左智科 李一龍
摘 要:為準(zhǔn)確預(yù)測城市自來水供水量,提出采用教與學(xué)優(yōu)化算法(TLBO)優(yōu)化的極限學(xué)習(xí)機(jī)預(yù)測方法。針對(duì)TLBO算法收斂精度低、易陷入局部最優(yōu)的不足,提出一種改進(jìn)的TLBO算法(ITLBO)。在ITLBO中,增加一個(gè)最差學(xué)生補(bǔ)習(xí)階段,通過老師對(duì)該學(xué)生單獨(dú)輔導(dǎo)或者采用一個(gè)反向?qū)W習(xí)策略快速提升學(xué)生成績;在此基礎(chǔ)上,采用一種干擾算子對(duì)老師進(jìn)行擾動(dòng),增強(qiáng)種群跳出局部最優(yōu)的動(dòng)能;最后,將ITLBO算法用于優(yōu)化調(diào)整極限學(xué)習(xí)機(jī)(ELM)模型的輸入權(quán)值和隱層閾值參數(shù),并構(gòu)建ITLBO-ELM自來水供水量預(yù)測模型。將ITLBO-ELM模型用于上海市自來水供水量的預(yù)測實(shí)驗(yàn),仿真結(jié)果表明該模型能夠準(zhǔn)確預(yù)測自來水供水量。
關(guān)鍵詞:預(yù)測;極限學(xué)習(xí)機(jī);教與學(xué)優(yōu)化算法;反向?qū)W習(xí);優(yōu)化
Abstract:In order to predict the total amount of city tap water supply accurately, a predicting method of the extreme learning machine (ELM) optimized by teaching-learning-based optimization was proposed. An improved TLBO algorithm (ITLBO) was proposed to solve the problem of low convergence accuracy and easy to fall into local optimization. In ITLBO, an extra tutoring stage was added for the worst student, and the teacher could help the student individually or adopt the opposition-based learning strategy to quickly improve the student's performance. On this basis, a disturbance operator was used to perturb the teacher position, which increased the kinetic energy of the population to jump out of the local optimum. Finally, the improved ITLBO algorithm was used to optimize and adjust the input weight and hidden threshold parameters of ELM model, and the ITLBO-ELM water supply prediction model was built. ITLBO-ELM model was used to predict the tap water supply in Shanghai. The simulation results show that the model can accurately predict the tap water supply total amount.
Key words: prediction; extreme learning machine; teaching-learning-based optimization; opposition-based learning; optimization
水資源是人類社會(huì)基礎(chǔ)性自然資源。隨著人口規(guī)模和經(jīng)濟(jì)社會(huì)的持續(xù)發(fā)展,工業(yè)與居民自來水用水量增長,導(dǎo)致城市水資源供需矛盾日益激化。用水預(yù)測對(duì)于有效管理供水設(shè)施以滿足城市日益增長的需求至關(guān)重要,準(zhǔn)確預(yù)測城市需水可為供水環(huán)節(jié)優(yōu)化調(diào)度提供重要決策依據(jù)[1-2]。高級(jí)機(jī)器學(xué)習(xí)技術(shù)可用于基于特征的預(yù)測,在水資源需求分析方面應(yīng)用廣泛[3-4]。極限學(xué)習(xí)機(jī)(ELM)是一種單隱層前饋神經(jīng)網(wǎng)絡(luò),是由HUANG Guangbin等[5]根據(jù)Moore-Penrose Pseudoinverse廣義逆矩陣提出的學(xué)習(xí)算法。很多研究者通過優(yōu)化算法確定模型輸入權(quán)重和隱層偏差來提升ELM算法的預(yù)測性能[6-8]。
教與學(xué)優(yōu)化算法(TLBO)是一種元啟發(fā)式優(yōu)化方法[9],具有結(jié)構(gòu)簡單、性能優(yōu)良等特征,在解決許多科學(xué)和工程問題方面表現(xiàn)出卓越的性能[10-11]。為提升ELM算法對(duì)城市自來水供水量預(yù)測的準(zhǔn)確性,筆者采用改進(jìn)的TLBO算法(ITLBO)對(duì)ELM算法中的輸入層權(quán)值和隱層閾值進(jìn)行優(yōu)化調(diào)整,構(gòu)建ITLBO-ELM預(yù)測模型,并以上海市自來水供水量為研究對(duì)象,采用自來水供水量歷史數(shù)據(jù)對(duì)模型進(jìn)行訓(xùn)練、預(yù)測,仿真結(jié)果顯示ITLBO-ELM模型能夠?qū)Τ鞘凶詠硭┧窟M(jìn)行良好預(yù)測。
1 改進(jìn)的教與學(xué)優(yōu)化算法(ITLBO)
1.1 原始TLBO算法
TLBO算法是受教學(xué)過程中老師教學(xué)和學(xué)生學(xué)習(xí)活動(dòng)的啟發(fā)而提出的優(yōu)化算法[12],種群中老師和學(xué)生個(gè)體均為候選解。假設(shè)班級(jí)中共有n個(gè)個(gè)體,其中學(xué)習(xí)成績最好(即適應(yīng)度最佳)的個(gè)體被當(dāng)作老師,其余的為學(xué)生個(gè)體。TLBO具體實(shí)現(xiàn)過程如下[13-14]。
(1)種群初始化。假設(shè)優(yōu)化問題的解空間為s維,將種群中任意個(gè)體Xi=(xi1,xi2,…,xis)采用隨機(jī)方式進(jìn)行初始化:
1.2 ITLBO算法
研究表明,標(biāo)準(zhǔn)TLBO算法在處理部分復(fù)雜優(yōu)化問題時(shí)會(huì)因陷入局部最優(yōu)而表現(xiàn)不佳。為了解決這一問題,提出一種改進(jìn)的TLBO算法(ITLBO)。在ITLBO中,通過增加一個(gè)對(duì)最差學(xué)生補(bǔ)習(xí)階段和一種干擾策略,以增強(qiáng)算法快速收斂和跳出局部最優(yōu)的能力。
在TLBO尋優(yōu)過程中,增加一個(gè)最差學(xué)生補(bǔ)習(xí)階段,針對(duì)班級(jí)中學(xué)習(xí)成績最差的學(xué)生,通過老師單獨(dú)對(duì)該學(xué)生進(jìn)行輔導(dǎo),快速提升學(xué)生知識(shí);在此基礎(chǔ)上,采用一種干擾算子對(duì)老師進(jìn)行擾動(dòng),增強(qiáng)種群跳出局部最優(yōu)的動(dòng)能。
2.2 預(yù)測模型
ELM模型僅需要一步計(jì)算就可求出模型參數(shù),即模型的輸出權(quán)值β-,此時(shí)ELM模型就完成了訓(xùn)練過程。工程實(shí)際應(yīng)用中往往因缺乏經(jīng)驗(yàn)而隨機(jī)給定輸入權(quán)重和隱層閾值,這將影響ELM模型的預(yù)測性能。為建立準(zhǔn)確的自來水供水量預(yù)測模型,筆者提出采用ITLBO算法對(duì)ELM模型的輸入權(quán)重和隱層閾值進(jìn)行優(yōu)化選擇,在獲得最佳的模型參數(shù)基礎(chǔ)上建立ITLBO-ELM自來水供水量預(yù)測模型。ITLBO算法調(diào)整ELM模型參數(shù)核心思想是將城市供水樣本數(shù)據(jù)作為ITLBO-ELM模型的輸入值,ITLBO-ELM模型輸出供水預(yù)測值,將預(yù)測值與實(shí)測值進(jìn)行對(duì)比,ITLBO通過預(yù)測誤差調(diào)整ELM模型參數(shù),直到誤差降到允許值為止。
3 仿真實(shí)驗(yàn)
為驗(yàn)證ITLBO-ELM模型的有效性,以上海市自來水供水量為研究對(duì)象,對(duì)自來水年供水總量進(jìn)行預(yù)測。表1為上海市統(tǒng)計(jì)年鑒1980—2018年自來水供水總量統(tǒng)計(jì)數(shù)據(jù)。選取序號(hào)1~30的樣本數(shù)據(jù)用來訓(xùn)練ITLBO-ELM模型,余下的樣本數(shù)據(jù)用來測試模型的泛化性能。自來水供水量預(yù)測結(jié)果見圖2,可以看出:ELM預(yù)測曲線和ITLBO-ELM預(yù)測曲線幾乎重合,均能對(duì)自來水供水量做出較好預(yù)測,但I(xiàn)TLBO-ELM模型預(yù)測精度優(yōu)于ELM模型。表2為兩種模型的性能指標(biāo)對(duì)比,可以看出:ITLBO-ELM模型的絕對(duì)誤差和相對(duì)誤差明顯小于ELM模型的??梢姡?jīng)過ITLBO算法優(yōu)化的ELM模型性能更優(yōu),能夠更好地預(yù)測城市自來水供水量。
4 結(jié) 論
城市自來水供水量預(yù)測對(duì)于優(yōu)化水資源調(diào)度以及供水管網(wǎng)安全穩(wěn)定運(yùn)行具有重要意義。本文提出了一種優(yōu)化ELM模型的自來水供水量預(yù)測模型,通過改進(jìn)的ITLBO算法優(yōu)化選擇模型參數(shù),提高自來水供水量預(yù)測模型精度。在ITLBO算法中,通過引入補(bǔ)習(xí)階段和反學(xué)習(xí)策略提升最差學(xué)生的成績,并采用干擾算子對(duì)老師位置進(jìn)行干擾,進(jìn)一步提升TLBO算法的全局優(yōu)化性能。改進(jìn)后ITLBO算法用于ELM模型參數(shù)選擇,并建立ITLBO-ELM預(yù)測模型,仿真結(jié)果驗(yàn)證了該模型能夠較好地預(yù)測自來水供水總量。
參考文獻(xiàn):
[1] LI Tianhong, YANG Songnan, TAN Mingxin. Simulation and Optimization of Water Supply and Demand Balance in Shenzhen:A System Dynamics Approach [J]. Journal of Cleaner Production, 2019, 207:882-893.
[2] 朱連勇,雷曉云,文靜. RBF神經(jīng)網(wǎng)絡(luò)在阿拉爾墾區(qū)需水預(yù)測中的應(yīng)用[J].人民黃河,2012,34(7):59-60.
[3] 郭強(qiáng),李文竹,劉心.貝葉斯BP神經(jīng)網(wǎng)絡(luò)的區(qū)間需水預(yù)測方法[J].人民黃河,2018,40(12):76-80.
[4] 牟天蔚,蔣白懿,沈丹玉.深度學(xué)習(xí)框架對(duì)城市日供水量預(yù)測的研究[J].人民黃河,2018,40(9):58-62.
[5] HUANG Guangbin, ZHU Qinyu, CHEE-KHEONG Siew. Extreme Learning Machine: Theory and Applications[J]. Neurocomputing, 2006,70(1-3):489-501.
[6] 邵良杉,李臣浩. 基于改進(jìn)花粉算法的極限學(xué)習(xí)機(jī)分類模型[J].計(jì)算機(jī)工程與應(yīng)用,2020,56(1):172-179.
[7] ZHOU Zhiyu, CHEN Ji, ZHU Zefei. Regularization Incremental Extreme Learning Machine with Random Reduced Kernel for Regression[J]. Neurocomputing,2018,321(12):72-81.
[8] LIU Xia,XU Lin. The Universal Consistency of Extreme Learning Machine[J]. Neurocomputing,2018,311(10):176-182.
[9] RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-Learning-Based Optimization:an Optimization Method for Continuous Non-linear Large Scale Problems[J]. Information Sciences,2012,183(1):1-15.
[10] TSAI Hsing-Chih. Confined Teaching-Learning-Based Optimization with Variable Search Strategies for Continuous Optimization[J]. Information Sciences,2019,500:34-47.
[11] 畢曉君,潘鐵文.基于教與學(xué)優(yōu)化算法的相關(guān)反饋圖像檢索[J].電子學(xué)報(bào),2017,45(7):1668-1676.
[12] ALOK Kumar Shukla, PRADEEP Singh, MANU Vardhan. An Adaptive Inertia Weight Teaching-Learning-Based Optimization Algorithm and its Applications[J]. Applied Mathematical Modelling,2020,77:309-326.
[13] 何杰光,彭志平,崔得龍,等.一種多反向?qū)W習(xí)的教與學(xué)優(yōu)化算法[J].工程科學(xué)與技術(shù),2019,51(6):159-167.
[14] 李麗榮,楊坤,王培崇.融合頭腦風(fēng)暴思想的教與學(xué)優(yōu)化算法[J].計(jì)算機(jī)應(yīng)用,2020,40(9):2677-2682.
[15] 廖康,吳益平,李麟瑋,等.基于時(shí)間序列與GWO-ELM模型的滑坡位移預(yù)測[J].中南大學(xué)學(xué)報(bào)(自然科學(xué)版),2019,50(3):619-626.
【責(zé)任編輯 張華興】