宋廷強(qiáng),魯雪麗,盧夢瑤,劉德虎,孫媛媛※,顏 軍,劉璐銘
·農(nóng)業(yè)水土工程·
基于作物缺水指數(shù)的農(nóng)業(yè)干旱監(jiān)測模型構(gòu)建
宋廷強(qiáng)1,魯雪麗1,盧夢瑤1,劉德虎1,孫媛媛1※,顏 軍2,劉璐銘2
(1. 青島科技大學(xué)信息科學(xué)技術(shù)學(xué)院,青島 266000;2. 珠海歐比特宇航科技股份有限公司,珠海 519000)
農(nóng)業(yè)干旱監(jiān)測問題對農(nóng)業(yè)生產(chǎn)具有重要影響,因此精確監(jiān)測農(nóng)業(yè)干旱具有現(xiàn)實(shí)意義。該研究基于MOD16A2全球蒸散產(chǎn)品,計(jì)算作物缺水指數(shù)(Crop Water Stress Index,CWSI),結(jié)合地表溫度、植被指數(shù)、降水量以及土壤濕度等多源遙感數(shù)據(jù)為自變量,以3個(gè)月時(shí)間尺度的標(biāo)準(zhǔn)化降水蒸散指數(shù)(Standardized Precipitation Evapotranspiration Index,SPEI-3)為因變量,基于偏差校正隨機(jī)森林算法構(gòu)建山東省2000—2019年作物生長季(4—10月)的偏差校正隨機(jī)森林干旱狀況指數(shù)(Bias-corrected Random Forest Drought Condition Index,BRF-DCI)。并分析CWSI對于構(gòu)建山東省農(nóng)業(yè)干旱監(jiān)測模型的影響。結(jié)果表明:加入CWSI后,所提出的BRF-DCI指數(shù)與SPEI-3觀測指數(shù)的決定系數(shù)為0.72~0.85,優(yōu)于未加入CWSI之前;加入CWSI后提高了干旱等級監(jiān)測的準(zhǔn)確率;BRF-DCI指數(shù)能較好地?cái)M合各月份的SPEI-3指數(shù),決定系數(shù)均在0.94以上;BRF-DCI指數(shù)能夠準(zhǔn)確反映山東省典型干旱年的干旱情況,有效監(jiān)測山東省農(nóng)業(yè)干旱情況。該研究對山東省農(nóng)業(yè)旱情監(jiān)測及旱災(zāi)防御具有較大的應(yīng)用潛力。
農(nóng)業(yè);干旱;隨機(jī)森林;MOD16A2;CWSI;偏差校正;模型構(gòu)建
干旱災(zāi)害發(fā)生頻率高,涉及范圍廣,是較為常見的自然災(zāi)害之一。農(nóng)業(yè)干旱的發(fā)生對于中國的經(jīng)濟(jì)發(fā)展和農(nóng)業(yè)生產(chǎn)影響較大,因旱災(zāi)造成的糧食減產(chǎn)也非常嚴(yán)重。近20年來,中國50%以上的農(nóng)業(yè)自然災(zāi)害損失的來自于干旱災(zāi)害[1],因此,精準(zhǔn)監(jiān)測干旱發(fā)生對農(nóng)業(yè)生產(chǎn)具有重要意義。
以氣象站點(diǎn)的監(jiān)測數(shù)據(jù)計(jì)算干旱指數(shù)來監(jiān)測干旱的發(fā)生,是較為傳統(tǒng)的方法。常用的干旱監(jiān)測指數(shù)有帕默爾干旱指數(shù)(Palmer Drought Severity Index,PDSI)[2]、標(biāo)準(zhǔn)化降水指數(shù)(Standardized Precipitation Index,SPI)[3]、標(biāo)準(zhǔn)化降水蒸散指數(shù)(Standardized Precipitation Evapotranspiration Index,SPEI)[4]等。這類方法中數(shù)據(jù)準(zhǔn)確率較高、易于獲取,但對于在大范圍內(nèi)對旱情進(jìn)行快速準(zhǔn)確的評估,存在氣象站點(diǎn)在空間上分布不均勻的缺點(diǎn)。隨著遙感技術(shù)的快速發(fā)展,基于遙感的干旱監(jiān)測方法能夠較為精確地反映出干旱受植被及其他環(huán)境因素的影響?;谶b感數(shù)據(jù)監(jiān)測干旱的主要指數(shù)包括植被狀況指數(shù)(Vegetation Condition Index,VCI)[5]、溫度狀況指數(shù)(Temperature Condition Index,TCI)[6]、降水狀況指數(shù)(Precipitation Condition Index,PCI)[7]、作物缺水指數(shù)(Crop Water Stress Index,CWSI)[8]以及土壤濕度狀況指數(shù)(Soil Moisture Condition Index,SMCI)[9]等?;谡羯?shù)據(jù)的CWSI具有物理意義明確、適用范圍廣的特點(diǎn),被廣泛應(yīng)用于農(nóng)業(yè)干旱以及地表蒸散發(fā)的時(shí)空分布特征的研究[10-11]。
近幾年來,一些學(xué)者開始研究基于多源遙感數(shù)據(jù)監(jiān)測農(nóng)業(yè)干旱,同時(shí)采用多元線性回歸[12]、主成分分析法[13]以及客觀賦權(quán)法[14]等方法構(gòu)建綜合干旱指數(shù)。但農(nóng)業(yè)干旱的形成不僅是由于降水、植被、地表溫度以及土壤水分等因素的影響,蒸散數(shù)據(jù)涉及大氣、植被以及土壤之間的水分與能量交換,是農(nóng)業(yè)干旱形成過程中的重要因素[15]。近年P(guān)CI、TCI以及SMCI在干旱監(jiān)測模型構(gòu)建中得到廣泛應(yīng)用,但CWSI在農(nóng)業(yè)干旱監(jiān)測模型構(gòu)建方面的相關(guān)研究較少。而采用線性組合構(gòu)建多因子干旱監(jiān)測模型的方法,難以表述不同干旱因子之間的非線性關(guān)系,一些學(xué)者開始采用機(jī)器學(xué)習(xí)算法,如人工神經(jīng)網(wǎng)絡(luò)[16]、隨機(jī)森林[17]等構(gòu)建干旱監(jiān)測模型。
本研究綜合考慮蒸散數(shù)據(jù)在農(nóng)業(yè)干旱發(fā)生過程中對大氣、土壤以及植被等水分的影響,用多源遙感數(shù)據(jù)構(gòu)建了偏差校正隨機(jī)森林干旱狀況指數(shù)(Bias-corrected Random Forest Drought Condition Index,BRF-DCI),同時(shí)研究CWSI在構(gòu)建農(nóng)業(yè)干旱監(jiān)測模型中的作用。并分析BRF-DCI對山東省農(nóng)業(yè)干旱監(jiān)測是否適用,以期為山東省農(nóng)業(yè)干旱監(jiān)測評估以及防旱減災(zāi)提供新的途徑。
山東省地處中國東部沿海,黃河的下游(圖1),總面積約為15.71×104km2。地形以平原與丘陵為主,山東省西北部為黃河沖擊平原區(qū),中部為山地,相對海拔較高,地形起伏較大。氣候?qū)倥瘻貛Ъ撅L(fēng)氣候,四季分明,降水時(shí)空變化大,分布不均,年平均降水量550~1 050 mm。山東省是農(nóng)業(yè)大省,耕地面積較大,共11.56×104km2,占山東省土地總面積的73.61%,干旱對農(nóng)作物生長、產(chǎn)量等影響較大[18]。
研究數(shù)據(jù)主要包括氣象數(shù)據(jù)與遙感數(shù)據(jù)兩部分,時(shí)間尺度為2000—2019年。氣象數(shù)據(jù)包括月降水、氣溫等,選取山東省48個(gè)氣象站點(diǎn)的氣象數(shù)據(jù)(http://data.cma.cn/)。
遙感數(shù)據(jù)包括MODIS數(shù)據(jù)(http://ladsweb.modaps.eosdis.nasa.gov/),主要使用地表溫度數(shù)據(jù)MOD11A2(時(shí)空分辨率:1 km、8 d)、歸一化植被指數(shù)數(shù)據(jù)MOD13A3(時(shí)空分辨率:1 km、30 d)以及蒸散發(fā)數(shù)據(jù)MOD16A2(時(shí)空分辨率:500 m、8 d)。TRMM是1997年發(fā)射的熱帶測雨任務(wù)衛(wèi)星,提供全球降水?dāng)?shù)據(jù)[19],本文中主要使用TRMM_3B43(時(shí)空分辨率:0.25、30 d)(https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary)。GLDAS數(shù)據(jù)(時(shí)空分辨率:0.25、30 d)是由4個(gè)陸面模型提供的陸面數(shù)據(jù),本研究使用土壤濕度數(shù)據(jù)[20](https://giovanni.gsfc.nasa. gov/giovanni/)。
1.3.1 站點(diǎn)數(shù)據(jù)
SPEI是計(jì)算降水量與潛在蒸散量的差值,引入概率模型得到的指數(shù)。使用Thornthwaite方法[21]計(jì)算得到潛在蒸散量(Potential Evapotranspiration,PET),使其服從Log-logistic概率分布,同時(shí)對其進(jìn)行正態(tài)標(biāo)準(zhǔn)化處理得到累計(jì)概率[22]。
當(dāng)≤0.5時(shí),
當(dāng)>0.5時(shí),取值為1-,
SPEI具有1個(gè)月、3個(gè)月、6個(gè)月等多時(shí)間尺度,因?yàn)?個(gè)月以上時(shí)間尺度可以更好地反映農(nóng)業(yè)干旱的嚴(yán)重程度與持續(xù)時(shí)間[23],因此本文選擇3個(gè)月時(shí)間尺度的SPEI(SPEI-3)作為因變量。利用氣象站點(diǎn)的降水與氣溫?cái)?shù)據(jù),計(jì)算山東省各氣象站點(diǎn)的SPEI-3的值(稱為觀測值)。依據(jù)國家標(biāo)準(zhǔn)[22]劃分SPEI的等級如表1所示。
表1 基于標(biāo)準(zhǔn)化降水蒸散指數(shù)干旱等級劃分
1.3.2 遙感數(shù)據(jù)
對遙感數(shù)據(jù)進(jìn)行相關(guān)的預(yù)處理,使用質(zhì)量文件進(jìn)行控制,剔除無效值,同時(shí)將遙感數(shù)據(jù)統(tǒng)一處理為1 km空間分辨率。對MODIS數(shù)據(jù)中地表溫度(Land Surface Temperature,LST)、歸一化植被指數(shù)(Normalized Differential Vegetation Index,NDVI)、PET與蒸散量(Evapotranspiration,ET)等數(shù)據(jù)進(jìn)行處理,得到TCI[6]、VCI[5]以及CWSI[8],計(jì)算公式如下:
式中為月份,下標(biāo)Max為最大值,下標(biāo)Min為最小值。
通過對TRMM_3B43數(shù)據(jù)進(jìn)行預(yù)處理后提取Precipitation降水波段,PCI計(jì)算公式[7]如下:
對GLDAS數(shù)據(jù)預(yù)處理后,提取SoilMoi0_10cm_inst波段計(jì)算SMCI公式[9]如下:
農(nóng)業(yè)干旱對于農(nóng)作物的生長發(fā)育具有重要意義,每年4 —10月為山東省大部分農(nóng)作物的生長旺季,在此期間發(fā)生干旱對于農(nóng)作物的生長發(fā)育、產(chǎn)量等具有極大的影響,因此本文選取山東省2000—2019年的4—10月48個(gè)站點(diǎn)的SPEI-3作為因變量,以對應(yīng)站點(diǎn)的遙感影像數(shù)據(jù)作為自變量,包括TCI、VCI、PCI、PCI、CWSI以及SMCI等多個(gè)旱情因子。隨機(jī)以2:8劃分?jǐn)?shù)據(jù)集,其中20%作為測試集,80%作為訓(xùn)練集,基于隨機(jī)森林算法構(gòu)建回歸模型,同時(shí)對回歸模型進(jìn)行偏差校正得到BRF-DCI。采用決定系數(shù)(2)、平均絕對誤差(Mean Absolute Error,MAE)以及均方根誤差(Root Mean Square Error,RMSE)等模型評估方法選取最優(yōu)的回歸模型,其中2取值越大,MAE與RMSE取值越小,說明預(yù)測值與觀測值擬合度越好、相關(guān)性越高以及誤差越小,預(yù)測值與觀測值越接近[23]。同時(shí)判斷自變量是否加入CWSI指標(biāo),分析CWSI對于BRF-DCI的影響,對BRF-DCI指數(shù)的干旱監(jiān)測能力進(jìn)行評估與驗(yàn)證。技術(shù)流程如圖2所示。
隨機(jī)森林(Random Forest,RF)算法包含多個(gè)決策樹,在分類與回歸問題中有廣泛的應(yīng)用[24]。RF在構(gòu)建過程中采取有放回的隨機(jī)抽取樣本集的BootStrap自助法,而且RF的每個(gè)子樹在分裂過程中是從待選特征中隨機(jī)選取,大大降低了過擬合[25]。本文使用R程序語言,使用其中的Randomforest程序包,通過網(wǎng)格搜索的參數(shù)優(yōu)化方法,選取如表2參數(shù),構(gòu)建RF模型。
RF算法在預(yù)測過程中,當(dāng)觀測值較小時(shí),預(yù)測值可能被高估,觀測值較大時(shí),預(yù)測值可能被低估[25]。因此為提高RF模型的精度,本文選擇了Song[26]提出的基于殘差旋轉(zhuǎn)的最優(yōu)角度旋轉(zhuǎn)法(Best-angle Rotation,BR)進(jìn)行偏差校正,構(gòu)建基于偏差校正的回歸模型,模型擬合得到BRF-DCI。校正方法如下:
表2 隨機(jī)森林參數(shù)取值
為研究CWSI對構(gòu)建干旱監(jiān)測模型的影響,采用添加與未添加CWSI為自變量構(gòu)建干旱監(jiān)測模型,得到4 —10月的干旱監(jiān)測模型,以2、RMSE以及MAE進(jìn)行模型精度評估結(jié)果如表3所示。由表3可知,加入CWSI之后的模型得到的BCF-DCI指數(shù)與觀測值SPEI-3的2范圍為0.72~0.85,未加入CWSI的模型2范圍為0.58~0.71,低于加入CWSI后的模型,說明加入CWSI后BRF-DCI指數(shù)與觀測值SPEI-3相關(guān)性更高。同時(shí),加入與未加入CWSI為自變量構(gòu)建的回歸模型中,RMSE最大值分別為0.51和0.64,MAE最大值為0.40和0.52,說明加入CWSI后BRF-DCI指數(shù)與觀測值SPEI-3差異更小。
對于從不同月份、自變量不同時(shí)統(tǒng)計(jì)得到的模型的擬合精度來看,本文在加入CWSI之后,回歸模型的2提升,RMSE與MAE均有下降。其中,4月的2最高,達(dá)到了0.85,除5月外,其余各月2均提升至少0.11,RMSE、MAE均下降至少0.11、0.09。6月2提升最高,為0.17,RMSE與MAE分別降低0.15、0.12,說明CWSI對6月影響效果最大。研究表明[10,27],CWSI與植被覆蓋度相關(guān),山東省6月正處于冬小麥?zhǔn)崭钆c種植夏玉米,出現(xiàn)大量裸地,地表水水分的大量蒸發(fā)造成CWSI指數(shù)對干旱監(jiān)測的影響較大。
表3 自變量不同時(shí)各模型精度評估結(jié)果
據(jù)表1統(tǒng)計(jì)2000—2019年各月份自變量不同時(shí),各站點(diǎn)監(jiān)測不同干旱等級準(zhǔn)確率即預(yù)測站點(diǎn)等級結(jié)果為不同干旱等級中預(yù)測正確的概率,如圖3所示??梢钥闯觯尤隒WSI后,中旱、重旱以及特旱的監(jiān)測準(zhǔn)確率最大值分別為0.88、0.89以及0.91。未加入CWSI前,中旱、重旱以及特旱的監(jiān)測準(zhǔn)確率最大值分別為0.81、0.74以及0.75。整體而言,加入CWSI后除圖3a的4月外,加入CWSI有效提升了干旱等級的準(zhǔn)確率,其中對于重旱與特旱的效果最優(yōu)。這說明加入CWSI對于模型監(jiān)測極端干旱情況的發(fā)生也有顯著優(yōu)勢。可見,加入CWSI指標(biāo)作為因變量,對于山東省農(nóng)業(yè)干旱監(jiān)測模型的構(gòu)建是有效的,能顯著提高模型的精度。
3.2.1 基于BRF-DCI模擬山東省站點(diǎn)干旱情況
為評估BRF-DCI指數(shù)在山東省的適用性情況,對山東省站點(diǎn)模擬的BRF-DCI指數(shù)與觀測值SPEI-3進(jìn)行分析。將多源遙感數(shù)據(jù)輸入回歸模型,得到每個(gè)站點(diǎn)的2000 —2019年的BRF-DCI指數(shù),與利用氣象數(shù)據(jù)得到的每個(gè)站點(diǎn)的SPEI-3指數(shù)觀測值進(jìn)行比較,如圖 4所示??梢钥闯?,BRF-DCI可以很好地?cái)M合實(shí)測指數(shù),2均在0.94以上。其中4月BRF-DCI與SPEI-3的相關(guān)性最強(qiáng)為0.958,7月、8月及9月與10月的BRF-DCI與SPEI-3的決定系數(shù)也在0.95之上。7個(gè)月份的BRF-DCI指數(shù)與觀測值SPEI-3的RMSE均在0.25之下。
為研究構(gòu)建的BRF-DCI指數(shù)是否可準(zhǔn)確反映山東省干旱變化趨勢,根據(jù)薛明慧[10]研究,山東省秋旱較嚴(yán)重,且秋收作物生長成熟期為9月上旬—10月上旬,在此區(qū)間作物需水量較大,此時(shí)發(fā)生干旱對作物產(chǎn)量影響較大。因此,選取2000—2019年9月時(shí)6個(gè)基本站,觀察SPEI-3與BRF-DCI的干旱變化趨勢情況,如圖5所示。由圖可知,BRF-DCI與SPEI-3的值擬合度較高,盡管有個(gè)別站點(diǎn)的個(gè)別年份的BRF-DCI與SPEI-3的值存在不一致性,如圖5b中濟(jì)南站2010年SPEI-3比BRF-DCI稍高,圖 5f中日照站2014年SPEI-3比BRF-DCI稍低。但絕大多數(shù)氣象站點(diǎn)的BRF-DCI與SPEI-3的干旱變化具有一致性,并且BRF-DCI與SPEI-3值接近,表明BRF-DCI能夠監(jiān)測相同月份不同站點(diǎn)的旱情類型,以及監(jiān)測相同站點(diǎn)、月份、不同年份的干旱變化趨勢,可用于評估實(shí)際旱情狀態(tài)。3.2.2 典型干旱年空間分布
采用BRF-DCI對山東省典型干旱年的干旱空間分布進(jìn)行分析,驗(yàn)證BRF-DCI的監(jiān)測能力。根據(jù)山東省統(tǒng)計(jì)年鑒中記載的農(nóng)作物受災(zāi)、成災(zāi)面積,選取典型干旱年2002年。以4—10月為例,分析區(qū)域內(nèi)干旱空間分布情況。由童德明等[28-29]研究可知,2002年4月魯西北、魯中等地區(qū)處于中旱、輕旱狀態(tài),其余各地區(qū)均無旱。進(jìn)入5月、6月全省降水量增加,基本無旱情發(fā)生。6月之后,全省持續(xù)高溫少雨致使旱情愈加嚴(yán)重。尤其在8—10月,魯東南與魯中等地區(qū)均有特旱發(fā)生,全省區(qū)域基本處于干旱狀態(tài)。旱情主要發(fā)生在濟(jì)南、聊城、泰安、濟(jì)寧、菏澤等地。
對站點(diǎn)計(jì)算的SPEI-3進(jìn)行空間插值,采用反距離權(quán)重插值(Inverse Distance Weighting,IDW)的方法,得到干旱空間分布的柵格數(shù)據(jù)圖(圖6),并利用構(gòu)建的干旱監(jiān)測模型得到BRF-DCI空間分布的柵格數(shù)據(jù)圖(圖7),評估回歸模型監(jiān)測精度。BRF-DCI空間分布圖與SPEI-3使用IDW方法插值生成的旱情空間分布圖對旱情的發(fā)展過程基本一致,與真實(shí)的旱情也較為一致。但因?yàn)闅庀笳军c(diǎn)個(gè)數(shù)較少,IDW方法在無站點(diǎn)區(qū)域?qū)τ诤登榈谋O(jiān)測不精確。例如菏澤市東部在4月時(shí)出現(xiàn)中度干旱,BRF-DCI監(jiān)測為中旱,但菏澤市東部只有定陶站一個(gè)氣象站點(diǎn),IDW監(jiān)測為輕旱,因此使用IDW對該區(qū)域旱情監(jiān)測不準(zhǔn)確;而10月聊城東南部出現(xiàn)重度干旱,BRF-DCI監(jiān)測為重旱,但聊城東南部也僅有莘縣站1個(gè)氣象站點(diǎn),使用IDW方法對旱情等級出現(xiàn)誤判。
總體來說,由BRF-DCI反映的山東省干旱情況與IDW方法插值的站點(diǎn)SPEI-3有較好的一致性,并且BRF-DCI對于站點(diǎn)SPEI-3分布之外的柵格區(qū)域也能較好的反映旱情。2002年4—10月,BRF-DCI模擬的旱情空間分布情況,較為準(zhǔn)確地指出了山東省遭受干旱的受災(zāi)區(qū)域,一定程度上反映了山東省內(nèi)不同區(qū)域遭受干旱的旱情程度、變化趨勢,說明BRF-DCI指數(shù)適用于山東省干旱監(jiān)測。
農(nóng)業(yè)干旱的形成過程極其復(fù)雜,其受植被、降水以及其他環(huán)境因素等的影響。因此,為有效表征農(nóng)業(yè)干旱的復(fù)雜性,本研究基于多源的遙感數(shù)據(jù)構(gòu)建了干旱狀況指數(shù)。分析不同的干旱類型,可以采用不同時(shí)間尺度的SPEI,SPEI-1更適宜于氣象干旱的監(jiān)測,氣象干旱最先發(fā)生,農(nóng)業(yè)干旱較晚于氣象干旱發(fā)生,水文干旱較晚于農(nóng)業(yè)干旱發(fā)生。根據(jù)Potop等[30-31]研究,氣象干旱的發(fā)生比農(nóng)業(yè)干旱提前約1個(gè)月,而農(nóng)業(yè)干旱的發(fā)生比水文干旱提前約2個(gè)月,且SPEI-3與土壤濕度的相關(guān)性較好,更適宜于表征農(nóng)業(yè)干旱,因此本文選取3個(gè)月尺度的SPEI-3指數(shù)。
為解決單一干旱指數(shù)以及不同干旱因子之間可能存在非線性關(guān)系,而不能準(zhǔn)確反映干旱情況的問題,董婷等[32]利用RF方法,以TCI、VCI、PCI以及SMCI為自變量構(gòu)建干旱監(jiān)測模型,表明對于大范圍的旱情監(jiān)測,由RF構(gòu)建的綜合干旱監(jiān)測指數(shù)具有較大的應(yīng)用潛力。本文考慮蒸散數(shù)據(jù)對于農(nóng)業(yè)干旱監(jiān)測的影響,加入了蒸散數(shù)據(jù)計(jì)算的CWSI構(gòu)建干旱監(jiān)測指數(shù)。同時(shí),在RF算法的基礎(chǔ)上,加入偏差校正的方法,對多源遙感數(shù)據(jù)構(gòu)建干旱狀況指數(shù),相比于原始的RF算法,本文構(gòu)建的BRF-DCI指數(shù)具有更準(zhǔn)確地農(nóng)業(yè)干旱監(jiān)測能力。可以進(jìn)一步提高農(nóng)業(yè)干旱監(jiān)測能力,同時(shí)提高了對于極端干旱監(jiān)測的準(zhǔn)確性。此外本文在選取自變量時(shí),綜合考慮了降水、植被、溫度以及蒸散等因素對農(nóng)業(yè)干旱形成過程中的影響,構(gòu)建山東省農(nóng)業(yè)干旱監(jiān)測模型。但是農(nóng)業(yè)干旱形成復(fù)雜性不止于此,在后續(xù)研究中將會進(jìn)一步考慮如高程、植被覆蓋類型等對于農(nóng)業(yè)干旱的影響。
本研究考慮了作物缺水指數(shù)(Crop Water Stress Index,CWSI)對農(nóng)業(yè)干旱監(jiān)測的影響,并基于偏差校正的隨機(jī)森林方法構(gòu)建農(nóng)業(yè)干旱監(jiān)測模型,得到偏差校正隨機(jī)森林干旱狀況指數(shù)(Bias-corrected Random Forest Drought Condition Index,BRF-DCI)。分析了BRF-DCI對山東省農(nóng)業(yè)干旱監(jiān)測的適用性,研究結(jié)果如下:
1)加入CWSI為自變量構(gòu)建的干旱監(jiān)測模型,得到的BRF-DCI指數(shù)與觀測值SPEI-3的決定系數(shù)為0.72~0.85,優(yōu)于未加入CWSI決定系數(shù)為0.58~0.71。
2)加入CWSI,BRF-DCI指數(shù)提高了監(jiān)測極端干旱的準(zhǔn)確率,對于中旱、重旱、特旱的準(zhǔn)確率均有提升,表明加入CWSI作為自變量顯著提高了模型對極端干旱監(jiān)測的精度。
3)各站點(diǎn)在2000—2019年9月的BRF-DCI與SPEI-3反映的干旱趨勢基本一致,BRF-DCI可以較好擬合SPEI-3;相比于反距離權(quán)重插值法,根據(jù)BRF-DCI模擬的山東省典型干旱年情況與歷史遭受的旱情一致,而且BRF-DCI監(jiān)測圖可以較為準(zhǔn)確地指出干旱受災(zāi)區(qū)域,更加準(zhǔn)確地反映山東省2002年典型干旱事件的時(shí)空演變。
[1] 黎云云,暢建霞,樊晶晶,等. 氣候和土地利用變化下黃河流域農(nóng)業(yè)干旱時(shí)空演變及驅(qū)動機(jī)制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(19):84-93.
Li Yunyun, Chang Jianxia, Fan Jingjing, et al. Agricultural drought evolution characteristics and driving mechanisms in the Yellow River Basin under climate and land use changes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 84-93. (in Chinese with English abstract)
[2] Palmer W C. Meteorological drought[R]. Research Paper No 45, US Dept of Commerce, 1965: 1-58.
[3] Mckee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scale[C]. Paper Presented at 8th Conference on Applied Climatology, 1993, 17(22): 179-183.
[4] 王林,陳文. 標(biāo)準(zhǔn)化降水蒸散指數(shù)在中國干旱監(jiān)測的適用性分析[J]. 高原氣象,2014,33(2):423-431.
Wang Lin, Chen Wen. Analysis of applicability of standardized precipitation evapotranspiration index in drought monitoring in China[J]. Plateau Meteorology, 2014, 33(2): 423-431. (in Chinese with English abstract)
[5] Kogan F N. Remote sensing of weather impacts on vegetation in non-homogeneous areas[J]. International Journal of Remote Sensing, 1990, 11(8): 1405-1419.
[6] Kogan F N. Application of vegetation index and brightness temperature for drought detection[J]. Advances in Space Research, 1995, 15(11): 91-100.
[7] Oliver J E. Monthly precipitation distribution: A comparative index[J]. Professional Geographer, 2010, 32(3): 300-309.
[8] Jackson R D, Idso S B, Reginato R J, et al. Canopy temperature as a crop water stress indicator[J]. Water Resources Research, 1981, 17(4): 1133-1138.
[9] 胡蝶,沙莎,王麗娟,等. 歐空局主被動微波土壤水分融合產(chǎn)品在甘肅省干旱監(jiān)測中的應(yīng)用[J]. 干旱氣象,2019,37(4):517-528.
Hu Die, Sha Sha, Wang Lijuan, et al. Application of ESA active and passive microwave soil water fusion products in Drought monitoring in Gansu Province[J]. Journal of Arid Meteorology, 2019, 37(4): 517-528. (in Chinese with English abstract)
[10] 薛明慧. 基于 MOD16 數(shù)據(jù)的河南省和山東省干旱的時(shí)空分布特征[J]. 亞熱帶資源與環(huán)境學(xué)報(bào),2020,15(2):81-87.
Xue Minghui. Spatio temporal distribution characteristics of drought in Henan and Shandong provinces based on MOD16[J]. Journal of Subtropical Resources and Environment, 2020, 15(2): 81-87. (in Chinese with English abstract)
[11] 張猛,曾永年,齊玥. 基于 MOD16 的洞庭湖流2000-2014 年地表蒸散時(shí)空變化分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(20):160-168.
Zhang Meng, Zeng Yongnian, Qi Yue. Analyzing spatio-temporal variations of evapotranspiration in Dongting Lake Basin during 2000—2014 based on MOD16[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 160-168. (in Chinese with English abstract)
[12] 余灝哲,李麗娟,李九一. 基于TRMM降尺度和MODIS數(shù)據(jù)的綜合干旱監(jiān)測模型構(gòu)建[J]. 自然資源學(xué)報(bào),2020,35(10):2553-2568.
Yu Haozhe, Li Lijuan, Li Jiuyi. Establishment of comprehensive drought monitoring model based on downscaling TRMM and MODIS data[J]. Journal of Natural Resources, 2020, 35(10): 2553-2568. (in Chinese with English abstract)
[13] Arun Kumar K C, Obi Reddy G P, Masilamani P, et al. Integrated drought monitoring index: A tool to monitor agricultural drought by using time series datasets of space-based earth observation satellites[J]. Advances in Space Research, 2021,67(1): 298-315.
[14] 趙水霞,王文君,吳英杰,等. 綜合干旱指數(shù)構(gòu)建及其在不同草原類型中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(16):99-107.
Zhao Shuixia, Wang Wenjun, Wu Yingjie, et al. Construction and application of comprehensive drought index in different steppe types[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(16): 99-107. (in Chinese with English abstract)
[15] Han H Z, Bai J J, Yan J W,et al. A combined drought monitoring index based on multi-sensor remote sensing data and machine learning[J]. Geocarto International, 2019, 36(10): 1-16.
[16] Shen R P, Huang A Q, Li B L, et al. Construction of a drought monitoring model using deep learning based on multi-source remote sensing data[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 79: 48-57.
[17] 楊晉云,張莎,白雲(yún),等. 基于機(jī)器學(xué)習(xí)融合多源遙感數(shù)據(jù)模擬SPEI 監(jiān)測山東干旱[J].中國農(nóng)業(yè)氣象,2021,42(3):230-242.
Yang Jinyun,Zhang Sha,Bai Yun, et al. SPEI simulation for monitoring drought based machine learning integrating multi-source remote sensing data in Shandong[J]. Chinese Journal of Agrometeorology,2021,42(3):230-242. (in Chinese with English abstract)
[18] 徐鈺,江麗華,張建軍,等. 氣候變化對山東省農(nóng)業(yè)生產(chǎn)的影響與對策[J]. 中國農(nóng)業(yè)氣象,2010,31(增1):23-26.
Xu Yu, Jiang Lihua, Zhang Jianjun, et al. Impact of climate change on Shandong agricultural production and the adaption countermeasure[J]. Chinese Journal of Agrometeorology, 2010, 31(Suppl 1): 23-26. (in Chinese with English abstract)
[19] Fang J, Yang W, Luan Y, et al. Evaluation of the TRMM3B42 and GPM IMERG products for extreme precipitation analysis over China[J]. Atmospheric Research, 2019, 223: 24-38.
[20] Rodell M, Houser P R, Jambor U, et al. The global land data assimilation system[J]. Bull Amer Meteor-Soc, 2004, 85(3): 381-394.
[21] Thornthwaite C W. An approach toward a rational classification of climate[J]. Geographical Review, 1948, 38(1): 55-94.
[22] 中國氣象局.GB/T 20481—2017:氣象干旱等級[S]. 北京:中國標(biāo)準(zhǔn)出版社,2006:11.
[23] Chrisgone A, Robert O, Peter W W, et al. Model ensembles of artificial neural networks and support vector regression for improved accuracy in the prediction of vegetation conditions and droughts in four northern Kenya Counties[J]. International Journal of Geo-Information, 2019, 8(12): 562.
[24] Breman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
[25] Zhang G Y, Lu Y. Bias-corrected random forests in regression[J]. Journal of Applied Statistics, 2012, 39(1): 151-160.
[26] Song J. Bias corrections for random forest in regression using residual rotation[J]. Journal of the Korean Statistical Society, 2015, 44(2): 321-326.
[27] 汪左,王芳,張運(yùn). 基于CWSI的安徽省干旱時(shí)空特征及影響因素分析[J]. 自然資源學(xué)報(bào),2018,33(5):853-866.
Wang Zuo, Wang Fang, Zhang Yun. Spatio-temporal distribution characteristics and influencing factors of drought in Anhui province based on CWSI[J]. Journal of Natural Resources. 2018, 33(5): 853-866. (in Chinese with English abstract)
[28] 童德明,白雲(yún),張莎,等. 干旱嚴(yán)重程度指數(shù)(DSI)在山東省干旱遙感監(jiān)測中的適用性[J]. 中國農(nóng)業(yè)氣象,2020,41(2):102-112.
Tong Deming, Bai Yun, Zhang Sha, et al. Applicability of drought severity index (DSI) in remote sensing monitoring of drought in Shandong province[J]. Chinese Journal of Agrometeorology. 2020, 41(2): 102-112. (in Chinese with English abstract)
[29] 張勝平,陳希村,蘇傳寶,等. 2002年山東省嚴(yán)重干旱分析[J]. 水文,2004,24(3):42-45.
Zhang Shengping, Chen Xicun, Sun Chuanbao, et al. Analysis of serious drought in Shandong province in 2002[J]. Hydrology, 2004, 24(3): 42-45. (in Chinese with English abstract)
[30] Potop V, Boroneant C, Mozny M, et al. Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic[J]. Theoretical and Applied Climatology, 2014, 115(3/4): 563-581.
[31] Wu Z Y, Yun M. Exploring spatiotemporal relationships among meteorological, agricultural, and hydrological droughts in Southwest China[J]. Stochastic Environmental Research and Risk Assessment, 2016, 30(3): 1033-1044.
[32] 董婷,任東,邵攀,等. 基于多源遙感數(shù)據(jù)和隨機(jī)森林的綜合旱情指標(biāo)構(gòu)建[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(8):1000-1298.
Dong Ting, Ren Dong, Shao Pan, et al. Construction of integrated drought condition index based on multi-sensor remote sensing and random forest[J]. Transactions of The Chinese Society of Agricultural Machinery,2019, 50(8): 1000-1298. (in Chinese with English abstract)
Construction of agricultural drought monitoring model based on crop water stress index
Song Tingqiang1, Lu Xueli1, Lu Mengyao1, Liu Dehu1, Sun Yuanyuan1※, Yan Jun2, Liu Lumin2
(1.,266000,;2..,.,519000,)
Agricultural drought has been one of the most damaging natural hazards in the world, due mainly to the water shortage. A timely and effective monitoring system can greatly contribute to the management and mitigation of agricultural drought for better crops yields. A drought index can be further used to support the agricultural drought monitoring, assessment, and decision-making on mitigation measures. Therefore, it is a high demand to determine the real drought and monitoring index in practice. Taking the Shandong Province in eastern China as the research area, this study aims to construct a new agricultural drought monitoring model by random forest using the Crop Water Stress Index (CWSI). A deviation correction was also used to construct the Bias-corrected Random Forest Drought Condition Index (BRF-DCI). The physical meaning of evapotranspiration data was elucidated in the occurrence of agricultural drought. The multisource remote sensing was selected, including the Vegetation Condition Index (VCI), Precipitation Condition Index (PCI), Temperature Condition Index (TCI), Soil Moisture Condition Index (SMCI), and Standardized Precipitation Evapotranspiration Index (SPEI). The accuracy of the model was evaluated by the determination coefficient, and root mean square error. Since the study area presents the warm temperate continental monsoon climate with large temporal and spatial changes in the precipitation, some considerations were made on the influence of evapotranspiration on the drought monitoring model, as well as the accuracy and application of drought condition index for different drought grades. The results were as follows: 1) A better performance was achieved, when adding the CWSI as the independent variable into the drought monitoring model, where the determination coefficient of the BRF-DCI index and the observed SPEI-3 was 0.72-0.85, and the root mean square error was 0.58-0.71. 2) The BRF-DCI index with CWSI improved the accuracy of extreme drought monitoring, where the maximum monitoring accuracies of moderate, severe, and special drought were 0.88, 0.89, and 0.91, respectively. As such, the CWSI independent variable significantly improved the accuracy of the model, particularly for the extreme drought monitoring. 3) The drought monitoring index was basically consistent with the drought trend, represented by the real SPEI-3 at different sites, suitable for the changing of the actual drought. 4) The simulation of historical drought using drought condition index was also basically consistent with the actual in the study area. Consequently, the BRF-DCI can be widely expected to accurately predict the drought-affected areas with the temporal and spatial evolution. This finding can provide an important reference to evaluate the agricultural drought monitoring index for the early warning of natural hazards..
agricultural; drought; random forest; MOD16A2; CWSI; deviation correction; model building
2021-07-20
2021-10-10
山東省重點(diǎn)研發(fā)計(jì)劃(公益類專項(xiàng))項(xiàng)目(2019GGX101047);國防科工局高分專項(xiàng)(83-Y40G33-9001-18/20);山東省自然科學(xué)基金項(xiàng)目(ZR202102180604)
宋廷強(qiáng),博士,副教授,研究方向?yàn)檫b感應(yīng)用、人工智能。Email:116638307@qq.com
孫媛媛,博士,講師,研究方向?yàn)檗r(nóng)業(yè)遙感。Email:yysun@qust.edu.cn
10.11975/j.issn.1002-6819.2021.24.008
TP79;S127
A
1002-6819(2021)-24-0065-08
宋廷強(qiáng),魯雪麗,盧夢瑤,等. 基于作物缺水指數(shù)的農(nóng)業(yè)干旱監(jiān)測模型構(gòu)建[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(24):65-72. doi:10.11975/j.issn.1002-6819.2021.24.008 http://www.tcsae.org
Song Tingqiang, Lu Xueli, Lu Mengyao, et al. Construction of agricultural drought monitoring model based on crop water stress index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(24): 65-72. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.24.008 http://www.tcsae.org