馬彥,朱添麟
(1.吉林大學(xué)通信工程學(xué)院,吉林 長春 130012;2.吉林大學(xué)汽車仿真與控制國家重點實驗室,吉林 長春 130012)
隨著人們對環(huán)境以及能源問題的日益關(guān)注,燃料電池廣泛應(yīng)用在汽車混合動力系統(tǒng)中。燃料電池種類很多,質(zhì)子交換膜(Polymer Electrolyte Membrane,PEM)燃料電池因其高效率、低運行溫度和零排放而被認為是未來電動汽車最有潛力的電源之一[1]。PEM燃料電池系統(tǒng)中,空氣供應(yīng)子系統(tǒng)消耗最多電能,其所需的寄生功率可占PEM燃料電池總輸出功率的25%。因空氣壓縮機和空氣供應(yīng)管道動力學(xué)特性,在供應(yīng)空氣時有時間延遲。負載電流階躍上升,較大時間延遲可能會導(dǎo)致電堆陰極中氧氣短缺,電池輸出電壓下降和電池堆陰極被淹沒,這會縮短PEM燃料電池使用壽命;空氣供應(yīng)量過高,空氣壓縮機會消耗過多功率,降低了系統(tǒng)的凈輸出功率[2]。電堆陰極壓力也影響燃料電池系統(tǒng)電壓[3]。陰極壓力逐漸增大,水蒸發(fā)速率將會減小,質(zhì)子交換膜含水量增加,質(zhì)子傳遞速度加快,燃料電池內(nèi)部電化學(xué)反應(yīng)變劇烈,燃料電池電壓升高。不斷提高陰極壓力,擴散層中的水含量逐漸上升,有效的孔隙率降低,燃料電池電壓緩慢變化[4]。
在空氣供應(yīng)系統(tǒng)模型研究方面,Pukrushpan基于PEM燃料電池系統(tǒng)機理建立了系統(tǒng)級的九階非線性系統(tǒng)模型,將電堆陰陽兩極的流體動態(tài)特性加進模型中。由于該模型有九個狀態(tài)變量,基于模型的控制器的實現(xiàn)會更加復(fù)雜[5]。在此基礎(chǔ)上,K. W. Suh通過合理的假設(shè),建立了空氣供應(yīng)系統(tǒng)四階模型,并利用文獻[5]進行模型精度驗證[6]。Talj通過用電堆陰極壓力代替空氣供應(yīng)系統(tǒng)四階模型中的氧氣和氮氣的分壓,建立了簡化的空氣供應(yīng)系統(tǒng)三階模型[7]。Zhao dongdong將文獻[5]中回流管道固定開度的背壓閥替換成可調(diào)開度的背壓閥,控制背壓閥的開度來調(diào)節(jié)電堆陰極壓力,建立了面向過氧比與電堆陰極壓力控制的六階多輸入多輸出模型[8]。
在空氣供應(yīng)系統(tǒng)控制方法研究方面,W. Ki Na利用簡化的燃料電池電堆模型,設(shè)計了反饋線性化的非線性控制器來調(diào)節(jié)電堆陰陽兩極壓力,但是忽略了空氣供應(yīng)系統(tǒng)模型及系統(tǒng)存在的參數(shù)不確定性,這會對系統(tǒng)性能有很大影響[9]。馬彥在考慮了空氣壓縮機電壓以及過氧比的約束條件下,應(yīng)用模型預(yù)測控制對燃料電池空氣供應(yīng)系統(tǒng)進行控制與試驗驗證,在負載小范圍變化時取得較好控制效果[10]。F. Zhang使用非線性三步控制方法對空氣供給系統(tǒng)過氧比進行調(diào)節(jié),同時添加輔助電源來避免過氧比下沖過大,通過試驗證明該控制方法的有效性[11]。Zhao dongdong使用分數(shù)階PID控制方法實現(xiàn)了對期望的過氧比與陰極壓力的跟蹤控制,結(jié)果表明系統(tǒng)參數(shù)變化影響控制效果[8]。
本研究針對PEM燃料電池空氣供應(yīng)系統(tǒng)的過氧比和陰極壓力的控制進行了如下研究:1)建立PEM燃料電池空氣供應(yīng)系統(tǒng)多輸入多輸出模型;2)考慮模型在實際運行過程中存在的參數(shù)不確定性,設(shè)計了微分觀測器觀測不可直接測量的電堆陰極壓力,同時設(shè)計了非線性魯棒控制器實現(xiàn)期望過氧比和陰極壓力的跟蹤控制;3)仿真試驗驗證模型精度及控制策略的有效性。
PEM燃料電池進氣系統(tǒng)是由空氣供應(yīng)子系統(tǒng)和氫氣供應(yīng)子系統(tǒng)組成,系統(tǒng)結(jié)構(gòu)見圖1。空氣供應(yīng)子系統(tǒng)由空氣壓縮機、空氣供應(yīng)管道(含加濕冷卻器)、電堆陰極、回流管道(背壓閥)等裝置組成[6]。以下對空氣供應(yīng)子系統(tǒng)各部分進行機理分析。
圖1 PEM燃料電池進氣系統(tǒng)結(jié)構(gòu)
空氣壓縮機是由轉(zhuǎn)矩所控制的永磁同步電機驅(qū)動,用于向燃料電池系統(tǒng)的電堆陰極提供氧氣。壓縮機角速度wcp動態(tài)模型為
(1)
式中:Jcp為空氣壓縮機轉(zhuǎn)動慣量;τcm和τcp分別為電機電磁力矩和空氣壓縮機負載轉(zhuǎn)矩。τcm和τcp表達式如下:
(2)
(3)
式中:kt,Rcm和kv為空氣壓縮機機械系數(shù);ηcm為電機機械效率;vcm為空氣壓縮機輸入電壓;Cp為空氣的比熱容;γ為空氣比熱系數(shù);ηcp為空氣壓縮機效率;psm為空氣供應(yīng)管道壓力;Tatm和patm分別為空氣壓縮機入口空氣溫度以及壓力;Wcp為離開空氣壓縮機的空氣質(zhì)量流量。
空氣供應(yīng)管道為空氣壓縮機和冷卻加濕器以及電堆陰極之間管道的集總部分。由理想氣體定律、能量守恒定律以及空氣熱力學(xué),可得空氣供應(yīng)管道壓力psm表達式:
(4)
(5)
離開壓縮機時空氣溫度Tcp為
(6)
由質(zhì)量與能量守恒原理,可得陰極內(nèi)部氧氣壓力pO2和氮氣壓力pN2表達式:
(7)
(8)
回流管道是電堆陰極出口處與外界空氣之間的管道,包含背壓閥?;亓鞴艿滥P涂捎少|(zhì)量守恒以及理想氣體定律求出,表達式為
(9)
式中:Trm,Vrm和Wrm.out分別為回流管道的溫度、體積和出口處質(zhì)量流量。
Wrm.out可由非線性的噴嘴方程求出:
(10)
式中:CD,AT分別為回流管道中背壓閥的閥門因數(shù)、閥門面積;θ為閥門開度,閥門開度范圍在0~1。
(11)
式中:u1為回流管道的背壓閥閥門開度;u2為空氣壓縮機控制電壓;d為可測的負載電流;狀態(tài)量x1為電堆陰極壓力pca;x2為回流管道壓力prm;x3為空氣壓縮機轉(zhuǎn)速wcp;x4為空氣供應(yīng)管道壓力psm;ci(i=1,…16)是常數(shù),如附錄A所示。
PEM燃料電池系統(tǒng)過氧比λO2定義為[5]
(12)
式中:WO2,in和WO2,react分別為電堆陰極內(nèi)部氧氣進氣量和電化學(xué)反應(yīng)消耗氧氣量;c17和c18是常數(shù),如附錄A所示。當λO2小于1時,燃料電池系統(tǒng)將會出現(xiàn)氧缺乏現(xiàn)象,當λO2較大時,空氣壓縮機消耗功率過高,本文參考文獻[5]、文獻[12]和文獻[13],選取過氧比期望值為2。
陰極壓力影響燃料電池電壓(見圖2)。燃料電池系統(tǒng)在實際運行時電堆電流密度通常在0.5~1.3 A/cm2區(qū)間內(nèi),電堆陰極壓力為200 000 Pa與陰極壓力為250 000 Pa條件下,燃料電池單體輸出電壓接近。當陰極壓力小于200 000 Pa時,燃料電池電壓明顯增加,當陰極壓力大于200 000 Pa時,燃料電池電壓提高明顯變慢,同時極化損失會相對增加。在考慮系統(tǒng)性能和極化損失情況下,陰極壓力期望值200 000 Pa時電池性能得到改善[4]。
圖2 不同陰極壓力下,電流密度與單體電池電壓曲線
為了跟蹤系統(tǒng)期望的過氧比和電堆陰極壓力,需要空氣壓縮機和回流管道背壓閥協(xié)調(diào)控制。由于存在干擾負載電流d,對過氧比微分會使控制器設(shè)計更復(fù)雜??啥x虛擬輸出
(13)
圖3 系統(tǒng)結(jié)構(gòu)
x4是可測量的狀態(tài)變量,而在燃料電池堆內(nèi)部濕氣流環(huán)境下,使用傳感器進行電堆陰極壓力x1測量困難。為了能得到控制輸出,需設(shè)計觀測器估計電堆陰極壓力x1。因此,可使用狀態(tài)觀測器替代物理傳感器,得到不可測電堆陰極壓力。通過調(diào)整式(11)中空氣供應(yīng)管道壓力狀態(tài)方程,得到電堆陰極壓力x1的表達式:
(14)
電堆陰極壓力可通過空氣壓縮機轉(zhuǎn)速和空氣供應(yīng)管道壓力,以及空氣供應(yīng)管道壓力微分計算得到??諝夤?yīng)管道壓力可通過傳感器得到,但其微分信號無法通過物理方法來獲得。用數(shù)學(xué)微分器通過已知狀態(tài)來獲取其微分信號是有必要的[14]。蒲明提出采用Terminal吸引子函數(shù)代替符號函數(shù)的微分觀測器,具有快速收斂的特性和強大的魯棒性[15]。文中構(gòu)造的觀測器結(jié)構(gòu)如下所示:
(15)
(16)
(17)
通過對系統(tǒng)進行反饋線性化,使電堆陰極壓力通道和空氣供應(yīng)管道與電堆陰極之間壓力差通道解耦成線性模型,對兩個通道的線性標稱模型分別進行標稱控制器的設(shè)計,使標稱線性的閉環(huán)控制系統(tǒng)具有期望輸出特性。文中標稱控制設(shè)計為狀態(tài)反饋控制??紤]到基于反饋線性化的標稱控制器不能去處理參數(shù)不確定性和外界的擾動等對閉環(huán)系統(tǒng)影響,所以在已進行標稱控制器設(shè)計后的閉環(huán)系統(tǒng)基礎(chǔ)上設(shè)計了魯棒補償器。最后,將狀態(tài)反饋控制器與魯棒補償器結(jié)合構(gòu)成了非線性系統(tǒng)魯棒控制器。
(18)
(19)
(20)
2.2.1反饋線性化控制設(shè)計
反饋線性化控制是對線性標稱模型進行的控制器設(shè)計,是對被控系統(tǒng)進行的狀態(tài)反饋控制。
(21)
由此得出狀態(tài)反饋矩陣ki.FB,這里i=1,2,進而得到以下控制律:
(22)
對于被控系統(tǒng),確定出狀態(tài)反饋矩陣ki.FB,使得閉環(huán)系統(tǒng)為
(23)
進行傅里葉變換后為
(s2+k1.FB.2s+k1.FB.1)E1(s)=0,
(24)
(s2+k2.FB.2s+k2.FB.1)E2(s)=0。
(25)
合理調(diào)節(jié)參數(shù)ki.FB(i=1,2),滿足k1.FB.22?4k1.FB.1,k2.FB.22?4k2.FB.1,使式(24)和式(25)中所有根的實部是負數(shù),或者實部是負數(shù)的復(fù)數(shù),保證了標稱閉環(huán)系統(tǒng)穩(wěn)定性[16]。
2.2.2魯棒補償器設(shè)計
在對非線性系統(tǒng)控制器進行設(shè)計的過程中,不僅僅需要考慮模型非線性以及多變量耦合等因素帶來的影響,還需要考慮系統(tǒng)中多種不確定性所帶來的影響。系統(tǒng)的不確定性包含參數(shù)結(jié)構(gòu)不確定性以及無法得知的未建模動態(tài),本研究把這些不確定性都統(tǒng)一稱之為等價擾動。存在的等價擾動會使所建立數(shù)學(xué)模型與真實的控制對象之間有差異,這會影響系統(tǒng)非線性控制。所以為了能夠保證設(shè)計的非線性閉環(huán)系統(tǒng)性能穩(wěn)定,需設(shè)計魯棒補償器來減小等價擾動帶來的影響[17]。文中未給出不確定項的表達式,這里將這些不確定性的項歸總為等價擾動,這些不確定性范數(shù)有界,設(shè)計的魯棒補償器可減小等價擾動對閉環(huán)系統(tǒng)的影響。在進行反饋線性化控制后,閉環(huán)系統(tǒng)為
(26)
電堆陰極壓力通道和空氣供應(yīng)管道與電堆陰極之間的壓力差通道的傳遞函數(shù)Gi(s)(i=1,2)可表示為
(27)
式中:s是拉普拉斯算子。結(jié)合等式(26),得到以下系統(tǒng)輸入輸出關(guān)系:
(28)
設(shè)計的魯棒補償器為
(29)
和ω2足夠大,則濾波器增益接近1,可減小Δi(i=1,2)對閉環(huán)控制系統(tǒng)影響。但Δi(i=1,2)具體值卻無法得到,在忽略Ei(0)(i=1,2)時,可得到:
(30)
進而可得到Δi(i=1,2)表達式:
(31)
最后,結(jié)合式(29)和式(31),可得到不包括不確定項Δi(i=1,2)的魯棒補償輸入:
vi.RC(s)=
-(1-fi(s))-1fi(s)Gi-1(s)Yi(s),i=1,2。
(32)
文獻[5]中Pukrushpan九階模型是經(jīng)典的燃料電池系統(tǒng)級非線性模型,文獻[7]、文獻[13]和文獻[18]用其針對改進的空氣供應(yīng)系統(tǒng)模型進行驗證。為了驗證本研究建立的模型以及微分觀測器的效果,在MATLAB/Simulink中構(gòu)建了空氣供應(yīng)系統(tǒng)模型。在負載電流、空氣壓縮機控制電壓以及回流管道背壓閥閥門開度都相同的條件下,與文獻[5]中Pukrushpan模型進行可測輸出的空氣壓縮機轉(zhuǎn)速與空氣供應(yīng)管道壓力比較,仿真參數(shù)見附錄B。圖4a示出給定的負載電流曲線,圖4b和圖4c分別示出空壓機轉(zhuǎn)速與空氣供應(yīng)管道壓力響應(yīng)曲線。由圖4b和圖4c仿真曲線可見,在仿真時間里Pukrushpan模型與本研究模型的輸出曲線變化趨勢相同,且最大的相對誤差小于8%,而且存在的建模誤差會在控制器設(shè)計過程中進行補償,因此可基于本研究模型進行后續(xù)觀測器和控制器的設(shè)計。
圖4 Pukrushpan模型與本研究模型輸出曲線對比
燃料電池空氣供應(yīng)系統(tǒng)中部分參數(shù)會在長時間運行過程中發(fā)生變化,參數(shù)調(diào)節(jié)為λ0.1=100,λ0.2=106,λ1.1=220,λ1.2=12.5,terminal吸引因子參數(shù)為l1=5,l2=7。圖5示出系統(tǒng)參數(shù)在額定值附近變化(見表1)時的電堆陰極壓力響應(yīng)曲線和觀測器誤差曲線。觀測值在實際值附近抖動,尤其是在負載電流階躍變化時陰極壓力觀測誤差變大,但電堆陰極壓力的觀測誤差在±500 Pa范圍內(nèi)。觀測精度低于0.3%且所設(shè)計的微分觀測器抗干擾能力強,驗證了所設(shè)計的微分觀測器的魯棒性和有效性。
圖5 電堆陰極壓力觀測和誤差曲線
表1 PEM燃料電池系統(tǒng)參數(shù)變化
圖6 不同控制器下過氧比響應(yīng)曲線
圖7 不同控制器下陰極壓力響應(yīng)曲線
建立了面向過氧比與電堆陰極壓力控制的PEM燃料電池空氣供應(yīng)系統(tǒng)多輸入多輸出模型,并進行了模型驗證;在模型參數(shù)不確定時,采用微分觀測器能夠快速觀測電堆陰極壓力,最大觀測誤差小,表明微分觀測器具有魯棒性;對空氣供應(yīng)系統(tǒng)模型中電堆陰極壓力與過氧比通道進行了解耦并分別設(shè)計了非線性魯棒控制器,所設(shè)計的控制方法能夠減小系統(tǒng)模型誤差以及參數(shù)不確定性對PEM燃料電池空氣供應(yīng)系統(tǒng)控制的影響。該控制方法計算量小,在實際中可根據(jù)情況調(diào)節(jié)魯棒補償器參數(shù),直至達到系統(tǒng)期望跟蹤性能,表明了所設(shè)計的非線性魯棒控制器的有效性和實際可操作性。
文中未給出系統(tǒng)不確定性的表達式,可對系統(tǒng)不確定性進一步研究;文中過氧比與電堆陰極壓力期望值為定值,在后續(xù)研究中會根據(jù)實際負載電流進行期望值尋優(yōu);建立的模型是用Pukrushpan模型進行驗證,后續(xù)研究應(yīng)在PEM燃料電池試驗臺架進行驗?zāi):涂刂破餍Ч炞C。