崔曉琳
(煙臺汽車工程職業(yè)學(xué)院 汽車工程系, 山東 煙臺 265500)
在節(jié)能環(huán)保的大背景下,具備零排放特性的電動汽車順應(yīng)了未來汽車領(lǐng)域的發(fā)展趨勢受到越來越多的關(guān)注,可有效滿足能源利用綠色清潔化的發(fā)展需求,成為未來重要的交通出行方式,可實現(xiàn)單輪層面力矩控制的分布式驅(qū)動電動汽車因具有控制自由度較大、力矩精確度易于控制和響應(yīng)速度較快等動力學(xué)控制方面的優(yōu)勢而成為目前領(lǐng)域內(nèi)的一項研究熱點。驅(qū)動輪滑轉(zhuǎn)易在汽車起步或加速時(驅(qū)動力突然增加,驅(qū)動輪附著力不足)出現(xiàn),作為確保汽車安全的重要環(huán)節(jié)之一:汽車驅(qū)動防滑控制系統(tǒng)通過轉(zhuǎn)矩的有效分配可使汽車在不同路面及工況下由相對打滑(內(nèi)外側(cè)車輪的輪速差)引發(fā)的車輛失穩(wěn)現(xiàn)象得到有效避免?;趥鹘y(tǒng)的動力學(xué)控制理論對驅(qū)動防滑控制算法及驅(qū)動力分配策略進行了設(shè)計[1]。
驅(qū)動防滑控制系統(tǒng)對于小型未裝備液壓防抱死系統(tǒng)的電動汽車來說作用重大,處于啟動和加速階段的汽車需使用驅(qū)動防滑系統(tǒng)(ASR)在使汽車獲得足夠的地面驅(qū)動力的同時確保車輛及行駛方向的穩(wěn)定性,主要通過對驅(qū)動輪過度滑轉(zhuǎn)問題的有效控制實現(xiàn)。傳統(tǒng)汽車大多基于裝備的液壓防抱死系統(tǒng)(ABS),通過驅(qū)動防滑系統(tǒng)綜合運用液壓制動及發(fā)動機輸出轉(zhuǎn)調(diào)節(jié)的方式實現(xiàn)控制過程,汽車如果不安裝ABS系統(tǒng)經(jīng)無法使用驅(qū)動防滑系統(tǒng),著就增加了電動汽車的開發(fā)使用成本及整體控制效率。在城市復(fù)雜工況下一些未裝備液壓ABS系統(tǒng)的小型低速電動汽車行駛過程需執(zhí)行較多的啟停與加速操作,對驅(qū)動防滑控制系統(tǒng)提出了更高的要求??刂齐妱訖C轉(zhuǎn)矩比發(fā)動機的響應(yīng)速度更快,通過控制電動機輸出轉(zhuǎn)矩成為實現(xiàn)驅(qū)動防滑控制的有效手段。關(guān)于汽車驅(qū)動防滑控制系統(tǒng)的研究,例如,一種以Lu-Gre輪胎模型(結(jié)合輪速信息)為依據(jù)構(gòu)建的四分之一汽車模型,對路面附著系數(shù)通過構(gòu)建的指數(shù)滑移觀測器完成測量和估計,在此基礎(chǔ)上通過驅(qū)動轉(zhuǎn)矩的控制實現(xiàn)驅(qū)動防滑控制功能,但該方法存在控制算法復(fù)雜程度較高的不足;一種結(jié)合運用節(jié)氣門開度調(diào)節(jié)(使用自適應(yīng)PID控制算法完成)和干預(yù)制動方法的ASR控制算法,并通過硬件在環(huán)仿真實驗驗證了該種ASR的控制效果,但適合傳統(tǒng)或混合動力汽車使用,難以滿足電動汽車控制需求;一種基于前輪驅(qū)動的ASR控制策略(面向前驅(qū)電動汽車),但該方法需基于安裝液壓ABS系統(tǒng)的車輛完成[1]。上述控制系統(tǒng)及算法大多適用于部分特定車輛,難以應(yīng)用到無ABS的小型電動汽車,為實現(xiàn)此類汽車的高效ASR控制功能,本文基于現(xiàn)有汽車ASR控制算法及策略的研究成果,設(shè)計了一種驅(qū)動防滑控制算法及控制策略,對電動機輸出轉(zhuǎn)矩采用增量PID控制算法進行調(diào)節(jié)控制,為確保控制信號穩(wěn)定有序,分別采用路面自動識別方法和基于經(jīng)驗?zāi)繕?biāo)值完成對均一路面(指附著系數(shù))和非均一路面的滑轉(zhuǎn)率控制,從而提升車輛整體控制系統(tǒng)的穩(wěn)定性和可靠性,并建立聯(lián)合仿真方法(使用Matlab和AVL CRUISE)驗證和調(diào)整控制策略,得到了較佳的控制效果。
本文以前驅(qū)電動汽車作為研究對象,所構(gòu)建的驅(qū)動防滑控制系統(tǒng)的總體架構(gòu),如圖1所示。
圖1 汽車驅(qū)動防滑控制系統(tǒng)總體架構(gòu)示意圖
該系統(tǒng)主要驅(qū)動防滑控制器、輪速傳感器(4個)及電動機控制器,在檢測到出現(xiàn)過度滑轉(zhuǎn)的驅(qū)動輪時,通過路面自動識別方法確定行駛于均一路面上(此時兩側(cè)輪滑轉(zhuǎn)率相差較小)的車輛驅(qū)動輪的最佳滑轉(zhuǎn)率;行駛于非均一路面上的判斷條件為兩側(cè)輪滑轉(zhuǎn)率相差較大,此時采用高選原則和積分分離型PID控制算法完成對電動機驅(qū)動轉(zhuǎn)矩的控制過程(以通常在15%~20%范圍內(nèi)的固定經(jīng)驗值作為滑轉(zhuǎn)率),從而實現(xiàn)汽車驅(qū)動防滑控制功能[2]。
使用一個永磁同步電動機,對于左右兩側(cè)驅(qū)動輪的相關(guān)屬性,假設(shè),兩側(cè)驅(qū)動輪滾動半徑由R1、R2表示(單位m);兩側(cè)轉(zhuǎn)動慣量分別由J1、J2表示(單位kg·m2);兩側(cè)角加速度由ω1、ω2(單位rad/s2)表示;驅(qū)動輪上的驅(qū)動力矩分別由Td1、Td2表示(單位N·m);與地面間的縱向摩擦力分別由Ff1、Ff2表示(單位N),兩側(cè)驅(qū)動輪的動力學(xué)模型表達(dá),如式(1)、式(2)。
J1ω1=Td1-Ff1R1
(1)
J2ω2=Td2-Ff2R2
(2)
在具備完全相同的左右兩側(cè)轉(zhuǎn)動慣量、滾動半徑的情況下,式(1)、式(2)相加,如式(3)。
J(ω1+ω2)=Td1+Td2-(Ff1+Ff2)R
(3)
假設(shè),i1表示主減速器的傳動比;傳動系的傳動效率、等效角加速度和旋轉(zhuǎn)部件的等效轉(zhuǎn)動慣量分別由η、ω0和J0表示;i0表示減速器的傳動比,驅(qū)動電動機轉(zhuǎn)換到驅(qū)動輪的動力學(xué)模型,如式(4)。
Tdi0i1η=Td1+Td2+J0ω0
(4)
汽車踏板位置在加速時的瞬間變化較大,此時驅(qū)動電動機具有很大的初始加速控制信號,調(diào)節(jié)驅(qū)動防滑時使用傳統(tǒng)的PID控制算法易出現(xiàn)調(diào)節(jié)值同目標(biāo)值差距過大的問題進而導(dǎo)致過大的系統(tǒng)超調(diào),為使控制系統(tǒng)的超調(diào)量得到有效降低,本文采用了具備保持積分作用的積分分離型PID控制算法,該控制算法模塊在Matlab/Simulink中完成設(shè)計,左右兩側(cè)驅(qū)動輪的滑轉(zhuǎn)率差值由e(sk)表示,然后進行邏輯判斷:在目標(biāo)滑轉(zhuǎn)率同實際滑轉(zhuǎn)率的差值較大的情況下(|e(sk)|超過10%),使用PD控制可在提升系統(tǒng)響應(yīng)速度的同時有效避免較大超調(diào)現(xiàn)象的出現(xiàn);在滑轉(zhuǎn)率的差值較小的情況下(|e(sk)|小于等于10%)采用PID控制使驅(qū)動防滑控制精度得到有效提升。具體通過將一個系數(shù)β同PID控制的積分項相乘實現(xiàn),β取值[3],如式(5)。
(5)
假設(shè),分別由Kp、KI和KD表示比例放大、積分和微分3個系數(shù);k、k-1、k-2分別表示相應(yīng)時刻;e(k)、e(k-1)、e(k-2)表示相應(yīng)時刻的設(shè)定值同被控制量間的差值,控制量變化的增量Δu(k)的表達(dá),如式(6)。
(6)
輪胎與路面的利用附著系數(shù)由μ(S)表示,各車輪行駛在非均一路面上時,識別與控制最佳滑轉(zhuǎn)率過程需借助多種傳感器,為簡化小型電動汽車的設(shè)計和使用流程、節(jié)約成本,設(shè)置最佳滑轉(zhuǎn)率為20%;采用相關(guān)算法識別汽車行駛于均一路面上的路面最佳滑轉(zhuǎn)率,完成最佳控制過程。C1、C2和C3表示輪胎參數(shù),估計不同路面附著系數(shù)表達(dá)[4],如式(7)。
μ(S)=C1(1-e-C2S)-C3S
(7)
滑轉(zhuǎn)率與利用附著系數(shù)的關(guān)系(使用Carsim測試行駛于不同路面下的輪胎獲得),如圖2所示。
圖2 滑轉(zhuǎn)率與利用附著系數(shù)的關(guān)系
車輪附著系數(shù)工作點對應(yīng)C點,路面最大附著系數(shù)點對應(yīng)點E和G(0.7和0.8)[5]。
C1、C2和C3的值通過對曲線采用非線性最小二乘法完成擬合處理后獲取,擬合函數(shù)(Matlab工具箱自帶)最優(yōu)解x的表達(dá)式,如式(8)。
x=lsqnonlin(@ fun,x0)
(8)
μ和S分別表示附著系數(shù)和滑轉(zhuǎn)率,dμ/dS表示變化率,μ在dμ/dS趨近于0時有最大值,對S求導(dǎo)[6],如式(9)。
(9)
求得最佳目標(biāo)滑轉(zhuǎn)率(對應(yīng)最大附著系數(shù))S0的計算表達(dá),如式(10)。
(10)
最佳滑轉(zhuǎn)率在不同路面上的求解流程如下。
(1) 通過k時非驅(qū)動的后輪速獲取參考車速V(k),驅(qū)動輪轉(zhuǎn)速ω(k)和V(k)通過計算后軸兩車輪中心速度平均值獲取,再基于前輪轉(zhuǎn)速完成k時驅(qū)動輪滑轉(zhuǎn)率S(k)的計算[6],如式(11)。
S(k)=ω(k)R-V(k)/ω(k)R
(11)
(2) 求取k時利用附著系數(shù)μ(k),m表示汽車整車裝備質(zhì)量;hg表示車輛質(zhì)心高度;FN表示前輪對地面的正壓力;L表示車輛軸距;V(k)表示車輛的縱向加速度,如式(12)。
(12)
(3) 利用附著系數(shù)和車輪滑轉(zhuǎn)率在檢測到車輪滑轉(zhuǎn)時(S超過5%)以0.001 s的步長開始采集,開啟ASR控制,在圖2中點C工作點識別路面附著系數(shù)(最大附著系數(shù)及對應(yīng)的滑轉(zhuǎn)率),據(jù)此求得μ(A)和μ(B),計算插值因子[7],如式(13)。
λ=[μ(C)-μ(B)]/[μ(A)-μ(B)]
(13)
μ(E)、μ(G)表示典型路面的峰值附著系數(shù),在最大附著系數(shù)為點F時的利用附著系數(shù)μ(F),如式(14)。
μ(F)=λ[μ(E)-μ(G)]+μ(G)
(14)
最佳滑轉(zhuǎn)率S0使用同樣求取方法。
AVL CRUISE(車輛動力學(xué)仿真分析軟件)易于同Matlab建立聯(lián)合仿真實驗用于建立汽車模型,據(jù)此對所構(gòu)建的系統(tǒng)進行聯(lián)合仿真測試,采用的前驅(qū)電動汽車的具體參數(shù),如表1所示。
表1 整車參數(shù)
據(jù)此所構(gòu)建的聯(lián)合仿真結(jié)構(gòu)(結(jié)合運用API方式),仿真任務(wù):0~60 km/h加速[8],如圖3所示。
圖3 聯(lián)合仿真結(jié)構(gòu)示意圖
分別行駛于低附著的均一、對開、對接和棋盤4種路面,均一路面判斷條件為前軸兩驅(qū)動輪滑轉(zhuǎn)率差<1% 。由低附著均一路面無ASR的仿真結(jié)果可知:汽車驅(qū)動輪速在急加速起步時會遠(yuǎn)超過車速,出現(xiàn)車輪急速滑轉(zhuǎn)現(xiàn)象,起步時較小的電動機輸出轉(zhuǎn)矩說明電動機利用率較低,限制了車輛的動力性能;低附著均一路面有ASR的仿真實驗表明:ASR能夠快速完成均一路面的自動識別和判定,并使用最佳滑轉(zhuǎn)率進行控制,汽車驅(qū)動輪速起步時逐步上升(略大車速),有效控制了驅(qū)動輪滑轉(zhuǎn)率(12.5%左右),滑轉(zhuǎn)率和電動機轉(zhuǎn)矩在起步加速時快速穩(wěn)定在目標(biāo)值附近,未出現(xiàn)輪速頻繁波動現(xiàn)象。系統(tǒng)輸出結(jié)果非常穩(wěn)定。對開路面上有ASR的仿真結(jié)果,左右輪速因采用高選控制而呈直線上升,有效避免了驅(qū)動輪的過度滑轉(zhuǎn),如圖4所示。
a) 車速和輪速
對接路面的ASR仿真結(jié)果,如圖5所示。
滑轉(zhuǎn)率控制效果較理想,該系統(tǒng)可根據(jù)變化的驅(qū)動輪滑轉(zhuǎn)率做出快速反應(yīng)。棋盤路面有ASR的仿真結(jié)果,如圖6所示。
a) 車速和輪速
a) 車速和輪速
系統(tǒng)能有效識別滑轉(zhuǎn)率并據(jù)此做出交替控制。驗證了本文所設(shè)計的ASR控制系統(tǒng)的有效性,有效避免驅(qū)動輪的過度滑轉(zhuǎn)[9]。
本文以無液壓ABS系統(tǒng)的電動汽車作為研究對象設(shè)計了一種汽車驅(qū)動防滑控制方案,為達(dá)到良好的控制效果,主要通過對驅(qū)動電機輸出轉(zhuǎn)矩進行控制實現(xiàn)驅(qū)動防滑系統(tǒng)功能,在完成路面自動識別的基礎(chǔ)上運用積分分離型PID控制算法實現(xiàn)對不同路面下驅(qū)動防滑的高效控制過程,使滑轉(zhuǎn)率快速達(dá)到設(shè)定值,該系統(tǒng)面對突然變化的路面附著系數(shù)可完成車輪滑轉(zhuǎn)率的快速準(zhǔn)確調(diào)節(jié)(使其趨近于目標(biāo)滑轉(zhuǎn)率)。