徐鵬翔,沈玉君,丁京濤,孟海波,張朋月
規(guī)模化奶牛場(chǎng)糞污全量貯存及肥料化還田工藝設(shè)計(jì)
徐鵬翔,沈玉君,丁京濤,孟海波※,張朋月
(農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計(jì)研究院農(nóng)村能源與環(huán)保研究所,農(nóng)業(yè)農(nóng)村部資源循環(huán)利用技術(shù)與模式重點(diǎn)實(shí)驗(yàn)室,北京 100125)
為推進(jìn)糞污全量貯存和肥料化還田模式在規(guī)?;膛?chǎng)的應(yīng)用,該研究以存欄500頭規(guī)模奶牛場(chǎng)為例,分析了糞污收集量、貯存工藝與設(shè)施和糞肥還田等內(nèi)容,提出了糞污貯存池設(shè)計(jì)容積和糞肥還田配套土地面積等參數(shù)。結(jié)果表明:奶牛糞污全量收集量為17.33 t/d,全量貯存設(shè)施分為舍內(nèi)貯存池和舍外貯存囊2種。單個(gè)舍內(nèi)貯存池尺寸為85 m×12 m×2 m(長(zhǎng)×寬×深),糞污存儲(chǔ)期9個(gè)月,所需貯存池?cái)?shù)量為5個(gè),總?cè)莘e10 200 m3;舍外貯存囊占地尺寸為90 m×30 m(長(zhǎng)×寬),深2.2 m,總?cè)莘e5 615 m3。糞肥全部還田所需土地面積與種植作物類型和種植制度相關(guān),種植作物為小麥、玉米、小麥+玉米和水稻(1年2熟)時(shí),需配套土地分別為248.4、400.6、122.8和127.0 hm2。糞肥還田成本為10.37萬(wàn)元/a,全部還田可節(jié)省化肥22.8萬(wàn)元/a,年可產(chǎn)生經(jīng)濟(jì)效益12.43萬(wàn)元。
糞;貯存; 奶牛場(chǎng);還田利用;工藝設(shè)計(jì)
據(jù)統(tǒng)計(jì),2017年中國(guó)奶牛存欄量達(dá)到1 340.4萬(wàn)頭,已成為世界第三大產(chǎn)奶國(guó)[1]。隨著奶牛養(yǎng)殖規(guī)模的逐步增加,奶牛糞污處理和資源化利用也越來(lái)越受到關(guān)注。目前,奶牛糞污處理常用工藝技術(shù)有好氧堆肥、厭氧發(fā)酵、兼氧貯存和污水處理等,其中以固液分離后固體糞便進(jìn)行堆肥、液體糞水經(jīng)存儲(chǔ)一定時(shí)間后還田利用工藝應(yīng)用較為普遍[2-3]。
從歐美等發(fā)達(dá)國(guó)家奶牛養(yǎng)殖現(xiàn)狀來(lái)看,奶牛飼養(yǎng)正在向適度規(guī)模和種養(yǎng)結(jié)合模式方向發(fā)展,糞污的最終出路以肥料化和能源化為主,規(guī)?;膛?chǎng)的污染控制問(wèn)題得到了較好的解決。據(jù)了解,法國(guó)規(guī)?;膛?chǎng)實(shí)行種養(yǎng)結(jié)合和農(nóng)牧一體的模式,大部分奶牛場(chǎng)糞污處理都采取“水泡糞全量收集+貯存后直接還田”工藝;荷蘭奶牛場(chǎng)比較注重糞污的循環(huán)利用,糞污處理采取2種工藝,一種是“糞尿漏縫地板收集+舍內(nèi)地下貯存池/舍外地上貯存池儲(chǔ)存”工藝,另一種是“刮糞板收集+固液分離+糞便壓塊/糞水還田”工藝;德國(guó)側(cè)重于支持可再生能源發(fā)展,奶牛場(chǎng)糞污處理主要采取秸稈與牛糞全混合沼氣發(fā)酵工藝[4]。美國(guó)奶牛養(yǎng)殖場(chǎng)多數(shù)采用機(jī)械化清糞工藝,主要類型有水沖糞、水泡糞和干清糞3種,糞污通過(guò)堆肥、厭氧發(fā)酵、污水凈化和生態(tài)過(guò)濾等技術(shù)處理后進(jìn)行資源化利用[5]。
近年來(lái),隨著中國(guó)養(yǎng)殖業(yè)的規(guī)?;l(fā)展,種養(yǎng)分離現(xiàn)象逐漸嚴(yán)重,養(yǎng)殖場(chǎng)糞污處理量大和糞肥消納難等問(wèn)題隨之出現(xiàn),養(yǎng)殖污染已成為農(nóng)業(yè)面源污染的主要來(lái)源之一。為了促進(jìn)種養(yǎng)業(yè)健康發(fā)展,中國(guó)提出農(nóng)業(yè)綠色發(fā)展之路,種養(yǎng)結(jié)合成為必然選擇,同時(shí)養(yǎng)殖糞污肥料化利用也成為糞污處理的主要方向。目前,中國(guó)奶牛場(chǎng)普遍采用了固液分離工藝,從糞污肥料化利用角度來(lái)看,固液分離反而增加了養(yǎng)分的損失?,F(xiàn)有研究表明,與糞污固液分離后固體糞便和液體糞水分別處理相比,糞污全量貯存有利于提高糞肥中養(yǎng)分的留存率。以奶牛糞污貯存中氮養(yǎng)分為例,全量糞污貯存中氮損失率為6.8%;而糞污經(jīng)固液分離分別貯存時(shí)氮損失率為12.6%[6]。與全量貯存及還田相比,奶牛糞污固液分離后貯存及還田過(guò)程中的NH3損失增加了44%[7],牛糞固液分離后糞便的氨排放系數(shù)是尿液氨排放系數(shù)的1.85倍[8]。另有研究結(jié)果表明,豬糞污固液分離后存儲(chǔ)過(guò)程中NH3損失增加了39%(冬季)和24%(夏季)[9]。
綜合國(guó)內(nèi)外奶牛糞污處理現(xiàn)狀,國(guó)外以糞污全量收集貯存工藝為主,而中國(guó)以固液分離后糞便堆肥、厭氧發(fā)酵和糞水貯存等工藝應(yīng)用較多。糞污全量貯存與肥料化還田作為一種糞污資源化利用的典型模式,對(duì)于種養(yǎng)循環(huán)發(fā)展具有重要意義,在土地匹配較充足的地區(qū)具有很好的應(yīng)用前景。然而,現(xiàn)有關(guān)于糞污全量貯存工藝設(shè)計(jì)的研究是圍繞養(yǎng)豬場(chǎng)糞污特性和設(shè)施類型展開的[10],其設(shè)計(jì)參數(shù)不適用于奶牛養(yǎng)殖場(chǎng),且在糞肥還田量要求方面缺少數(shù)據(jù)支撐。本文重點(diǎn)圍繞規(guī)?;膛?chǎng)糞污全量收集、糞污貯存工藝、貯存設(shè)施設(shè)計(jì)和糞肥還田面積等方面進(jìn)行分析,旨在為奶牛糞污全量收集、貯存和還田利用模式的推廣應(yīng)用提供參考。
規(guī)?;膛?chǎng)糞污產(chǎn)生量與養(yǎng)殖規(guī)模和牛群結(jié)構(gòu)等因素相關(guān),不同生長(zhǎng)階段的奶牛糞污產(chǎn)生量差異較大。史樞卿等[11]從牛群淘汰率角度出發(fā)研究了國(guó)內(nèi)外奶牛場(chǎng)牛群的分布,并提出典型國(guó)內(nèi)奶牛場(chǎng)牛群結(jié)構(gòu),以養(yǎng)殖規(guī)模500頭為例,牛群結(jié)構(gòu)為犢牛46頭、育成牛182頭和產(chǎn)奶牛272頭。以此為基礎(chǔ),本研究對(duì)不同生長(zhǎng)階段的奶牛糞污產(chǎn)生量進(jìn)行了統(tǒng)計(jì),結(jié)果詳見表1。
表1 規(guī)?;膛?chǎng)糞污產(chǎn)生量統(tǒng)計(jì)[12-13]
由表1可知,以存欄500頭規(guī)模奶牛養(yǎng)殖場(chǎng)為例,每天產(chǎn)生糞污總量為17.33 t,則全年產(chǎn)生糞污總量為6 325.5 t。
糞污全量收集通常采用漏縫地板收集工藝,該方法可隨時(shí)收集糞污,起到保持牛體和臥床干凈的作用。漏縫地板根據(jù)材質(zhì)不同分為水泥漏縫地板、鑄鐵漏縫地板和塑料漏縫地板等,不同類型的漏縫地板其耐久性、舒適性和投資成本等不同。漏縫地板的縫隙比例過(guò)小會(huì)影響漏糞效果,太大容易損害牛蹄,奶牛舍漏縫地板縫隙寬設(shè)計(jì)推薦值為3.5~4.0 cm[14];同時(shí),通過(guò)鋪設(shè)配套的漏縫橡膠墊可起到增加地板柔軟性和防滑效果,從而減少肢蹄損傷。與實(shí)心地板相比,漏縫地板可減少220 mg/(m2·h)的氨揮發(fā)[15],從源頭節(jié)省了沖洗水的使用,糞污收集量與產(chǎn)生量一致。
奶牛場(chǎng)糞污全量貯存是將牛舍內(nèi)的糞尿通過(guò)漏縫地板收集至貯存池,經(jīng)存儲(chǔ)一定時(shí)間后進(jìn)行還田利用。糞污貯存時(shí)間與環(huán)境溫度相關(guān),當(dāng)環(huán)境溫度≤5℃時(shí),要求至少存儲(chǔ)6個(gè)月;當(dāng)環(huán)境溫度﹥5℃時(shí),要求至少存儲(chǔ)4個(gè)月[16]。糞污收集后不需要固液分離,總固體含量(Total Solid,TS)一般為5%~15%。糞污貯存工藝流程如下:
奶牛糞污貯存設(shè)施分為舍內(nèi)貯存設(shè)施和舍外貯存設(shè)施,2種設(shè)施外形和建設(shè)參數(shù)不同。舍內(nèi)貯存設(shè)施具有易于糞污收集和節(jié)省占地面積的特點(diǎn),但需與圈舍同時(shí)規(guī)劃設(shè)計(jì),建設(shè)成本較高,適用于新建養(yǎng)殖場(chǎng);舍外貯存設(shè)施建設(shè)成本低,設(shè)施外形有圓形、方形和矩形等[17],場(chǎng)地布置靈活,可顯著減少糞污存儲(chǔ)對(duì)養(yǎng)殖環(huán)境的污染,適用于新建養(yǎng)殖場(chǎng)或已建養(yǎng)殖場(chǎng)。舍外貯存囊是一種經(jīng)濟(jì)實(shí)用的貯存設(shè)施,與圓形鋼混結(jié)構(gòu)貯存池相比建設(shè)成本可減少50%[18]。本研究以常用的舍內(nèi)貯存池和舍外貯存囊為例,分別計(jì)算其設(shè)施設(shè)計(jì)參數(shù)。
圖1 糞污全量貯存工藝流程
2.2.1 舍內(nèi)貯存池
奶牛糞污舍內(nèi)貯存池設(shè)置在養(yǎng)殖圈舍下方,池體面積與牛舍面積相同。研究表明[19-20],不同生長(zhǎng)階段的牛群所需要的牛舍面積不同,每頭產(chǎn)奶牛的牛舍占地面積為8~12 m2,育成牛的牛舍占地面積為7~8 m2,犢牛的牛舍占地面積為4~5 m2。牛舍占地面積由牛舍結(jié)構(gòu)和奶牛飼養(yǎng)數(shù)量確定,中國(guó)北方地區(qū)牛舍多采取雙列式牛床布置,牛舍長(zhǎng)度一般為82~85 m,跨度12 m,每棟約容納100頭成乳牛[21]。
奶牛糞污舍內(nèi)貯存池容積計(jì)算方法如下
糞污貯存池占地面積=·(1)
式中指牛舍的長(zhǎng)度,m;指牛舍的寬度,m。
單獨(dú)舍內(nèi)糞污產(chǎn)生量V=Q··(2)
式中Q指平均每頭奶牛每天的糞污產(chǎn)生量,m3;指單棟舍內(nèi)奶牛飼養(yǎng)數(shù)量,頭;指糞污貯存時(shí)間,d。
糞污在舍內(nèi)貯存池所需凈高H= 1.2V/(3)
式中H指奶牛糞污在舍內(nèi)貯存池所需凈高,m;1.2指糞污產(chǎn)生量預(yù)留容積系數(shù)。
糞污貯存池深度=H +0.5 (4)
式中指舍內(nèi)貯存池總深度,m;0.5指糞污表面與漏縫地板之間預(yù)留空間深度,m。
糞污貯存池容積pit=·(5)
式中pit指舍內(nèi)貯存池容積,m3。
以100頭成乳牛牛舍為例,牛舍長(zhǎng)度取85 m,寬度取12 m,依據(jù)公式(1)可得牛舍占地面積為1 020 m2;由1.1可知每頭產(chǎn)奶牛每天糞污產(chǎn)生量為46.05 kg(0.046 m3),糞污貯存時(shí)間一般要求6~9個(gè)月,此設(shè)計(jì)方案中取最大值270 d,依據(jù)公式(2)可得糞污產(chǎn)生總量為1 242 m3;依據(jù)公式(3)可得糞污在舍內(nèi)貯存池所需凈高為1.47 m;依據(jù)公式(4)可得糞污貯存池深度為1.97 m,取2.0 m。依據(jù)公式(5)可得單棟牛舍地下貯存池容積為2 040 m3,存欄500頭規(guī)模奶牛場(chǎng)需要建設(shè)5棟牛舍,糞污貯存池總?cè)莘e為10 200 m3。
2.2.2 舍外貯存囊
部分奶牛養(yǎng)殖場(chǎng)建廠時(shí)未建造舍內(nèi)地下貯存池,糞污經(jīng)漏縫地板或刮糞板收集后通過(guò)地下糞溝排入暫存池,再由暫存池輸送至舍外貯存囊進(jìn)行存儲(chǔ)。舍外貯存囊是一種以高密度聚乙烯防滲膜(High Density Polyethylene,HDPE)為主要材料,以類似氧化塘結(jié)構(gòu)為載體的糞水貯存設(shè)施,具有建設(shè)成本低、臭氣控制好和安裝管理方便等特點(diǎn)。舍外貯存囊一般采用矩形,長(zhǎng)寬比不小于3∶1,通常以舊河道、池塘、洼地等為基礎(chǔ)進(jìn)行修建,深度不超過(guò)6 m[22]。舍外貯存囊實(shí)物圖見圖2。
圖2 全量糞污貯存囊
舍外貯存囊容積計(jì)算方法如下:
糞污產(chǎn)生總量V= Q··(6)
式中指奶牛存欄量,頭。
舍外貯存囊容積lagoon= 1.2V(7)
式中l(wèi)agoon指舍外貯存囊容積,m3;1.2指糞污產(chǎn)生量預(yù)留容積系數(shù)。
以存欄500頭規(guī)模奶牛養(yǎng)殖場(chǎng)為例,依據(jù)1.1和公式(6)可得每天產(chǎn)生糞污量為17.33 t,存儲(chǔ)時(shí)間為270 d,則依據(jù)公式(7)可得舍外貯存囊容積為5 615 m3。依據(jù)《污水穩(wěn)定塘設(shè)計(jì)規(guī)范(CJJ/T 54—93)》,給出以下設(shè)計(jì)參數(shù)供參考:承載貯存囊的塘體長(zhǎng)取90 m,寬取30 m(長(zhǎng)寬比3∶1),塘體深度取2.2 m(坡比2.2∶1),塘體容積為5 676 m3。
奶牛場(chǎng)糞肥養(yǎng)分含量因飼喂原材料、糞污收集方式和沖洗污水量等因素影響而不同[23-24],天津市27家奶牛養(yǎng)殖場(chǎng)固液分離后糞水中的總氮和總磷平均質(zhì)量濃度分別為1.85和0.07 g/L[25],與全量糞肥相比養(yǎng)分含量較低。全量收集奶牛糞肥養(yǎng)分含量見表2。
表2 奶牛場(chǎng)全量糞污主要養(yǎng)分含量
由奶牛糞肥養(yǎng)分含量和收集率計(jì)算可知,全量糞肥中總氮含量為4.77 g/kg,總磷含量為0.86 g/kg。
奶牛場(chǎng)糞肥還田面積可通過(guò)計(jì)算糞肥中氮(磷)養(yǎng)分總量和單位土地糞肥氮(磷)養(yǎng)分需求量來(lái)獲得[26-27]。計(jì)算過(guò)程如下:
land=Q,p/N,p(8)
式中l(wèi)and指配套土地面積,hm2;Q,p指奶牛場(chǎng)還田利用的糞肥氮(磷)養(yǎng)分總量,kg/a;N,p指種植作物的單位土地糞肥氮(磷)養(yǎng)分需求量,kg/(hm2·a)。
Q,p=··R·T(9)
式中指畜禽糞肥氮(磷)排泄量,kg/(頭·d);R指畜禽糞肥氮(磷)養(yǎng)分留存率,%;T指奶牛飼養(yǎng)時(shí)間,取值0~365 d。
N,p=N·P·P/R (10)
式中N指種植作物單位面積氮(磷)養(yǎng)分需求總量,kg/(hm2·a);P指作物總養(yǎng)分中施肥供給養(yǎng)分占比,%;P指畜禽糞肥養(yǎng)分含量占施肥總量的比例,%;R指糞肥當(dāng)季利用率,%。
N= ∑ (P·Q· 10) (11)
式中P指第季種植作物的單位目標(biāo)產(chǎn)量,t/(hm2·季);Q指第季作物形成100 kg產(chǎn)量吸收的氮(磷),kg。
以存欄500頭規(guī)模奶牛養(yǎng)殖場(chǎng)為例,假設(shè)種植作物類型有小麥、玉米和水稻,糞肥類型為全量糞肥,分別以氮和磷養(yǎng)分為基準(zhǔn)對(duì)配套土地面積進(jìn)行計(jì)算,結(jié)果見表3。
表3 奶牛場(chǎng)全量糞肥還田配套土地面積計(jì)算
注:小麥、玉米和水稻的目標(biāo)產(chǎn)量為4.5、6.0和6.0 t·hm-2,每形成100 kg產(chǎn)量需氮量為3.0、2.3和2.2 kg,每形成100 kg產(chǎn)量需磷量為1.0、0.3和0.8 kg;施肥供給養(yǎng)分占比取45%;畜禽糞肥養(yǎng)分含量占施肥總量的比例取50%;糞肥氮素當(dāng)季利用率取25%,糞肥磷素當(dāng)季利用率取30%[24]。
Note: The target production of wheat, maize and rice is 4.5, 6.0 and 6.0 t·hm-2respectively; The amount of nitrogen demand for each 100 kg yield of wheat, corn and rice is 3.0, 2.3 and 2.2 kg; The amount of phosphorus demand for each 100 kg yield of wheat, corn and rice is 1.0, 0.3 and 0.8 kg; The proportion of nutrients supplied by fertilizer is 45%; The proportion of manure nutrient content to the nutrient of all the fertilizers is 50%; The utilization rate of nitrogen from manure in the current season is 25%; The utilization rate of phosphorus from manure in the current season is 30%.
由表3數(shù)據(jù)可知,當(dāng)作物種植類型和種植制度不同時(shí),全量糞肥還田所需要配套的土地面積不同。為防止糞肥過(guò)量施用,配套土地面積應(yīng)取以氮和磷為基準(zhǔn)計(jì)算結(jié)果的較高值。奶牛場(chǎng)全量糞肥還田時(shí),若種植作物為小麥(1年1熟),則需要配套土地248.4 hm2;若種植作物為玉米(1年1熟),則需要配套土地400.6 hm2;若種植作物為小麥和玉米(1年2熟),則需要配套土地122.8 hm2;若種植作物為水稻(1年2熟),則需要配套土地127.0 hm2。
糞肥施用成本包括糞污收集與施用過(guò)程中的人工費(fèi)、電費(fèi)和運(yùn)輸費(fèi)。以存欄500頭規(guī)模奶牛場(chǎng)為例,全量糞肥施用成本為10.37萬(wàn)元/a,各項(xiàng)費(fèi)用詳見表4。
表4 奶牛場(chǎng)全量糞肥年施用成本
經(jīng)計(jì)算,存欄500頭奶牛養(yǎng)殖場(chǎng)每年產(chǎn)生的全量糞肥中氮養(yǎng)分含量可折算尿素量為130 t,磷養(yǎng)分含量可折算過(guò)磷酸鈣量為8.9 t,若尿素和過(guò)磷酸鈣價(jià)格分別以1 700元/t和800元/t計(jì),則糞肥全部還田可折合節(jié)省化肥22.8萬(wàn)元。綜上所述,存欄500頭奶牛養(yǎng)殖場(chǎng)采用糞污全量貯存與肥料化還田工藝時(shí),每年可產(chǎn)生經(jīng)濟(jì)效益12.43萬(wàn)元。
1)奶牛場(chǎng)糞污全量貯存及肥料化還田模式可從源頭節(jié)省用水,簡(jiǎn)化糞污處理流程,提高糞肥中養(yǎng)分的留存率,在種養(yǎng)結(jié)合和循環(huán)農(nóng)業(yè)發(fā)展中具有較好的應(yīng)用前景。該研究從糞污全量貯存和肥料化還田工藝設(shè)計(jì)角度出發(fā),提出了糞污收集量、貯存設(shè)施類型與容積、糞肥養(yǎng)分含量和配套土地面積等參數(shù)和計(jì)算方法,為糞污全量貯存和糞肥還田提供了參考。
2)常用的糞污全量貯存設(shè)施分為舍內(nèi)貯存池和舍外貯存囊2種,舍內(nèi)貯存池適用于新建養(yǎng)殖場(chǎng);舍外貯存囊適用于新建或已建養(yǎng)殖場(chǎng),養(yǎng)殖場(chǎng)可根據(jù)場(chǎng)地面積、投資費(fèi)用和周邊環(huán)境等條件選擇適宜的設(shè)施類型。以存欄500頭奶牛場(chǎng)為例,共需5個(gè)舍內(nèi)貯存池,建設(shè)總?cè)莘e為10 200 m3,而舍外貯存囊所需總?cè)莘e為5 615 m3。
3)糞肥還田土地面積與糞肥中氮(磷)養(yǎng)分含量、土壤養(yǎng)分背景值、種植作物類型和種植制度等因素相關(guān)。存欄500頭奶牛場(chǎng)糞肥全部還田,每年種植作物分別為小麥、玉米、小麥和玉米、水稻(1年2熟)時(shí),需配套相應(yīng)的土地面積為248.4、400.6、122.8 和127.0 hm2。糞肥還田成本為10.37萬(wàn)元/a,全部還田可節(jié)省化肥22.8萬(wàn)元/a,年可產(chǎn)生經(jīng)濟(jì)效益12.43萬(wàn)元。
[1] 樊斌,薛曉聰,李萌,等. 中國(guó)奶牛養(yǎng)殖生產(chǎn)布局優(yōu)化研究:基于比較優(yōu)勢(shì)的實(shí)證分析[J]. 農(nóng)業(yè)現(xiàn)代化研究,2020,41(2):331-340. Fan Bin, Xue Xiaocong, Li Meng, et al. Production layout optimization of dairy farming in China: An empirical analysis based on comparative advantage[J]. Research of Agricultural Modernization, 2020, 41(2): 331-340. (in Chinese with English abstract)
[2] 施正香,王盼柳,張麗,等. 我國(guó)奶牛場(chǎng)糞污處理現(xiàn)狀與綜合治理技術(shù)模式分析[J]. 中國(guó)畜牧雜志,2016,52(14):62-66. Shi Zhengxiang, Wang Panliu, Zhang Li, et al. State of dairy waste treatment and comprehensive management mode in China[J]. Chinese Journal of Animal Science, 2016, 52(14): 62-66. (in Chinese with English abstract)
[3] 羅娟,趙立欣,姚宗路,等. 規(guī)?;B(yǎng)殖場(chǎng)畜禽糞污處理綜合評(píng)價(jià)指標(biāo)體系構(gòu)建與應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(17): 182-189. Luo Juan, Zhao Lixin, Yao Zonglu, et al. Construction and application of comprehensive evaluation index system for waste treatment on intensive livestock farms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 182-189.(in Chinese with English abstract)
[4] 李孟嬌,董曉霞,李宇華. 發(fā)達(dá)國(guó)家奶牛規(guī)?;B(yǎng)殖的糞污處理經(jīng)驗(yàn):以歐盟主要奶業(yè)國(guó)家為例[J]. 世界農(nóng)業(yè),2014,5:10-15.
[5] 李孟嬌,董曉霞,郭江鵬. 美國(guó)奶牛規(guī)?;B(yǎng)殖的環(huán)境政策與糞污處理模式[J]. 生態(tài)經(jīng)濟(jì),2014,30(7):55-59. Li Mengjiao, Dong Haixia, Guo Jiangpeng. The environment policy and manure treatment models of large-scale milk cows breeding in US[J]. Ecological Economy, 2014, 30(7): 55-59. (in Chinese with English abstract)
[6] Perazzolo F, Mattachini G, Tambone F, et al. Nutrient losses from cattle co-digestate slurry during storage[J]. Journal of Agricultural Engineering, 2016, 47(2): 94-99.
[7] Dinuccio E, Berg W, Balsari P. Effects of mechanical separation on GHG and ammonia emissions from cattle slurry under winter conditions[J]. Animal Feed Science and Technology, 2011, 166: 532–538.
[8] 美英,魏坤昊,崔鈉淇,等. 集約化奶牛養(yǎng)殖場(chǎng)不同糞尿處理階段氮素分布及氨排放特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(18): 261-267. Mei Ying, Wei Kunhao, Cui Naqi, et al. Nitrogen distribution and ammonia emission characteristics in different livestock manure treatment processes in intensive dairy farms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 261-267.(in Chinese with English abstract)
[9] Dinuccio E, Gioelli F, Balsari P, et al. Ammonia losses from the storage and application of raw and chemo-mechanically separated slurry[J]. Agriculture, Ecosystems and Environment, 2012, 153: 16-23.
[10] 徐鵬翔,沈玉君,丁京濤,等. 規(guī)?;B(yǎng)豬場(chǎng)糞污全量收集及貯存工藝設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(9): 255-262. Xu Pengxiang, Shen Yujun, Ding Jingtao, et al. Slurry manure collection and design of storage system on scaled pig farms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 255-262.(in Chinese with English abstract)
[11] 史樞卿,李守忠. 關(guān)于奶牛場(chǎng)設(shè)計(jì)和建設(shè)的奶牛體尺、牛群結(jié)構(gòu)標(biāo)準(zhǔn)參數(shù)[J]. 中國(guó)奶牛,2006,1:47-50.
[12] 楊前平,李曉鋒,熊琪,等. 奶牛場(chǎng)糞污產(chǎn)生量及性能參數(shù)測(cè)定[J]. 湖北農(nóng)業(yè)科學(xué),2019,58(24):106-108,119. Yang Qianping, Li Xiaofeng, Xiong Qi, et al. Determination of feces production and performance parameters in dairy farm[J]. Hubei Agricultural Sciences, 2019, 58(24): 106-108, 119. (in Chinese with English abstract)
[13] 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,環(huán)境保護(hù)部南京環(huán)境科學(xué)研究所. 第一次全國(guó)污染源普查畜禽養(yǎng)殖業(yè)源產(chǎn)排污系數(shù)手冊(cè)[Z]. 北京:國(guó)務(wù)院第一次全國(guó)污染源普查領(lǐng)導(dǎo)小組辦公室,2009.
[14] 劉繼軍,賈永全. 畜牧場(chǎng)規(guī)劃設(shè)計(jì)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2008:237-283.
[15] 趙潤(rùn),張蕙杰,劉琦,等. 歐盟奶業(yè)環(huán)境污染防治經(jīng)驗(yàn)-以集約化奶牛場(chǎng)糞水管控為例[J]. 環(huán)境保護(hù),2019,9:69-74.
[16] Manyi-Loh C E, Mamphweli S N, Meyer E L, et al. An overview of the control of bacterial pathogens in cattle manure[J]. International Journal of Environmental Research and Public Health, 2016, 13(9): 1-27.
[17] Aboltins A, Priekulis J, Aboltina B, et al. Effect of slurry lagoon redesign on reduction of ammonia emission during livestock manure storage[J]. Agronomy Research, 2017, 15(5): 1822-1830.
[18] Priekulis J, Murikov V. Research in liquid manure removal and storage technological versions on milk farms[J]. Agronomy Research, 2008, 6(Special issue): 299-306.
[19] 張靖靜,柳玉華,陳杭. 我國(guó)南方地區(qū)中小型奶牛場(chǎng)設(shè)計(jì)Ⅱ.牛舍、運(yùn)動(dòng)場(chǎng)等建筑設(shè)計(jì)[J].江蘇農(nóng)業(yè)科學(xué),2003,2:49-52.
[20] 尤震晨,胥磊,黃錫霞,等. 新疆北疆地區(qū)奶牛場(chǎng)建設(shè)與糞污處理情況分析[J]. 家畜生態(tài)學(xué)報(bào),2019,40(1):60-64. You Zhenchen, Xu Lei, Huang Xixia, et al. Analysis on dairy farm construction and manure treatment in northern Xinjiang[J]. Acta Ecologiae Animalis Domastici, 2019, 40(1): 60-64. (in Chinese with English abstract)
[21] 劉海源. 我國(guó)北方地區(qū)工廠化奶牛場(chǎng)設(shè)計(jì)研究[D]. 哈爾濱:哈爾濱工業(yè)大學(xué),2009. Liu Haiyuan. The Research of the Factory-dairy Farm Design in Northern China[D]. Harbin: Harbin Institute of Technology. 2009. (in Chinese with English abstract)
[22] 中華人民共和國(guó)國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局中國(guó)國(guó)家標(biāo)準(zhǔn)化管理委員會(huì). 畜禽養(yǎng)殖污水貯存設(shè)施設(shè)計(jì)要求:GB/T26624—2011[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社.
[23] 趙潤(rùn),楊仁杰,牟美睿,等. 基于中紅外光譜的規(guī)?;膛?chǎng)糞水總氮快速預(yù)測(cè)方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(15): 217-224. Zhao Run, Yang Renjie, Mou Meirui, et al. Rapid prediction method of total nitrogen in slurry of large-scale dairy farm by mid-infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 217-224.(in Chinese with English abstract)
[24] 張帥,陸鵬,陳碩,等. 京郊畜禽糞污氮磷含量特征及影響因素分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(8): 244-251. Zhang Shuai, Lu Peng, Chen Shuo, et al. Characteristics of nitrogen and phosphorus content and analysis of its influencing factors in feces and wastewater of livestock farms in Beijing suburb[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(8): 244-251.(in Chinese with English abstract)
[25] 孫迪,楊仁杰,李夢(mèng)婷,等. 春秋季對(duì)近紅外光譜模型預(yù)測(cè)奶牛場(chǎng)糞水氮磷含量結(jié)果的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(10): 197-205. Sun Di, Yang Renjie, Li Mengting, et al. Influences of spring and autumn on the nitrogen and phosphorus contents of the slurry predicted by near-infrared spectrum model on dairy farms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 197-205.(in Chinese with English abstract)
[26] 全國(guó)畜牧總站中國(guó)飼料工業(yè)協(xié)會(huì)國(guó)家畜禽養(yǎng)殖廢棄物資源化利用科技創(chuàng)新聯(lián)盟. 土地承載力測(cè)算技術(shù)指南[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2017.
[27] 韓成吉,王國(guó)剛,朱立志. 畜禽糞污土地承載力系統(tǒng)動(dòng)力學(xué)模型及情景仿真[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(22): 170-180. Han Chengji, Wang Guogang, Zhu Lizhi. System dynamic model and scenario simulation of land carrying capacity for livestock and poultry manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 170-180.(in Chinese with English abstract)
Technological design of slurry manure storage and returning to farmland for fertilization on large-scale dairy farm
Xu Pengxiang, Shen Yujun, Ding Jingtao, Meng Haibo※, Zhang Pengyue
(,,,,,100125,)
In order to promote the healthy development of animal husbandry, China put forward the road of green development of agriculture. The combination of planting and breeding has become an inevitable choice. The utilization of manure back to farmland is an important way of waste treatment in dairy farms. There are three types of manure, including solid, liquid, and slurry manure, which can be used as organic fertilizers. At present, returning of solid manure (after composting) and liquid manure (after storage or anaerobic fermentation) to the cropland has become the main way in dairy farms in China, while the slurry manure (after storage) is widely used in developed countries, such as Europe and America. Compared to other types of manure, the slurry manure contained higher nutrient, showing a promising application prospect in the areas with sufficient farmland. The storage technology of slurry manure has some good characteristics, such as easy collection of excrement, saving storage areas, and low treatment cost. However, only a few application cases were realized in China. In this study, the following contents were investigated for the technological design of manure storage, including the amount of collected manure wastes, parameters of storage facilities, parameters of manure utilization to farmland, costs of operation and so on,the volume of slurry manure storage facilities and the matching land areas of manure returning to farmland were given at the end. The results showed that the obvious advantages can be found in the slurry manure technology. A scaled farm with 500 dairy cattle was taken as an example, where the amount of slurry manure was 17.33 t per day. There are two types of slurry manure storage facilities, under-floor storage pit inside the breeding house and manure storage lagoon outside. The length, width, and depth of one under-floor storage pit were 85, 12 and 2 m, respectively, which can meet the storage need of slurry manure produced during 9 months. In the scaled farm with 500 dairy cattle, it needed 5 under-floor storage pits, where the total volume was 10 200 m3. The length, width, and depth of one manure storage lagoon were 90, 30 and 2.2 m, respectively, with a total volume of 5 615 m3, which can meet the storage need of slurry manure produced during 9 months. The farmland area for the application of manure was closely related to crop species and planting system. If the planting crops were wheat, harvest once a year, 248.4 hm2of farmland was needed for manure application. If the planting crops were corn, harvest once a year, 400.6 hm2of farmland was needed for manure application. If the planting crops were wheat and corn, harvest twice a year, 122.8 hm2of farmland was needed for manure application. If the planting crops were rice, harvest twice a year, 127.0 hm2of farmland was needed for manure application. The cost of all slurry manure returning to farmland was 103.7 thousand yuan, saving about 228 thousand yuan a year, compared with that of chemical fertilizers, and the annual economic benefit is 124.3 thousand yuan. The finding can provide a potential support for the application of storage technology for slurry manure.
manure; storage; dairy farms; farmland utilization; technological design
徐鵬翔,沈玉君,丁京濤,等. 規(guī)模化奶牛場(chǎng)糞污全量貯存及肥料化還田工藝設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(21):260-265. doi:10.11975/j.issn.1002-6819.2020.21.031 http://www.tcsae.org
Xu Pengxiang, Shen Yujun, Ding Jingtao, et al. Technological design of slurry manure storage and returning to farmland for fertilization on large-scale dairy farm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 260-265. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.21.031 http://www.tcsae.org
2020-06-30
2020-09-23
農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計(jì)研究院自主研發(fā)項(xiàng)目:畜禽養(yǎng)殖糞水酸化貯存及施用技術(shù)研究(2018ZZYF0101)
徐鵬翔,博士,高級(jí)工程師,主要從事農(nóng)業(yè)廢棄物資源化利用研究。Email:xpx527@126.com
孟海波,博士,研究員,主要從事農(nóng)業(yè)廢棄物資源化利用研究。Email:newmhb7209@163.com
10.11975/j.issn.1002-6819.2020.21.031
X713
A
1002-6819(2020)-21-0260-06