亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        有理Bézier曲線(xiàn)高階導(dǎo)矢界的計(jì)算

        2021-03-17 01:38:36劉建貞李亞娟
        關(guān)鍵詞:有理乘積計(jì)算方法

        劉建貞,李亞娟

        (杭州電子科技大學(xué)理學(xué)院,浙江 杭州 310018)

        0 引 言

        計(jì)算機(jī)輔助幾何設(shè)計(jì)與圖形學(xué)中,有理Bézier曲線(xiàn)等自由曲線(xiàn)曲面的導(dǎo)矢界計(jì)算問(wèn)題一直都是非常重要的研究方向。許多學(xué)者對(duì)有理Bézier曲線(xiàn)、曲面的一階導(dǎo)矢界進(jìn)行了研究。Floater[1]首先用控制頂點(diǎn)和權(quán)因子來(lái)表示有理Bézier曲線(xiàn)的一階導(dǎo)矢界;文獻(xiàn)[2]利用不等式給出了有理Bézier曲線(xiàn)的一階導(dǎo)矢界;文獻(xiàn)[3]估計(jì)了特殊點(diǎn)處的導(dǎo)矢界;文獻(xiàn)[4]給出一個(gè)較大的誤差界。Hermann[5]采用M?bius變換,討論了有理二次Bézier曲線(xiàn)的一階導(dǎo)矢界問(wèn)題;文獻(xiàn)[6-12]利用不同的不等式對(duì)有理Bézier曲線(xiàn)的一階導(dǎo)矢界進(jìn)行了估計(jì),并不斷加以改進(jìn);文獻(xiàn)[13]對(duì)有理二次Bézier曲線(xiàn)的導(dǎo)矢界模長(zhǎng)進(jìn)行了優(yōu)化。除此之外,還有部分文獻(xiàn)估計(jì)了曲面導(dǎo)矢界。如文獻(xiàn)[14]將有理Bézier曲線(xiàn)的一階導(dǎo)矢界估值推廣到曲面,文獻(xiàn)[15]對(duì)NURBS曲面的偏導(dǎo)矢界進(jìn)行了估計(jì)。但是,由于有理Bézier曲線(xiàn)的高階導(dǎo)矢計(jì)算公式異常復(fù)雜,其界的估計(jì)比較困難,相關(guān)文獻(xiàn)涉及較少。文獻(xiàn)[16]給出了有理Bézier曲線(xiàn)的二階,三階導(dǎo)矢界,文獻(xiàn)[17]提供了一種n次有理Bézier曲線(xiàn)任意階導(dǎo)矢界的上確界的理論計(jì)算方法,但沒(méi)有給出確定的界的表示。在文獻(xiàn)[2]方法基礎(chǔ)上,本文提出一種n次有理Bézier曲線(xiàn)高階導(dǎo)矢界計(jì)算方法。

        1 計(jì)算導(dǎo)矢界的框架

        一條n次有理Bézier曲線(xiàn)R(t)定義如下:

        (1)

        1.1 有理Bézier曲線(xiàn)的一階導(dǎo)矢界

        一條n次有理Bézier曲線(xiàn)(1)的一階導(dǎo)矢記為:

        (2)

        文獻(xiàn)[2]給出如下引理,并以此計(jì)算n次有理Bézier曲線(xiàn)的一階導(dǎo)矢界。

        引理1[2]如果ai≥0,bi≥0,i=0,1,2,…,n,那么

        (3)

        (4)

        (5)

        再由

        (6)

        R′(t)的分子中的第1個(gè)乘積項(xiàng)表示為:

        (7)

        同樣,由

        (8)

        (9)

        得到R′(t)的分子中的第2個(gè)乘積項(xiàng)表達(dá)式:

        (10)

        (11)

        結(jié)合式(6),R′(t)的分母表示為:

        (12)

        把式(7),式(10)和式(12)代入式(2),由引理1,再結(jié)合(1-t)wi+twi+1≥min{wi,wi+1},得到導(dǎo)矢界公式(4)。導(dǎo)矢界公式(4)的核心是5個(gè)函數(shù)P′(t),w(t),w′(t),P(t)和w(t),分別由式(5),式(6),式(8),式(9)和式(11)表示。首先,把P′(t)w(t),w′(t)P(t)和w(t)w(t)分解為簡(jiǎn)單函數(shù)的乘積,結(jié)果如表1所示。

        表1 一階導(dǎo)矢的函數(shù)分解

        然后,把4個(gè)簡(jiǎn)單函數(shù)P′(t),w′(t),P(t),w(t)按照同一行函數(shù)采用相同系數(shù)表達(dá)式的方法歸類(lèi)綜合,結(jié)果如表2所示。

        表2 一階導(dǎo)矢的歸類(lèi)綜合

        最后,根據(jù)表1和表2的結(jié)果,計(jì)算有理Bézier曲線(xiàn)的一階導(dǎo)矢界。

        1.2 有理Bézier曲線(xiàn)的2階導(dǎo)矢界

        由式(2)計(jì)算可得:

        (13)

        和一階導(dǎo)矢界的計(jì)算方法一樣。首先,把w3(t)和R″(t)的分子中每一個(gè)乘積項(xiàng)分解成簡(jiǎn)單函數(shù)的乘積,結(jié)果如表3所示。

        表3 二階導(dǎo)矢的函數(shù)分解

        分解時(shí)須按照簡(jiǎn)單函數(shù)的導(dǎo)矢階數(shù)遞減排列。記

        Δ(wiPi)=wi+1Pi+1-wiPi,Δwi=wi+1-wi,
        Δ2(wiPi)=Δ(wi+1Pi+1-wiPi)=wi+2Pi+2-2wi+1Pi+1+wiPi,
        Δ2wi=Δ(wi+1-wi)=wi+2-2wi+1+wi。

        然后,把簡(jiǎn)單函數(shù)按照同一行函數(shù)采用相同系數(shù)表達(dá)式的方法歸類(lèi)綜合,結(jié)果如表4所示。

        表4 二階導(dǎo)矢的歸類(lèi)綜合

        把表3與表4中的公式代入式(13),得到:

        這里,

        αi,j,k(t)=(1-t)βi,j,k+tγi,j,k,
        βi,j,k=n(n-1)wj[Δ2(wiPi)-Δ2(wiPj)]+2nΔwj[Δ(wiPk)-Δ(wi+1Pi+1)],
        γi,j,k=n(n-1)wj+1[Δ2(wiPi)-Δ2(wiPj+1)]+2n2Δwj[Δ(wi+1Pk)-Δ(wi+1Pi+1)]。

        1.3 有理Bézier曲線(xiàn)的h階導(dǎo)矢界計(jì)算方法

        根據(jù)1.1節(jié)和1.2節(jié)給出的有理Bézier曲線(xiàn)一階、二階導(dǎo)矢界的計(jì)算方法,本文歸納出有理Bézier曲線(xiàn)的h階導(dǎo)矢界(h=1,2,…)的計(jì)算方法。先對(duì)導(dǎo)矢公式中的各項(xiàng)函數(shù)進(jìn)行分解,再對(duì)導(dǎo)矢公式的各項(xiàng)函數(shù)進(jìn)行歸類(lèi)綜合,其計(jì)算方法如下。

        (2)把導(dǎo)矢R(h)(t)的分母w(h+1)(t)和組成分子的所有乘積項(xiàng)按照P(t)導(dǎo)矢階數(shù)從高到低的順序排列在第1張函數(shù)分解表中的第1行,每個(gè)乘積項(xiàng)占據(jù)一列,如表1和表3。

        (3)從第1個(gè)乘積項(xiàng)元素開(kāi)始,每個(gè)乘積項(xiàng)都拆成h+1個(gè)簡(jiǎn)單函數(shù)的乘積,按照導(dǎo)矢階數(shù)從高到低的順序依次排列在該乘積項(xiàng)的同一列,每個(gè)簡(jiǎn)單函數(shù)占據(jù)一行,共占據(jù)第2行到第h+2行。分解時(shí),既要考慮導(dǎo)矢階數(shù)從高到低的排列順序,又要考慮彼此之間的聯(lián)系。比如不同乘積項(xiàng)分解的結(jié)果中,使得處在同一行的簡(jiǎn)單函數(shù)盡可能相同。分解的次序不同,后面導(dǎo)矢界計(jì)算的結(jié)果也會(huì)不同。

        (5)由第2張歸納綜合表和引理1,并考慮到每個(gè)乘積項(xiàng)展開(kāi)式中相同的系數(shù),即可給出R(h)(t)的界。

        1.4 有理Bézier曲線(xiàn)的三階導(dǎo)矢界

        使用1.3節(jié)給出的次有理Bézier曲線(xiàn)的高階導(dǎo)矢界的計(jì)算方法來(lái)計(jì)算有理Bézier曲線(xiàn)的三階導(dǎo)矢界。

        (14)

        首先,把函數(shù)w4(t)和R?(t)的分子中的每一個(gè)乘積項(xiàng)分解成簡(jiǎn)單函數(shù)的乘積,結(jié)果如表5所示。

        表5 三階導(dǎo)矢的函數(shù)分解

        記Δ3(wiPi)=Δ[Δ2(wi+1Pi+1)-Δ2(wiPi)]=wi+3Pi+3-3wi+2Pi+2+3wi+1Pi+1-wiPi,

        Δ3wi=Δ(Δ2wi+1-Δ2wi)=wi+3-3wi+2+3wi+1-wi。

        然后,把簡(jiǎn)單函數(shù)按同一行函數(shù)采用相同系數(shù)表達(dá)式的方法歸類(lèi)綜合,結(jié)果如表6所示。

        表6 三階導(dǎo)矢的歸類(lèi)綜合

        把表5與表6中公式代入式(14),得到:

        這里,

        ξi,j,k,g(t)=(1-t)2λi,j,k,g+(1-t)μi,j,k,g+t2νi,j,k,g,

        ηj,k(t)=[(1-t)wj+twj+1][(1-t)wk+twk+1],

        λi,j,k,g=n(n-1)(n-2)wjwk[Δ3(wiPi)-Δ3(wiPg)]+6n3ΔwjΔwk[Δ(wiPi)-Δ(wiPg)]-

        3n2(n-1)wk[ΔwjΔ2(wiPi)+2ΔwjΔ2(wiPg)+Δ2wiΔ(wjPj)],

        μi,j,k,g=n(n-1)(n-2)(wjwk+1+wj+1wk)[Δ2(wiPi)-Δ3(wiPg)]-

        3n2(n-1)Δ(wjPj)(wk+1Δ2wi+wkΔ2wi+1)+

        3n2(n-1)Δwj[2Δ2(wjwk+1Pg)+2Δ2(wi+1wkPg)-wkΔ2(wi+1Pi+1)-wk+1Δ2(wiPi)]+

        12n3ΔwjΔwk[Δ(wi+1Pi+1)-Δ(wi+1Pg)],

        νi,j,k,g=n(n-1)(n-2)wj+1wk+1[Δ3(wiPi)-Δ3(wiPg)]+

        6n3ΔwjΔwk[Δ(wi+2Pi+2)-Δ(wi+2Pg)]+

        3n2(n-1)wk+1[2ΔwjΔ2(wi+1Pg)+ΔwjΔ2(wi+1Pi+1)-Δ2wi+1Δ(wjPj)]

        2 結(jié)束語(yǔ)

        本文在不等式計(jì)算的基礎(chǔ)上,采用乘積分解之后再歸類(lèi)綜合的方法,提出了一種n次有理Bézier曲線(xiàn)高階導(dǎo)矢界的框架計(jì)算法,并對(duì)文獻(xiàn)[2]中導(dǎo)矢界計(jì)算方法做了進(jìn)一步推廣。但是,隨著導(dǎo)矢階數(shù)的增高,本文算法得出的高階導(dǎo)矢界表達(dá)式變得比較復(fù)雜,如何簡(jiǎn)化導(dǎo)矢界的表達(dá)式是下一步研究的重點(diǎn)。

        猜你喜歡
        有理乘積計(jì)算方法
        浮力計(jì)算方法匯集
        有理 有趣 有深意
        乘積最大
        《有理數(shù)》鞏固練習(xí)
        Dirichlet級(jí)數(shù)及其Dirichlet-Hadamard乘積的增長(zhǎng)性
        圓周上的有理點(diǎn)
        隨機(jī)振動(dòng)試驗(yàn)包絡(luò)計(jì)算方法
        不同應(yīng)變率比值計(jì)算方法在甲狀腺惡性腫瘤診斷中的應(yīng)用
        復(fù)變?nèi)呛瘮?shù)無(wú)窮乘積的若干應(yīng)用
        某些有理群的結(jié)構(gòu)
        99久久精品免费看国产情侣| 精品久久av一区二区| 成人一区二区免费中文字幕视频 | 亞洲綜合無碼av一區二區| 日韩极品视频在线观看免费| 国产一区二区三区在线男友| 亚洲日韩国产一区二区三区| 品色堂永远的免费论坛| AV在线毛片| 国产亚洲精品90在线视频| 一区二区三区av波多野结衣| 2021国产视频不卡在线| 人成视频在线观看免费播放| 一区二区亚洲精品在线| 亚洲а∨精品天堂在线| 亚洲AV秘 片一区二区三| 中文字幕一区二区三区精品在线| 国产精品女老熟女一区二区久久夜| 黑人巨大无码中文字幕无码| 亚洲电影中文字幕| 日本免费三级一区二区 | 天天燥日日燥| 深夜国产成人福利在线观看女同| 国产av自拍在线观看| 亚洲av日韩精品久久久久久a| 国产精品成年片在线观看| 欧美日韩中文字幕日韩欧美| 一本大道久久a久久综合精品| 欧美丰满熟妇bbb久久久| 亚洲精品成人网久久久久久| 亚洲精品日本久久久中文字幕| 免费av网站大全亚洲一区| 人人妻人人澡人人爽精品欧美| 98精品国产综合久久| 国产免费网站在线观看不卡| 久久精品国产亚洲av网站| 国产毛片视频网站| 日本在线观看一区二区三区视频 | 伊人久久婷婷综合五月97色| 中文字幕日韩人妻少妇毛片| 久久综合久久鬼色|