亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        關(guān)于Euler函數(shù)φ(n)的一個(gè)四元變系數(shù)混合方程的解

        2021-01-21 07:49:48張四保
        關(guān)鍵詞:正整數(shù)對(duì)稱性定理

        張四保

        (喀什大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,新疆 喀什 844008)

        Euler函數(shù)φ(n)是數(shù)論中一個(gè)重要的函數(shù)[1-2],其性質(zhì)在數(shù)論中占有非常重要的地位.包含Euler函數(shù)φ(n)的方程的研究?jī)?nèi)容眾多,文獻(xiàn)[3-6]討論了形如φ(x1x2…xn)=k1φ(x1)+k2φ(x2)+…+knφ(xn)的線性方程整數(shù)解問(wèn)題;文獻(xiàn)[7-10]討論了形如φ(x1x2…xn)=k1φ(x1)+k2φ(x2)+…+knφ(xn)+b的非線性方程整數(shù)解問(wèn)題.文獻(xiàn)[11]給出了三元變系數(shù)混合型方程φ(abc)=2φ(a)φ(b)+6φ(c)的全部95組正整數(shù)解;文獻(xiàn)[12]給出了混合型方程φ(abc)=2φ(a)φ(b)+8φ(c)的全部95組正整數(shù)解.本文將討論關(guān)于Euler函數(shù)φ(n)的一個(gè)四元變系數(shù)混合方程

        φ(xyzw)=3φ(x)φ(y)+5φ(z)φ(w)

        (1)

        的正整數(shù)解,利用Euler函數(shù)φ(n)的計(jì)算公式以及初等方法給出了其一切正整數(shù)解.

        1 定理及其證明

        定理1方程(1)共有372組正整數(shù)解,并且其滿足x≤y,z≤w的93組正整數(shù)解如下:(x,y,z,w)=(1,7,1,19),(1,7,1,27),(1,7,1,38),(1,7,1,54),(1,7,2,19),(1,7,2,27),(1,9,1,19),(1,9,1,38),(1,9,2,19),(1,14,1,19),(1,14,1,27),(1,18,1,19),(2,7,1,19),(2,7,1,27),(2,9,1,19),(1,15,1,16),(1,16,1,15),(3,5,1,16),(1,16,3,5),(1,11,1,7),(1,11,1,9),(1,11,1,14),(1,11,1,18),(1,11,2,7),(1,11,2,9),(1,22,1,7),(1,22,1,9),(2,11,1,7),(2,11,1,9),(1,25,1,8),(1,25,1,12),(1,33,1,5),(1,33,1,8),(1,33,1,10),(1,33,2,5),(1,44,1,5),(1,66,1,5),(2,33,1,5),(1,25,3,4),(3,11,1,5),(3,11,1,8),(3,11,1,10),(3,11,2,5),(3,22,1,5),(4,11,1,5),(1,5,2,8),(1,5,2,12),(1,8,1,8),(1,8,1,10),(1,8,1,12),(1,8,2,5),(1,10,1,8),(1,10,1,12),(1,12,1,8),(1,12,1,10),(1,12,2,5),(2,5,1,8),(2,5,1,12),(2,8,1,5),(2,12,1,5),(1,5,4,4),(1,5,4,6),(1,8,3,4),(1,10,3,4),(2,5,3,4),(3,4,1,8),(3,4,1,10),(3,4,2,5),(4,4,1,5),(4,6,1,5),(1,11,2,4),(1,11,2,6),(1,22,1,4),(1,22,1,6),(1,22,2,3),(2,11,1,4),(2,11,1,6),(2,11,2,3),(2,22,1,3),(1,3,2,18),(1,6,1,18),(1,6,2,9),(2,3,1,18),(2,3,2,9),(2,6,1,9),(1,4,2,4),(1,4,2,6),(1,6,2,4),(2,3,2,4),(2,4,1,4),(2,4,1,6),(2,4,2,3),(2,6,1,4).

        證明由于n≥φ(n),則有

        3φ(x)φ(y)+5φ(z)φ(w))≤

        8φ(x)φ(y)φ(z)φ(w),

        進(jìn)而有

        F(x,y,z,w)=

        說(shuō)明由于當(dāng)n≥3時(shí),有φ(n)為偶數(shù),因而下文在討論的過(guò)程中,若φ(x)φ(y)或φ(z)φ(w)為大于1的奇數(shù)的情況都不予考慮.

        情況1當(dāng)F(x,y,z,w)=1時(shí).

        此時(shí),有(xy,zw)=1,(x,y)=(z,w)=1,由方程(1)有φ(x)φ(y)φ(z)φ(w)=3φ(x)φ(y)+5φ(z)φ(w),則有

        因而有φ(x)φ(y)=6,φ(z)φ(w)=18;φ(x)φ(y)=8,φ(z)φ(w)=8;φ(x)φ(y)=10,φ(z)φ(w)=6;φ(x)φ(y)=20,φ(z)φ(w)=4.

        情況1.1當(dāng)φ(x)φ(y)=6,φ(z)φ(w)=18時(shí),有φ(x)=1,φ(y)=6,φ(z)=1,φ(w)=18;φ(x)=1,φ(y)=6,φ(z)=18,φ(w)=1;φ(x)=6,φ(y)=1,φ(z)=1,φ(w)=18;φ(x)=6,φ(y)=1,φ(z)=18,φ(w)=1.

        當(dāng)φ(x)=1,φ(y)=6,φ(z)=1,φ(w)=18,此時(shí)有x=1,2,y=7,9,14,18,z=1,2,w=19,27,38,54,此時(shí)方程(1)有解(x,y,z,w)=(1,7,1,19),(1,7,1,27),(1,7,1,38),(1,7,1,54),(1,7,2,19),(1,7,2,27),(1,9,1,19),(1,9,1,38),(1,9,2,19),(1,14,1,19),(1,14,1,27),(1,18,1,19),(2,7,1,19),(2,7,1,27),(2,9,1,19).

        在方程(1)中,x與y具有對(duì)稱性,z與w具有對(duì)稱性,由對(duì)稱性可知當(dāng)φ(x)=1,φ(y)=6,φ(z)=18,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(1,7,19,1),(1,7,27,1),(1,7,38,1),(1,7,54,1),(1,7,19,2),(1,7,27,2),(1,9,19,1),(1,9,38,1),(1,9,19,2),(1,14,19,1),(1,14,27,1),(1,18,19,1),(2,7,19,1),(2,7,27,1),(2,9,19,1);當(dāng)φ(x)=6,φ(y)=1,φ(z)=1,φ(w)=18時(shí),方程(1)有解(x,y,z,w)=(7,1,1,19),(7,1,1,27),(7,1,1,38),(7,1,1,54),(7,1,2,19),(7,1,2,27),(9,1,1,19),(9,1,1,38),(9,1,2,19),(14,1,1,19),(14,1,1,27),(18,1,1,19),(7,2,1,19),(7,2,1,27),(9,2,1,19);當(dāng)φ(x)=6,φ(y)=1,φ(z)=18,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(7,1,19,1),(7,1,27,1),(7,1,38,1),(7,1,54,1),(7,1,19,2),(7,1,27,2),(9,1,19,1),(9,1,38,1),(9,1,19,2),(14,1,19,1),(14,1,27,1),(18,1,19,1),(7,2,19,1),(7,2,27,1),(9,2,19,1).

        情況1.2當(dāng)φ(x)φ(y)=8,φ(z)φ(w)=8時(shí),有φ(x)=1,φ(y)=8,φ(z)=1,φ(w)=8;φ(x)=1,φ(y)=8,φ(z)=8,φ(w)=1;φ(x)=8,φ(y)=1,φ(z)=1,φ(w)=8;φ(x)=8,φ(y)=1,φ(z)=8,φ(w)=1;φ(x)=2,φ(y)=4,φ(z)=1,φ(w)=8;φ(x)=2,φ(y)=4,φ(z)=8,φ(w)=1;φ(x)=4,φ(y)=2,φ(z)=1,φ(w)=8;φ(x)=4,φ(y)=2,φ(z)=8,φ(w)=1;φ(x)=1,φ(y)=8,φ(z)=2,φ(w)=4;φ(x)=1,φ(y)=8,φ(z)=4,φ(w)=2;φ(x)=8,φ(y)=1,φ(z)=2,φ(w)=4;φ(x)=8,φ(y)=1,φ(z)=4,φ(w)=2;φ(x)=2,φ(y)=4,φ(z)=2,φ(w)=4;φ(x)=2,φ(y)=4,φ(z)=4,φ(w)=2;φ(x)=4,φ(y)=2,φ(z)=2,φ(w)=4;φ(x)=4,φ(y)=2,φ(z)=4,φ(w)=2.

        當(dāng)φ(x)=1,φ(y)=8,φ(z)=1,φ(w)=8時(shí),有x=1,2,y=w=15,16,20,24,30,z=1,2,此時(shí)方程(1)有解(x,y,z,w)=(1,15,1,16),(1,16,1,15).由對(duì)稱性可得當(dāng)φ(x)=1,φ(y)=8,φ(z)=8,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(1,15,16,1),(1,16,15,1);當(dāng)φ(x)=8,φ(y)=1,φ(z)=1,φ(w)=8時(shí),方程(1)有解(x,y,z,w)=(15,1,1,16),(16,1,1,15);當(dāng)φ(x)=8,φ(y)=1,φ(z)=8,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(15,1,16,1),(16,1,15,1).

        當(dāng)φ(x)=2,φ(y)=4,φ(z)=1,φ(w)=8時(shí),有x=3,4,6,y=5,8,10,12,z=1,2,w=15,16,20,24,30,此時(shí)方程(1)有解(x,y,z,w)=(3,5,1,16).由對(duì)稱性可得當(dāng)φ(x)=2,φ(y)=4,φ(z)=8,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(3,5,16,1);當(dāng)φ(x)=4,φ(y)=2,φ(z)=1,φ(w)=8時(shí),方程(1)有解(x,y,z,w)=(5,3,1,16);當(dāng)φ(x)=4,φ(y)=2,φ(z)=8,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(5,3,16,1).

        當(dāng)φ(x)=1,φ(y)=8,φ(z)=2,φ(w)=4時(shí),有x=1,2,y=15,16,20,24,30,z=3,4,6,w=5,8,10,12,此時(shí)方程(1)有解(x,y,z,w)=(1,16,3,5).由對(duì)稱性可得當(dāng)φ(x)=1,φ(y)=8,φ(z)=4,φ(w)=2時(shí),方程(1)有解(x,y,z,w)=(1,16,5,3);當(dāng)φ(x)=8,φ(y)=1,φ(z)=2,φ(w)=4時(shí),方程(1)有解(x,y,z,w)=(16,1,3,5);當(dāng)φ(x)=8,φ(y)=1,φ(z)=4,φ(w)=2時(shí),方程(1)有解(x,y,z,w)=(16,1,5,3);

        當(dāng)φ(x)=2,φ(y)=4,φ(z)=2,φ(w)=4時(shí),有x=z=3,4,6,y=w=5,8,10,12,此時(shí)方程(1)無(wú)正整數(shù)解.由對(duì)稱性可得當(dāng)φ(x)=2,φ(y)=4,φ(z)=4,φ(w)=2與φ(x)=4,φ(y)=2,φ(z)=2,φ(w)=4與φ(x)=4,φ(y)=2,φ(z)=4,φ(w)=2時(shí),方程(1)無(wú)正整數(shù)解.

        情況1.3當(dāng)φ(x)φ(y)=10,φ(z)φ(w)=6時(shí),有φ(x)=1,φ(y)=10,φ(z)=1,φ(w)=6;φ(x)=1,φ(y)=10,φ(z)=6,φ(w)=1;φ(x)=10,φ(y)=1,φ(z)=1,φ(w)=6;φ(x)=10,φ(y)=1,φ(z)=6,φ(w)=1.

        當(dāng)φ(x)=1,φ(y)=10,φ(z)=1,φ(w)=6時(shí),有x=1,2,y=11,22,z=1,2,w=7,9,14,18,此時(shí)方程(1)有解(x,y,z,w)=(1,11,1,7),(1,11,1,9),(1,11,1,14),(1,11,1,18),(1,11,2,7),(1,11,2,9),(1,22,1,7),(1,22,1,9),(2,11,1,7),(2,11,1,9).由對(duì)稱性可得當(dāng)φ(x)=1,φ(y)=10,φ(z)=6,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(1,11,7,1),(1,11,9,1),(1,11,14,1),(1,11,18,1),(1,11,7,2),(1,11,9,2),(1,22,7,1),(1,22,9,1),(2,11,7,1),(2,11,9,1);當(dāng)φ(x)=10,φ(y)=1,φ(z)=1,φ(w)=6時(shí),方程(1)有解(x,y,z,w)=(11,1,1,7),(11,1,1,9),(11,1,1,14),(11,1,1,18),(11,1,2,7),(11,1,2,9),(22,1,1,7),(22,1,1,9),(11,2,1,7),(11,2,1,9);當(dāng)φ(x)=10,φ(y)=1,φ(z)=6,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(11,1,7,1),(11,1,9,1),(11,1,14,1),(11,1,18,1),(11,1,7,2),(11,1,9,2),(22,1,7,1),(22,1,9,1),(11,2,7,1),(11,2,9,1).

        情況1.4當(dāng)φ(x)φ(y)=20,φ(z)φ(w)=4時(shí),有φ(x)=1,φ(y)=20,φ(z)=1,φ(w)=4;φ(x)=1,φ(y)=20,φ(z)=4,φ(w)=1;φ(x)=20,φ(y)=1,φ(z)=1,φ(w)=4;φ(x)=20,φ(y)=1,φ(z)=4,φ(w)=1;φ(x)=1,φ(y)=20,φ(z)=2,φ(w)=2;φ(x)=20,φ(y)=1,φ(z)=2,φ(w)=2;φ(x)=2,φ(y)=10,φ(z)=1,φ(w)=4;φ(x)=2,φ(y)=10,φ(z)=4,φ(w)=1;φ(x)=10,φ(y)=2,φ(z)=1,φ(w)=4;φ(x)=10,φ(y)=2,φ(z)=4,φ(w)=1;φ(x)=2,φ(y)=10,φ(z)=2,φ(w)=2;φ(x)=10,φ(y)=2,φ(z)=2,φ(w)=2.

        當(dāng)φ(x)=1,φ(y)=20,φ(z)=1,φ(w)=4時(shí),有x=1,2,y=25,33,44,50,66,z=1,2,w=5,8,10,12,此時(shí)方程(1)有解(x,y,z,w)=(1,25,1,8),(1,25,1,12),(1,33,1,5),(1,33,1,8),(1,33,1,10),(1,33,2,5),(1,44,1,5),(1,66,1,5),(2,33,1,5).由對(duì)稱性可得當(dāng)φ(x)=1,φ(y)=20,φ(z)=4,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(1,25,8,1),(1,25,12,1),(1,33,5,1),(1,33,8,1),(1,33,10,1),(1,33,5,2),(1,44,5,1),(1,66,5,1),(2,33,5,1);當(dāng)φ(x)=20,φ(y)=1,φ(z)=1,φ(w)=4時(shí),方程(1)有解(x,y,z,w)=(25,1,1,8),(25,1,1,12),(33,1,1,5),(33,1,1,8),(33,1,1,10),(33,1,2,5),(44,1,1,5),(66,1,1,5),(33,2,1,5);當(dāng)φ(x)=20,φ(y)=1,φ(z)=4,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(25,1,8,1),(25,1,12,1),(33,1,5,1),(33,1,8,1),(33,1,10,1),(33,1,5,2),(44,1,5,1),(66,1,5,1),(33,2,5,1).

        當(dāng)φ(x)=1,φ(y)=20,φ(z)=2,φ(w)=2時(shí),有x=1,2,y=25,33,44,50,66,z=w=3,4,6,此時(shí)方程(1)有解(x,y,z,w)=(1,25,3,4),(1,25,4,3).由對(duì)稱性可得當(dāng)φ(x)=20,φ(y)=1,φ(z)=2,φ(w)=2時(shí),方程(1)有解(x,y,z,w)=(25,1,3,4),(25,1,4,3).

        當(dāng)φ(x)=2,φ(y)=10,φ(z)=1,φ(w)=4時(shí),有x=3,4,6,y=11,22,z=1,2,w=5,8,10,12,此時(shí)方程(1)有解(x,y,z,w)=(3,11,1,5),(3,11,1,8),(3,11,1,10),(3,11,2,5),(3,22,1,5),(4,11,1,5),(6,11,1,5).由對(duì)稱性可得當(dāng)φ(x)=2,φ(y)=10,φ(z)=4,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(3,11,5,1),(3,11,8,1),(3,11,10,1),(3,11,5,2),(3,22,5,1),(4,11,5,1),(6,11,5,1);當(dāng)φ(x)=10,φ(y)=2,φ(z)=1,φ(w)=4時(shí),方程(1)有解(x,y,z,w)=(11,3,1,5),(11,3,1,8),(11,3,1,10),(11,3,2,5),(22,3,1,5),(11,4,1,5),(11,6,1,5);當(dāng)φ(x)=10,φ(y)=2,φ(z)=4,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(11,3,5,1),(11,3,8,1),(11,3,10,1),(11,3,5,2),(22,3,5,1),(11,4,5,1),(11,6,5,1).

        當(dāng)φ(x)=2,φ(y)=10,φ(z)=2,φ(w)=2時(shí),有x=z=w=3,4,6,y=11,22,此時(shí)方程(1)無(wú)正整數(shù)解解.由對(duì)稱性可得當(dāng)φ(x)=10,φ(y)=2,φ(z)=2,φ(w)=2時(shí),方程(1)無(wú)正整數(shù)解.

        情況2當(dāng)F(x,y,z,w)=2時(shí).

        情況2.1當(dāng)φ(x)φ(y)=4,φ(z)φ(w)=4時(shí),有φ(x)=1,φ(y)=4,φ(z)=1,φ(w)=4;φ(x)=1,φ(y)=4,φ(z)=4,φ(w)=1;φ(x)=4,φ(y)=1,φ(z)=1,φ(w)=4;φ(x)=4,φ(y)=1,φ(z)=4,φ(w)=1;φ(x)=1,φ(y)=4,φ(z)=2,φ(w)=2;φ(x)=4,φ(y)=1,φ(z)=2,φ(w)=2;φ(x)=2,φ(y)=2,φ(z)=1,φ(w)=4;φ(x)=2,φ(y)=2,φ(z)=4,φ(w)=1;φ(x)=2,φ(y)=2,φ(z)=2,φ(w)=2.

        當(dāng)φ(x)=1,φ(y)=4,φ(z)=1,φ(w)=4時(shí),有x=z=1,2,y=w=5,8,10,12,此時(shí)方程(1)有解(x,y,z,w)=(1,5,2,8),(1,5,2,12),(1,8,1,8),(1,8,1,10),(1,8,1,12),(1,8,2,5),(1,10,1,8),(1,10,1,12),(1,12,1,8),(1,12,1,10),(1,12,2,5),(2,5,1,8),(2,5,1,12),(2,8,1,5),(2,12,1,5).由對(duì)稱性可得當(dāng)φ(x)=1,φ(y)=4,φ(z)=4,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(1,5,8,2),(1,5,12,2),(1,8,8,1),(1,8,10,1),(1,8,12,1),(1,8,5,2),(1,10,8,1),(1,10,12,1),(1,12,8,1),(1,12,10,1),(1,12,5,2),(2,5,8,1),(2,5,12,1),(2,8,5,1),(2,12,5,1);當(dāng)φ(x)=4,φ(y)=1,φ(z)=1,φ(w)=4時(shí),方程(1)有解(x,y,z,w)=(5,1,2,8),(5,1,2,12),(8,1,1,8),(8,1,1,10),(8,1,1,12),(8,1,2,5),(10,1,1,8),(10,1,1,12),(12,1,1,8),(12,1,1,10),(12,1,2,5),(5,2,1,8),(5,2,1,12),(8,2,1,5),(12,2,1,5);當(dāng)φ(x)=4,φ(y)=1,φ(z)=4,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(5,1,8,2),(5,1,12,2),(8,1,8,1),(8,1,10,1),(8,1,12,1),(8,1,5,2),(10,1,8,1),(10,1,12,1),(12,1,8,1),(12,1,10,1),(12,1,5,2),(5,2,8,1),(5,2,12,1),(8,2,5,1),(12,2,5,1).

        當(dāng)φ(x)=1,φ(y)=4,φ(z)=2,φ(w)=2時(shí),有x=1,2,y=5,8,10,12,z=w=3,4,6,此時(shí)方程(1)有解(x,y,z,w)=(1,5,4,4),(1,5,4,6),(1,5,6,4),(1,8,3,4),(1,8,4,3),(1,10,3,4),(1,10,4,3),(2,5,3,4),(2,5,4,3).由對(duì)稱性可得當(dāng)φ(x)=4,φ(y)=1,φ(z)=2,φ(w)=2時(shí),方程(1)有解(x,y,z,w)=(5,1,4,4),(5,1,4,6),(5,1,6,4),(8,1,3,4),(8,1,4,3),(10,1,3,4),(10,1,4,3),(5,2,3,4),(5,2,4,3).

        當(dāng)φ(x)=2,φ(y)=2,φ(z)=1,φ(w)=4時(shí),有x=y=3,4,6,z=1,2,w=5,8,10,12,此時(shí)方程(1)有解(x,y,z,w)=(3,4,1,8),(3,4,1,10),(3,4,2,5),(4,3,1,8),(4,3,1,10),(4,3,2,5),(4,4,1,5),(4,6,1,5),(6,4,1,5).由對(duì)稱性可得當(dāng)φ(x)=2,φ(y)=2,φ(z)=4,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(3,4,8,1),(3,4,10,1),(3,4,5,2),(4,3,8,1),(4,3,10,1),(4,3,5,2),(4,4,5,1),(4,6,5,1),(6,4,5,1).

        當(dāng)φ(x)=2,φ(y)=2,φ(z)=2,φ(w)=2時(shí),有x=y=z=w=3,4,6,此時(shí)方程(1)無(wú)解.

        情況2.2當(dāng)φ(x)φ(y)=10,φ(z)φ(w)=2時(shí),有φ(x)=1,φ(y)=10,φ(z)=1,φ(w)=2;φ(x)=1,φ(y)=10,φ(z)=2,φ(w)=1;φ(x)=10,φ(y)=1,φ(z)=1,φ(w)=2;φ(x)=10,φ(y)=1,φ(z)=2,φ(w)=1.

        當(dāng)φ(x)=1,φ(y)=10,φ(z)=1,φ(w)=2時(shí),有x=z=1,2,y=11,22,w=3,4,6,此時(shí)方程(1)有解(x,y,z,w)=(1,11,2,4),(1,11,2,6),(1,22,1,4),(1,22,1,6),(1,22,2,3),(2,11,1,4),(2,11,1,6),(2,11,2,3),(2,22,1,3).由對(duì)稱性可得當(dāng)φ(x)=1,φ(y)=10,φ(z)=2,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(1,11,4,2),(1,11,6,2),(1,22,4,1),(1,22,6,1),(1,22,3,2),(2,11,4,1),(2,11,6,1),(2,11,3,2),(2,22,3,1);當(dāng)φ(x)=10,φ(y)=1,φ(z)=1,φ(w)=2時(shí),方程(1)有解(x,y,z,w)=(11,1,2,4),(11,1,2,6),(22,1,1,4),(22,1,1,6),(22,1,2,3),(11,2,1,4),(11,2,1,6),(11,2,2,3),(22,2,1,3);當(dāng)φ(x)=10,φ(y)=1,φ(z)=2,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(11,1,4,2),(11,1,6,2),(22,1,4,1),(22,1,6,1),(22,1,3,2),(11,2,4,1),(11,2,6,1),(11,2,3,2),(22,2,3,1).

        情況3當(dāng)F(x,y,z,w)=3時(shí).

        當(dāng)φ(x)=1,φ(y)=2,φ(z)=1,φ(w)=6時(shí),有x=z=1,2,y=3,4,6,w=7,9,14,18,此時(shí)方程(1)有解(x,y,z,w)=(1,3,2,18),(1,6,1,18),(1,6,2,9),(2,3,1,18),(2,3,2,9),(2,6,1,9).由對(duì)稱性可得當(dāng)φ(x)=1,φ(y)=2,φ(z)=6,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(1,3,18,2),(1,6,18,1),(1,6,9,2),(2,3,18,1),(2,3,9,2),(2,6,9,1);當(dāng)φ(x)=2,φ(y)=1,φ(z)=1,φ(w)=6時(shí),方程(1)有解(x,y,z,w)=(3,1,2,18),(6,1,1,18),(6,1,2,9),(3,2,1,18),(3,2,2,9),(6,2,1,9);當(dāng)φ(x)=2,φ(y)=1,φ(z)=6,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(3,1,18,2),(6,1,18,1),(6,1,9,2),(3,2,18,1),(3,2,9,2),(6,2,9,1).

        情況4當(dāng)F(x,y,z,w)=4時(shí).

        當(dāng)φ(x)=1,φ(y)=2,φ(z)=1,φ(w)=2時(shí),有x=z=1,2,y=w=3,4,6,此時(shí)方程(1)有解(x,y,z,w)=(1,4,2,4),(1,4,2,6),(1,6,2,4),(2,3,2,4),(2,4,1,4),(2,4,1,6),(2,4,2,3),(2,6,1,4).由對(duì)稱性可得當(dāng)φ(x)=1,φ(y)=2,φ(z)=2,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(1,4,4,2),(1,4,6,2),(1,6,4,2),(2,3,4,2),(2,4,4,1),(2,4,6,1),(2,4,3,2),(2,6,4,1);當(dāng)φ(x)=2,φ(y)=1,φ(z)=1,φ(w)=2時(shí),方程(1)有解(x,y,z,w)=(4,1,2,4),(4,1,2,6),(6,1,2,4),(3,2,2,4),(4,2,1,4),(4,2,1,6),(4,2,2,3),(6,2,1,4);當(dāng)φ(x)=2,φ(y)=1,φ(z)=2,φ(w)=1時(shí),方程(1)有解(x,y,z,w)=(4,1,4,2),(4,1,6,2),(6,1,4,2),(3,2,4,2),(4,2,4,1),(4,2,6,1),(4,2,3,2),(6,2,4,1).

        情況5當(dāng)F(x,y,z,w)=5時(shí).

        情況6當(dāng)F(x,y,z,w)=6時(shí).

        情況7當(dāng)F(x,y,z,w)=7時(shí).

        情況8當(dāng)F(x,y,z,w)=8時(shí).

        綜合以上所有討論的情況,可得定理1.證畢.

        2 結(jié)語(yǔ)

        本文討論了形如

        φ(x1x2…xn)=k1φ(x1)φ(x2)…krφ(xr)+

        k2φ(xr+1)φ(xr+2)…φ(xn)

        的變系數(shù)方程的一個(gè)具體的四元變系數(shù)方程φ(xyzw)=3φ(x)φ(y)+5φ(z)φ(w)的正整數(shù)解,得到了該方程有372組正整數(shù)解.對(duì)于形如

        φ(x1x2…xn)=k1φ(x1)φ(x2)…krφ(xr)+

        k2φ(xr+1)φ(xr+2)…φ(xn)

        的方程,當(dāng)n,k1,k2,r為某一組正整數(shù)時(shí),其所確定的方程亦可采用本文的討論方式進(jìn)行討論求解.

        猜你喜歡
        正整數(shù)對(duì)稱性定理
        J. Liouville定理
        一類截?cái)郒ankel算子的復(fù)對(duì)稱性
        巧用對(duì)稱性解題
        橫向不調(diào)伴TMD患者髁突位置及對(duì)稱性
        被k(2≤k≤16)整除的正整數(shù)的特征
        A Study on English listening status of students in vocational school
        周期數(shù)列中的常見(jiàn)結(jié)論及應(yīng)用*
        方程xy=yx+1的全部正整數(shù)解
        “三共定理”及其應(yīng)用(上)
        巧用對(duì)稱性解題
        丰满人妻一区二区三区52| 草草影院发布页| 亚洲午夜久久久久久久久久| 欧美日本国产va高清cabal| 免费无码肉片在线观看| 国产网站视频| 欧美精品久久久久久三级| 美女狂喷白浆网站视频在线观看| 国产高清视频在线不卡一区| 色哟哟最新在线观看入口| 精产国品一二三产区m553麻豆| 亚洲男人天堂2019| 一本无码av一区二区三区| 国产特黄1区2区3区4区| 永久免费视频网站在线| 国产国语亲子伦亲子| 国产揄拍国产精品| 久草视频这里有精品| 99在线国产视频| 国产无套粉嫩白浆内精| 亚洲在线视频免费视频| 亚洲av日韩综合一区在线观看| 永久国产盗摄一区二区色欲| 亚洲黑寡妇黄色一级片| 成人av综合资源在线| 日本大片免费观看视频| 香蕉色香蕉在线视频| 用力草我小逼视频在线播放| 精品综合一区二区三区| 久久和欧洲码一码二码三码| 99久久99久久久精品久久| 偷窥偷拍一区二区三区| 国产色欲av一区二区三区 | 国产洗浴会所三级av| 美女下蹲露大唇无遮挡| 久久www色情成人免费观看| 欧美性一区| 人日本中文字幕免费精品| 亚洲av无码精品国产成人| 国产成人午夜福利在线观看者| 日本不卡的一区二区三区|