結構域的序列同源性不高,但是它們在三級結構上面卻有著一定的相似性[59]。而不同之處在于,EBF的DBD結構域在空間上形成了不一樣排列的β片層以及其獨特的“偽Ig-like”折疊(即IPT結構域)[68]。除此之外,不像NF-κB和NFAT、EBF的DBD結構域并不與DNA結合,而是通過IPT結構域參與DNA的結合、形成二聚體和蛋白質(zhì)-蛋白質(zhì)的相互作用[69]。因此,EBF雖然在序列上存在差異,但是為了適應結合DNA等功能,從而完成基因的轉(zhuǎn)錄調(diào)控,在空間結構的折疊上面表現(xiàn)出了趨同進化的特點[68]。哺乳動物的EBF蛋白質(zhì)中存在的3個α-螺旋重復序列(H1、H2d和H2a),其中每個序列都由單獨的外顯子(外顯子E11、E12和E13,分別由內(nèi)含子i11和i12分隔)編碼[57]。通過分析了脊索動物之外的物種如玻璃海鞘、文昌魚和紫海膽()等H1和H2a外顯子序列,都證明它們的基因中不存在與H2d相關的編碼序列。相反,通過對有頜類基因組序列分析發(fā)現(xiàn),包括EBF1-3或EBF1-4,都發(fā)生了H2a-H2d的復制。值得一提的是七鰓鰻COE-B 蛋白含有H2d α-螺旋,而COE-A蛋白卻沒有,因此結合上述研究表明,H2a-H2d的復制在進化上非常有可能早于有頜類脊椎動物[64]。脊椎動物EBF蛋白中的H2d和H2a序列比對顯示,H2a-H2d并不是由外顯子E12和E13簡單復制所產(chǎn)生的。因此,研究人員對此提出了“two-step”進化模型的假設,認為H2d的產(chǎn)生機制有可能是通過兩步完成的(圖2)。首先,脊椎動物祖先外顯子E13復制之后,通過選擇性剪切整合到mRNA中,形成過渡性序列。由于E13復制后的插入序列導致E12外顯子下游內(nèi)含子相位發(fā)生改變,這樣便影響了下游序列的翻譯,因此序列又經(jīng)過一次剪切,使E12和E13之間的內(nèi)含子恢復0相位,形成“對稱”的外顯子(E11-E12-E13),從而順利完成H1、H2d和H2a的編碼[70]。
RBP (recombination signal binding protein)家族蛋白對于神經(jīng)系統(tǒng)的發(fā)育和造血系統(tǒng)的分化具有至關重要的作用[71],并且對于神經(jīng)細胞分化的作用在生物進化過程中是保守的[72~75]。后生動物RBP蛋白有兩種亞型,一種是RBP-Jκ (recombination signal binding protein for immunoglobulin kappa J region),其在Notch信號通路中發(fā)揮重要作用;另一種是RBP-L (recombination signal binding protein for immunoglobulin kappa J region like),其功能并不依賴于Notch信號通路[76]。RBP蛋白由3個結構域組成:N端結構域(N-terminal domain, NTD)、β折疊結構域(β-trefoil domain, BTD)和C端結構域(C-terminal domain, CTD)[77]。經(jīng)過對其序列分析和結構研究證實,RBP的NTD與NF-κB轉(zhuǎn)錄因子家族的Rel同源結構域的N端具有相似性[78]。并且NTD以單體形式通過識別特異性序列(C/T)GTGGGAA與DNA結合,行使類似于Rel同源結構域的功能[79]。BTD結構域可以促進這種和DNA的結合,而且還能夠參與蛋白質(zhì)與蛋白質(zhì)的相互作用,然而CTD并不與DNA發(fā)生相互作用[77,78]。除此之外,RBP分別通過與輔助激活蛋白和輔助抑制蛋白的不同相互作用,作為轉(zhuǎn)錄的激活因子和抑制因子發(fā)揮雙重作用[80]。
圖2 脊椎動物EBF蛋白中H2復制的機制
A:EBF祖先基因中H1H2a序列的外顯子–內(nèi)含子的結構。0相位內(nèi)含子(紅色橫線),1相位內(nèi)含子(黑色橫線)。B:H2復制的第一步是復制編碼H2a的外顯子。由于相位剪切規(guī)則,通過復制和選擇性剪切產(chǎn)生了H2d的祖先基因。C:第二步是激活H2d編碼區(qū)下游的隱蔽3′剪切位點(淺綠色三角)。D:產(chǎn)生了相同相位的i11和i12內(nèi)含子,并將成熟的H2d嵌入EBF蛋白。根據(jù)文獻[70]修改繪制。
通過對所有真核生物基因組中RBP的信息分析和探究,在植物和原生動物中RBP家族基因出現(xiàn)了缺失,但在部分真菌中發(fā)現(xiàn)了RBP家族同源基因,從簡單的單細胞裂殖酵母()到多細胞和高度分化的灰霉菌()都有RBP家族基因的分布。由此表明后生動物和真菌中的RBP基因很有可能起源于一個共同祖先[81,82]。P?evorovsky等[76]對真菌基因結構分析發(fā)現(xiàn),RBP祖先基因是在Rel結構域的基因序列之間插入了編碼BTD結構域的DNA序列而形成的,即RBP基因是從Rel類型的轉(zhuǎn)錄因子中創(chuàng)建而來。隨后,在真菌中發(fā)生了復制事件,產(chǎn)生了兩類RBP基因,一類RBP基因具有真菌特異性,其在進化到后生動物階段發(fā)生了丟失,因此只存在于真菌中。另一類與后生動物RBP基因存在更多的相似性,所以其有可能是后生動物RBP基因的祖先。后生動物的RBP基因也發(fā)生了明顯的復制和擴增,目前的研究顯示,這種復制發(fā)生于硬骨魚階段,并產(chǎn)生了RBP-L型基因和廣泛存在于脊椎動物和無脊椎動物中的RBP-Jκ型基因的分化。然而隨著生物進化的發(fā)展,在兩棲類動物中至今還沒有RBP-L型同源基因的報道,因此兩棲類動物很有可能僅使用RBP-Jκ同源基因來調(diào)控體內(nèi)所有RBP相關的信號通路。RBP兩個家族成員RBP-Jκ型和RBP-L型之間具有相似,兩者都參與轉(zhuǎn)錄調(diào)控以及結合DNA序列,但不同之處在于它們的相互作用的分子不同,以及它們對各種信號的反應性存在差異[83,84]。
轉(zhuǎn)錄因子是一類DNA結合蛋白,可以增強或抑制基因的轉(zhuǎn)錄,在細胞內(nèi)的蛋白翻譯,基因調(diào)控和組織分化等方面都發(fā)揮著重要的調(diào)節(jié)作用。根據(jù)RHR超家族的成員在整個生物進化過程中的分布可以看出,它們是以一種漸變模式進行演化的(圖3)。其中,NF-κB和RBP家族是較為古老的兩個成員,而隨后便出現(xiàn)了NFAT和EBF家族。首先在低等的原生動物中發(fā)現(xiàn)了具有簡單結構域ANK的NF-κB家族成員,這就確立了NF-κB作為古老家族成員的進化地位。但目前仍然沒有足夠的證據(jù)表明Rel蛋白是如何起源的。緊隨其后在真菌生物中出現(xiàn)了RBP家族成員,并且進化至硬骨魚階段復制產(chǎn)生了兩個旁系同源基因,不過對于RBP家族成員最早起源于哪一種物種仍有待于繼續(xù)研究。這四個家族的成員同時出現(xiàn),最早可以追溯到在腔腸動物階段,此時NF-κB家族分化出了成熟的Rel蛋白,其可能是基因裂解或丟失C-末端ANK結構域而產(chǎn)生的,我們通過NCBI數(shù)據(jù)庫進行檢索分析發(fā)現(xiàn)可能在這一階段分化出了最早含有CTD結構域的RBP家族成員。到了節(jié)肢動物階段,NF-κB家族極有可能通過基因復制產(chǎn)生了Dif和Dorsal兩個旁系同源基因。進化至脊索動物階段,NFAT家族和EBF家族仍然只含有一個成員。隨后在硬骨魚階段除了EBF家族,其他家族蛋白都形成了成熟的分型。直到高等脊椎動物階段,EBF家族才出現(xiàn)了完整的家族成員分化,由此判斷EBF家族在進化上相對保守。本文總結和歸納了RHR超家族成員的起源,進化方式和功能,為進一步揭示整個轉(zhuǎn)錄因子家族的演化機制,動力以及與物種之間的進化關系奠定基礎。然而,目前對于某些家族成員的起源與分化,以及相應基序的生物學功能依然是不確定的。相信隨著研究不斷的拓展與深入,將會對這些問題有更加清晰的認識和理解。此外,通過生物信息學,遺傳學和分子生物學對轉(zhuǎn)錄因子家族在不同物種中的進化機制和活性的比較研究,也會對未來轉(zhuǎn)錄因子相關藥物研發(fā)以及臨床治療提供新的思路。
圖3 RHR轉(zhuǎn)錄因子家族蛋白的進化與分化
[1] Lambert SA, Jolma A, Campitelli LF, Das PK, Yin YM, Albu M, Chen XT, Taipale J, Hughes TR, Weirauch MT. The human transcription factors., 2018, 175(2): 598–599.
[2] Wingender E, Schoeps T, Haubrock M, Krull M, D?nitz J. TFClass: expanding the classification of human trans-cription factors to their mammalian orthologs., 2018, 46(D1): D343–D347.
[3] Wang JL, Wang J, Tian CY. Evolution of KRAB- containing zinc finger proteins and their roles in species evolution., 2016, 38(11): 971–978.王進龍, 王建, 田春艷. KRAB型鋅指蛋白的進化及在物種演化中的功能. 遺傳, 2016, 38(11): 971–978.
[4] Laity JH, Lee BM, Wright PE. Zinc finger proteins: new insights into structural and functional diversity., 2001, 11(1): 39–46.
[5] Berisio R, Ciccarelli L, Squeglia F, De Simone A, Vitagliano L. Structural and dynamic properties of incomplete immunoglobulin-like fold domains., 2012, 19(10): 1045–1053.
[6] Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences., 1986, 46(5): 705–716.
[7] Su P, Feng SS, Li QW. Research progress of the structure and function of NF-κB and IκB in different animal groups., 2016, 38(6): 523–531.蘇鵬, 馮少姝, 李慶偉. NF-кB和IκB在不同動物類群中的結構及功能研究進展. 遺傳, 2016, 38(6): 523–531.
[8] Ghosh S, Hayden MS. New regulators of NF-kappa B in inflammation., 2008, 8(11): 837–848.
[9] Bortolotto V, Cuccurazzu B, Canonico P L, Grilli M. NF-κB mediated regulation of adult hippocampal neurogenesis: relevance to mood disorders and antidepressant activity., 2014, 612798.
[10] Al-Khodor S, Price CT, Kalia A, Abu Kwaik Y. Functional diversity of ankyrin repeats in microbial proteins., 2010, 18(3): 132–139.
[11] Gauthier M, Degnan BM. The transcription factor NF- kappaB in the demosponge: insights on the evolutionary origin of the Rel homology domain., 2008, 218(1): 23–32.
[12] Zhang Q, Lenardo MJ, Baltimore D. 30 years of NF-κB: a blossoming of relevance to human pathobiology., 2017, 168(1–2): 37–57.
[13] Ghosh S, May MJ, Kopp EB. NF-kappaB and Rel proteins: evolutionarily conserved mediators of immune responses., 1998, 16: 225–260.
[14] Wang TT, Sun YX, Jin LJ, Thacker P, Li SY, Xu YP. Aj-rel and Aj-p105, two evolutionary conserved NF-κB homologues in sea cucumber (and their involvement in LPS induced immunity., 2013, 34(1): 17–22.
[15] Sullivan JC, Wolenski FS, Reitzel AM, French CE, Traylor-Knowles N, Gilmore TD, Finnerty JR. Two alleles of NF-kappaB in the sea anemoneare widely dispersed in nature and encode proteins with distinct activities., 2009, 4(10): e7311.
[16] Huguet C, Crepieux P, Laudet V. Rel/NF-kappaB transcription factors and IkappaB inhibitors: evolution from a unique common ancestor., 1997, 15(24): 2965–2974.
[17] Siggers T, Chang AB, Teixeira A, Wong D, Williams KJ, Ahmed B, Ragoussis J, Udalova IA, Smale ST, Bulyk ML. Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-κB family DNA binding., 2011, 13(1): 95–102.
[18] De Juan D, Pazos F, Valencia A. Emerging methods in protein co-evolution., 2013, 14(4): 249– 261.
[19] Meng X, Khanuja BS, Ip YT. Toll receptor-mediatedimmune response requires Dif, an NF-kappaB factor., 1999, 13(7): 792–797.
[20] Gilmore TD, Wolenski FS. NF-κB: where did it come from and why?, 2012, 246(1): 14–35.
[21] Woods IG, Wilson C, Friedlander B, Chang P, Reyes DK, Nix R, Kelly PD, Chu F, Postlethwait JH, Talbot WS. Thegene map defines ancestral vertebrate chro-mosomes., 2005, 15(9): 1307–1314.
[22] Kabacaoglu D, Ruess DA, Ai J, Algül H. NF-κB/Rel transcription factors in pancreatic cancer: focusing on RelA, c-Rel, and RelB., 2019, 11(7):937.
[23] Millet P, McCall C, Yoza B. RelB: an oultlier in leukocyte biology., 2013, 94(5): 941–951.
[24] Irazoqui JE, Urbach JM, Ausubel FM. Evolution of host innate defence: insights fromand primitive invertebrates., 2010, 10(1): 47–58.
[25] Kuo CJ, Hansen M, Troemel E. Autophagy and innate immunity: insights from invertebrate model organisms., 2018, 14(2): 233–242.
[26] Li J, Mahajan A, Tsai MD. Ankyrin repeat: a unique motif mediating protein-protein interactions., 2006, 45(51): 15168–15178.
[27] Sebé-Pedrós A, de Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I. Unexpected repertoire of metazoan trans-cription factors in the unicellular holozoan., 2011, 28(3): 1241–1254.
[28] Wolenski FS, Garbati MR, Lubinski TJ, Traylor-Knowles N, Dresselhaus E, Stefanik DJ, Goucher H, Finnerty JR, Gilmore TD. Characterization of the core elements of the NF-κB signaling pathway of the sea anemone., 2011, 31(5): 1076–1087.
[29] Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR. Identification of a putative regulator of early T cell activation genes., 1988, 241(4862): 202– 205.
[30] Hogan PG. Calcium-NFAT transcriptional signalling in T cell activation and T cell exhaustion., 2017, 63: 66–69.
[31] Müller MR, Rao A. NFAT, immunity and cancer: a transcription factor comes of age., 2010, 10(9): 645–656.
[32] Lee JU, Kim LK, Choi JM. Revisiting the concept of targeting NFAT to control T cell immunity and autoimmune diseases., 2018, 9: 2747.
[33] Macian F. NFAT proteins: key regulators of T-cell development and function., 2005, 5(6): 472–484.
[34] Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT., 2003, 17(18): 2205–2232.
[35] Feske S, Okamura H, Hogan PG, Rao A. Ca2+/calcineurin signalling in cells of the immune system., 2003, 311(4): 1117–1132.
[36] Aramburu J, López-Rodríguez C. Regulation of inflammatory functions of macrophages and T lymphocytes by NFAT5., 2019, 10: 535.
[37] Sullivan JC, Kalaitzidis D, Gilmore TD, Finnerty JR. Rel homology domain-containing transcription factors in the cnidarian., 2007, 217(1): 63–72.
[38] Venkatesh B, Lee AP, Ravi V, Maurya AK, Lian MM, Swann JB, Ohta Y, Flajnik MF, Sutoh Y, Kasahara M, Hoon S, Gangu V, Roy SW, Irimia M, Korzh V, Kondrychyn I, Lim ZW, Tay BH, Tohari S, Kong KW, Ho S, Lorente-Galdos B, Quilez J, Marques-Bonet T, Raney BJ, Ingham PW, Tay A, Hillier LW, Minx P, Boehm T, Wilson RK, Brenner S, Warren WC. Author correction:genome provides unique insights into gnathostome evolution., 2014, 505(7482): 174– 179.
[39] Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin-I T, Takeda H, Morishita S, Kohara Y. Thedraft genome and insights into vertebrate genome evolution., 2007, 447(7145): 714–719.
[40] Li W, Zheng NZ, Yuan Q, Xu K, Yang F, Gu L, Zheng GY, Luo GJ, Fan C, Ji GJ, Zhang B, Cao H, Tian XL. Erratum to: NFAT5-mediated CACNA1C expression is critical for cardiac electrophysiological development and maturation., 2016, 94(9): 1003–1004.
[41] Huang XD, Wei GJ, Zhang H, He MX. Nuclear factor of activated T cells (NFAT) in pearl oyster: molecular cloning and functional characterization., 2015, 42(1): 108–113.
[42] Song X, Hu J, Jin P, Chen L, Ma F. Identification and evolution of an NFAT gene involvinginnate immunity., 2013, 102(4): 355– 362.
[43] Kai W, Kikuchi K, Tohari S, Chew AK, Tay A, Fujiwara A, Hosoya S, Suetake H, Naruse K, Brenner S, Suzuki Y, Venkatesh B. Integration of the genetic map and genome assembly of fugu facilitates insights into distinct features of genome evolution in teleosts and mammals., 2011, 3: 424–442.
[44] Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJ, Fujiyama A, Harland RM, Taira M, Rokhsar DS. Genome evolution in the allotetraploid frog., 2016, 538(7625): 336–343.
[45] Vihma H, Pruunsild P, Timmusk T. Alternative splicing and expression of human and mouse NFAT genes., 2008, 92(5): 279–291.
[46] Vechetti IJ Jr, Aguiar AF, de Souza RW, Almeida FL, de Almeida Dias HB, de Aguiar Silva MA, Carani FR, Ferraresso RL, Carvalho RF, Dal-Pai-Silva M. NFAT isoforms regulate muscle fiber type transition without altering CaN during aerobic training., 2013, 34(10): 861–867.
[47] Ueno M, Shen WJ, Patel S, Greenberg AS, Azhar S, Kraemer FB. Fat-specific protein 27 modulates nuclear factor of activated T cells 5 and the cellular response to stress., 2013, 54(3): 734–743.
[48] Graef IA, Gastier JM, Francke U, Crabtree GR. Evolutionary relationships among Rel domains indicate functional diversification by recombination., 2001, 98(10): 5740–5745.
[49] International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution., 2004, 432(7018): 695–716.
[50] Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K, Blomberg Le Ann, Bouffard P, Burt DW, Crasta O, Crooijmans RP, Cooper K, Coulombe RA, De S, Delany ME, Dodgson JB, Dong JJ, Evans C, Frederickson KM, Flicek P, Florea L, Folkerts O, Groenen MA, Harkins TT, Herrero J, Hoffmann S, Megens HJ, Jiang A, de Jong P, Kaiser P, Kim H, Kim KW, Kim S, Langenberger D, Lee MK, Lee T, Mane S, Marcais G, Marz M, McElroy AP, Modise T, Nefedov M, Notredame C, Paton IR, Payne WS, Pertea G, Prickett D, Puiu D, Qioa D, Raineri E, Ruffier M, Salzberg SL, Schatz MC, Scheuring C, Schmidt CJ, Schroeder S, Searle SM, Smith EJ, Smith J, Sonstegard TS, Stadler PF, Tafer H, Tu ZJ, Van Tassell CP, Vilella AJ, Williams KP, Yorke JA, Zhang L, Zhang HB, Zhang X, Zhang Y, Reed KM. Multi-platform next-generation sequencing of the domestic turkey (): genome assembly and analysis., 2010, 8(9): e1000475.
[51] Lee N, Kim D, Kim WU. Role of NFAT5 in the immune system and pathogenesis of autoimmune diseases., 2019, 10: 270.
[52] Meyer A, Van de Peer Y. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD)., 2005, 27(9): 937–945.
[53] Hoegg S, Meyer A. Hox clusters as models for vertebrate genome evolution., 2005, 21(8):421–424.
[54] Hagman J, Belanger C, Travis A, Turck CW, Grosschedl R. Cloning and functional characterization of early B-cell factor, a regulator of lymphocyte-specific gene expression., 1993, 7(5): 760–773.
[55] de Taffin M, Carrier Y, Dubois L, Bataillé L, Painset A, Le Gras S, Jost B, Crozatier M, Vincent A. Genome-wide mapping of collierbinding sites highlights its hierarchical position in different transcription regulatory networks., 2015, 10(7): e0133387.
[56] Wang MM, Reed RR. Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast., 1993, 364(6433): 121–126.
[57] Liao D. Emerging roles of the EBF family of transcription factors in tumor suppression., 2009, 7(12): 1893–1901.
[58] Fields S, Ternyak K, Gao H, Ostraat R, Akerlund J, Hagman J. The 'zinc knuckle' motif of early B cell factor is required for transcriptional activation of B cell-specific genes., 2008, 45(14): 3786–3796.
[59] Siponen MI, Wisniewska M, Lehti? L, Johansson I, Svensson L, Raszewski G, Nilsson L, Sigvardsson M, Berglund H. Structural determination of functional domains in early B-cell factor (EBF) family of transcription factors reveals similarities to Rel DNA-binding proteins and a novel dimerization motif., 2010, 285(34): 25875–25879.
[60] Pang K, Matus DQ, Martindale MQ. The ancestral role of COE genes may have been in chemoreception: evidence from the development of the sea anemone,(Phylum Cnidaria; Class Anthozoa)., 2004, 214(3): 134–138.
[61] Stolfi A, Gainous TB, Young JJ, Mori A, Levine M, Christiaen L. Early chordate origins of the vertebrate second heart field., 2010, 329(5991): 565–568.
[62] Kim K, Colosimo ME, Yeung H, Sengupta P. The UNC-3 Olf/EBF protein represses alternate neuronal programs to specify chemosensory neuron identity., 2005, 286(1): 136–148.
[63] Mazet F, Masood S, Luke GN, Holland ND, Shimeld SM. Expression ofan amphioxus COE/EBF gene, in the developing central nervous system and epidermal sensory neurons., 2004, 38(2): 58–65.
[64] Lara-Ramírez R, Poncelet G, Patthey C, Shimeld SM. The structure, splicing, synteny and expression ofCOE genes and the evolution of the COE gene family in chordates., 2017, 227(5): 319–338.
[65] Wang Y, Chen K, Yao Q, Zheng X, Yang Z. Phylogenetic analysis ofbasic helix-loop-helix transcription factors., 2009, 68(6): 629–640.
[66] Pozzoli O, Bosetti A, Croci L, Consalez GG, Vetter ML. Xebf3 is a regulator of neuronal differentiation during primary neurogenesis in., 2001, 233(2): 495–512.
[67] Catela C, Correa E, Wen K, Aburas J, Croci L, Consalez GG, Kratsios P. An ancient role for collier/Olf/Ebf (COE)-type transcription factors in axial motor neuron development., 2019, 14(1): 2.
[68] Treiber N, Treiber T, Zocher G, Grosschedl R. Structure of an EBF1:DNA complex reveals unusual DNA recognition and structural homology with Rel proteins., 2010, 24(20): 2270–2275.
[69] Boller S, Grosschedl R. The regulatory network of B-cell differentiation: a focused view of early B-cell factor 1 function., 2014, 261(1): 102–115.
[70] Daburon V, Mella S, Plouhinec JL, Mazan S, Crozatier M, Vincent A. The metazoan history of the COE transcription factors. Selection of a variant HLH motif by mandatory inclusion of a duplicated exon in vertebrates., 2008, 8: 131.
[71] Pursglove SE, Mackay JP. CSL: a notch above the rest., 2005, 37(12): 2472–2477.
[72] Maier D. The evolution of transcriptional repressors in the notch signaling pathway: a computational analysis., 2019, 156(1): 5.
[73] Sieger D, Tautz D, Gajewski M. The role of suppressor of hairless in notch mediated signalling duringsomitogenesis., 2003, 120(9): 1083–1094.
[74] Ito M, Katada T, Miyatani S, Kinoshita T. XSu(H)2 is an essential factor for gene expression and morphogenesis of thegastrula embryo., 2007, 51(1): 27–36.
[75] Toritsuka M, Kimoto S, Muraki K, Kitagawa M, Kishimoto T, Sawa A, Tanigaki K. Regulation of striatal dopamine responsiveness by Notch/RBP-J signaling., 2017, 7(3): e1049.
[76] Prevorovsky M, P?ta F, Folk P. Fungal CSL transcription factors., 2007, 8: 233.
[77] Wilson JJ, Kovall RA. Crystal structure of the CSL-notch- mastermind ternary complex bound to DNA., 2006, 124(5): 985–996.
[78] Hall DP, Kovall RA. Structurally conserved binding motifs of transcriptional regulators to notch nuclear effector CSL.(), 2019, 244(17): 1520–1529.
[79] Oakley F, Mann J, Ruddell RG, Pickford J, Weinmaster G, Mann DA. Basal expression of IkappaBalpha is controlled by the mammalian transcriptional repressor RBP-J (CBF1) and its activator notch1., 2003, 278(27): 24359–24370.
[80] Collins KJ, Yuan Z, Kovall RA. Structure and function of the CSL-KyoT2 corepressor complex: a negative regulator of notch signaling., 2014, 22(1): 70–81.
[81] Hedges SB. The origin and evolution of model organisms., 2002, 3(11): 838–849.
[82] Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P. Toward automatic reconstruction of a highly resolved tree of life., 2006, 311(5765): 1283– 1287.
[83] Beres TM, Masui T, Swift GH, Shi L, Henke RM, MacDonald RJ. PTF1 is an organ-specific and notch- independent basic helix-loop-helix complex containing the mammalian suppressor of hairless (RBP-J) or its paralogue, RBP-L., 2006, 26(1): 117–130.
[84] Minoguchi S, Taniguchi Y, Kato H, Okazaki T, Strobl LJ, Zimber-Strobl U, Bornkamm GW, Honjo T. RBP-L, a transcription factor related to RBP-Jkappa., 1997, 17(5): 2679–2687.
Progress on the origin, function and evolutionary mechanism of RHR transcription factor family
Menggang Lv1,2, Aijia Liu1,2, Qingwei Li1,2, Peng Su1,2
Transcription factors are a class of proteins that regulate gene transcription and expression by binding to gene-specific sequences and play an essential role in regulating the biological activities of cells. The RHR (Rel-homology region) transcription factor family is the primary member of the IF (immunoglobulin fold) transcription factor superfamily, whose members contain the conserved Rel domain and IPT (immunoglobulin-like fold) domain. As an ancient transcription factor family, the RHR family continues differentiation on gene gain and loss through gene duplication, mutation, and silencing, accompanied with the evolution of diverse species. Natural selection has led to different rates of evolution among members of the family, and some domains of the protein family have shown unique mechanisms of evolution. However, the current reviews about the origin and differentiation of RHR family are rare. In this review, we summarize the research results on the distribution, classification, function, and evolution of the members of the RHR familyin order to provide a reference and new idea for studying the evolution mechanism of the whole transcription factor family and the evolutionary relationship among species.
transcription factors; RHR family; evolution; gene duplication; homologous gene
2020-11-25;
2021-01-18
國家自然科學基金項目(編號:31801973,31772884),大連市支持高層次人才創(chuàng)新創(chuàng)業(yè)項目(編號:2019RQ126),國家重大基礎研究發(fā)展規(guī)劃(973)計劃課題(編號:2013CB835304),全國海洋公益項目(編號:201305016),遼寧省海洋與漁業(yè)廳科研項目(編號:201805)和大連市科技創(chuàng)新基金項目(編號:2018J12SN079)資助[Supported by the National Natural Science Foundation of China (Nos. 31801973, 31772884), Dalian Supports Innovation and Entrepreneurship Projects of High Level Talents(No. 2019RQ126), the Chinese Major State Basic Research Development Program (973) (No. 2013CB835304), the Marine Public Welfare Project of the State Oceanic Administration (No. 201305016), the project of Department of Ocean and Fisheries of Liaoning Province (No. 201805), and the Science and Technology Innovation Fund Research Project (No. 2018J12SN079)]
呂孟岡,在讀碩士研究生,研究方向:微生物。E-mail: lvmenggang2020lr@163.com
蘇鵬,博士,講師,專業(yè)方向:細胞生物學。E-mail: sp4046@163.com
李慶偉,博士,教授,研究方向:細胞遺傳學。E-mail: liqw@263.net
10.16288/j.yczz.20-332
2021/2/2 11:16:45
URI: https://kns.cnki.net/kcms/detail/11.1913.r.20210201.1110.006.html
(責任編委: 呂雪梅)