亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        ANNOUNCEMENT ON“SHARP ERROR ESTIMATE OF BDF2 SCHEME WITH VARIABLE TIME STEPS FOR LINEAR REACTION-DIFFUSION EQUATIONS”

        2021-01-16 09:59:18ZHANGJiweiZHAOChengchao
        數學雜志 2021年1期

        ZHANG Ji-wei,ZHAO Cheng-chao

        (1.School of Mathematics and Statistics,Hubei Key Laboratory of Computational Science,Wuhan University,Wuhan 430072,China)

        (2.Beijing Computational Science Research Center,Beijing 100193,China)

        Abstract:In this note we announce the sharp error estimate of BDF2 scheme for linear diffusion reaction problem with variable time steps. Our analysis shows that the optimal second-order convergence does not require the high-order methods or the very small time steps τ1=(τ2)for the first level solution u1.This is,the first-order consistence of the first level solution u1like BDF1(i.e.Euler scheme)as a starting point does not cause the loss of global temporal accuracy,and the ratios are updated to rk≤4.8645.

        Keywords:BDF2;DOC;DCC;variable time-steps;sharp error estimate

        In this note,we revisit the two-step backward differentiation formula(BDF2)with variable time-steps for solving the following reaction-diffusion equation:

        where the reaction coefficientκ∈,and ? is a bounded domain.

        Set the generally nonuniform time levels 0=t0

        The BDF2 scheme with variable time-step is given as

        where the BDF2 formula can be unified to the following discrete convolution form

        whereCis a positive constant and Γn:=max{0,rk?rk+2}.As pointed out in[6]and[7],the magnitudes of Γncan be zero,bounded[6,pp.175]and unbounded[7,Remark 4.1]by selecting certain step-ratio sequence and vanishing step sizes.After that,Emmrich[8]improves the Becker’s constrained condition to 0≤rk≤1.91,but still remains the undesirable factor exp(CΓn)in theL2-norm stability.Chenet al.circumvent the factor exp(CΓn)in Becker’s estimate with a bounded factor exp(Ctn)with 0≤rk≤1.53,but lack the estimate in the ideal case of Γn=0.Recently,by using the technique of the discrete orthogonal convolution(DOC)kernels,a nice and interesting work[9]obtains the convergence

        with 0≤rk≤3.561.Here the DOC kernels are defined by

        whereδnkrepresents the Kronecker delta symbol withδnk=1 ifn=kandδnk=0 ifn/=k.One can see that the right-hand-side second term is the first-order convergence whentnis large.If the second-order convergence is obtained,it suffers from a restriction condition||≤N0?Nwith the index set defined by

        In this note,by introducing the novel conception of the discrete complementary convolution(DCC)kernels,we achieve the sharp second-order convergence for BDF2 scheme and update the adjacent time-step restriction condition to

        One can see that if the identity(8)holds for alln≥1,it only requires

        The first main contribution in our paper is establishing the positive semi-definiteness of BDF2 convolution kernels,which produces the constrain condition A1 on the adjacent time-step ratios.

        Lemma 0.1Assume the time step ratiosrksatisfy A1.For any real sequenceit holds that

        A immediate product of the semi-positive definiteness of the BDF2 kernels is the following energy stability for BDF2 scheme(2)(one also refers to[9]).

        Theorem 0.1Assume the condition A1 holds andκ≤0,then the discrete solutionunto the BDF2 scheme(2)with variable time steps satisfies

        Furthermore,the energy has the following estimate:

        Here the(modified)discrete energyEkis defined by

        Proposition 0.2Letτbe the maximum time-step size and the time-step ratios satisfy 0

        To obtain the stability of the BDF2 scheme(2),we introduce a discrete Gr¨onwall inequality for the followingL2-norm estimate.

        Lemma 0.5Assumeλ>0 and the sequencesare nonnegative.If

        then it holds

        We now present the stability result of the BDF2 scheme(2).

        Theorem 0.2If the BDF2 kernelsdefined in(4)are positive semi-definite(or condition A1 holds),the discrete solutionunof the BDF2 scheme(2)is unconditionally stable in theL2-norm.Ifκ>0 and the maximum time-step sizeτ≤1/(4κ),it holds

        The truncation errorηj:=D2u(tj)??tu(tj)(1≤j≤N)can be expressed the following form

        Theorem 0.3Assume the conditions in Theorem 0.2 hold,and the truncated error can be expressed by

        whereGkandRnare given in(26).Ifκ>0 and the maximum time-step sizeτ≤1/(4κ),it holds

        Ifκ≤0,it holds

        Finally,applying the Lemmas 0.6,Proposition 0.2 and Theorem 0.3,we achieve the sharp error estimate.

        Theorem 0.4Letu(t,x)be the solution to problem(1).If the BDF2 kernelsdefined in(4)are positive semi-definite(or the condition A1 holds),then the solutionunto BDF2 scheme(2)is convergent in theL2-norm.Ifκ>0 and the maximum time-step sizeτ<1/(4κ),it holds

        Ifκ≤0,it holds

        More details can be found in[10].

        野花香社区在线视频观看播放| 尤物yw午夜国产精品视频| 亚洲视频在线观看青青草| 亚洲中文字幕日韩综合| 国产亚洲成av人片在线观黄桃| 老司机在线精品视频网站| 亚洲成a人片在线观看导航| 国产午夜精品综合久久久| 一边摸一边做爽的视频17国产| 婷婷五月六月综合缴情| 99re免费在线视频| 亚洲av免费高清不卡| 黄片视频免费观看蜜桃| 中文字幕人妻被公上司喝醉| 美女在线国产| 亚洲国产精品成人av| 中文字日产幕码三区的做法大全 | 国产精品美女久久久久| 99久久99久久久精品久久| 久久精品国产亚洲av网在| 天天做天天爱夜夜爽毛片毛片 | 国产偷2018在线观看午夜| av有码在线一区二区三区| 亚洲av无码一区东京热久久| 无码少妇一区二区三区 | 亚洲熟女一区二区三区不卡| 一本到在线观看视频| 色欲av自慰一区二区三区| 97久久综合区小说区图片专区| 久久精品国产9久久综合| 国产放荡对白视频在线观看| 国产欧美日韩在线观看| 美女扒开内裤露黑毛无遮挡| 极品尤物精品在线观看| 无码一区二区三区在线| av无码天堂一区二区三区 | 97久久精品无码一区二区天美| 国模无码视频专区一区| 国产91久久精品成人看网站| 日日躁夜夜躁狠狠躁| 久久精品国产一区二区电影|