亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一種涉及大地坐標(biāo)的大角度三維坐標(biāo)轉(zhuǎn)換方法

        2021-01-13 13:12:50邵先鋒楊泰朋
        山西建筑 2021年2期
        關(guān)鍵詞:方法模型

        馬 雷 邵先鋒 楊泰朋

        (國(guó)網(wǎng)安徽省電力有限公司建設(shè)分公司,安徽 合肥 230022)

        1 概述

        坐標(biāo)轉(zhuǎn)換參數(shù)求解作為經(jīng)典大地測(cè)量問題,通?;谄邊?shù)模型求解出不同坐標(biāo)系之間的轉(zhuǎn)換參數(shù)[1]。三維坐標(biāo)轉(zhuǎn)換的7個(gè)參數(shù)包含3個(gè)平移參數(shù)、1個(gè)尺度參數(shù)以及3個(gè)旋轉(zhuǎn)參數(shù),而精確并可靠地估計(jì)轉(zhuǎn)換參數(shù)是三維坐標(biāo)轉(zhuǎn)換的核心問題[2]。通常利用3個(gè)及以上的公共點(diǎn)的坐標(biāo),將七參數(shù)模型轉(zhuǎn)換為經(jīng)典最小二乘理論的Gauss-Markov模型進(jìn)行求解,然后根據(jù)求解的轉(zhuǎn)換參數(shù)再將非公共點(diǎn)的坐標(biāo)轉(zhuǎn)換到目標(biāo)坐標(biāo)系下[3]。

        當(dāng)旋轉(zhuǎn)角較小且尺度比接近1時(shí),常采用Bursa-Wolf模型進(jìn)行描述。當(dāng)旋轉(zhuǎn)角較大時(shí),應(yīng)采用相似變換Helmert模型。姚宜賓采用Taylor級(jí)數(shù)對(duì)Helmert模型進(jìn)行線性化,提出了適用于大角度和任意尺度比的轉(zhuǎn)換方法[4]。陳義根據(jù)旋轉(zhuǎn)矩陣的正交特征,構(gòu)建了附有約束的坐標(biāo)轉(zhuǎn)換模型[5]。另外,空間坐標(biāo)的表現(xiàn)形式有很多種,最常見的形式是空間直角坐標(biāo)系。但在某些領(lǐng)域的原始坐標(biāo)觀測(cè)值常采用大地坐標(biāo)的形式,比如三維點(diǎn)云數(shù)據(jù)、導(dǎo)航數(shù)據(jù)等。當(dāng)存在大地坐標(biāo)時(shí),常用的方法是將公共點(diǎn)的大地坐標(biāo)變換為同坐標(biāo)系下的直角坐標(biāo),然后利用兩套直角坐標(biāo)進(jìn)行轉(zhuǎn)換參數(shù)的求解[6]。在上述過程中,大地坐標(biāo)可以很容易變換成相應(yīng)的直角坐標(biāo),但是由于轉(zhuǎn)換過程是非線性的,點(diǎn)位精度的損失難以避免。因此,在存在大地坐標(biāo)的情況下,傳統(tǒng)方法存在一定的缺陷,因此,如何避免大地坐標(biāo)變換成直角坐標(biāo)的精度損失具有重要的理論研究意義。

        綜上所述,本文以涉及大地坐標(biāo)時(shí)的坐標(biāo)轉(zhuǎn)換為研究對(duì)象,研究混合大地坐標(biāo)與直角坐標(biāo)進(jìn)行坐標(biāo)轉(zhuǎn)換的轉(zhuǎn)換算法,避免大地坐標(biāo)變換相應(yīng)直角坐標(biāo)產(chǎn)生的精度損失,進(jìn)而提高坐標(biāo)轉(zhuǎn)換的精度。

        2 涉及大地坐標(biāo)的轉(zhuǎn)換方法

        大地坐標(biāo)與直角坐標(biāo)之間具有如下函數(shù)關(guān)系:

        (1)

        式中:X,Y,Z——點(diǎn)位直角坐標(biāo);

        B,L,H——點(diǎn)位的大地緯度、大地精度及大地高;

        N——橢球卯酉圈曲率半徑;

        o——橢球第一偏心率。

        根據(jù)Helmert轉(zhuǎn)換模型,涉及大地坐標(biāo)時(shí),對(duì)于單個(gè)點(diǎn)的觀測(cè)方程表達(dá)如下:

        (2)

        式中:下標(biāo)“T”和“C”——目標(biāo)坐標(biāo)系和源坐標(biāo)系;

        e——相應(yīng)的隨機(jī)誤差項(xiàng);

        ΔX,ΔY,ΔZ——平移參數(shù);

        s——尺度參數(shù);

        R——旋轉(zhuǎn)矩陣,具體形式如下:

        R=R(εz)R(εy)R(εx);

        根據(jù)Taylor級(jí)數(shù)對(duì)式(2)進(jìn)行展開可得:

        (3)

        其中:

        將式(3)整理可得誤差方程:

        l+Je=Adβ

        (4)

        其中:

        當(dāng)有n個(gè)公共點(diǎn)時(shí),根據(jù)式(4)構(gòu)建誤差方程,根據(jù)經(jīng)典最小二乘的Gauss-Markov模型,轉(zhuǎn)換參數(shù)的最小二乘解為:

        dβ=(ATPA)-1ATPl

        (5)

        其中,P=(JQJT)-1,Q為誤差的先驗(yàn)協(xié)因數(shù)矩陣。

        3 仿真實(shí)驗(yàn)

        假設(shè)有15個(gè)點(diǎn),選取其中10個(gè)點(diǎn)作為公共點(diǎn),剩余5個(gè)點(diǎn)作為檢核點(diǎn)。

        轉(zhuǎn)換參數(shù)的真值設(shè)定為:β=[1 000 m 896 m 956 m 1.3 0.046 rad -0.032 rad -0.065 rad]T。以CSCG2000橢球?yàn)槔?,在[-π π],[-0.45π 0.45π]以及[20 m 600 m]范圍分別生成目標(biāo)框架下的緯度、經(jīng)度和大地高,根據(jù)Helmert轉(zhuǎn)換模型的逆變換生成源框架下的三維直角坐標(biāo)。在[1.5 3]×10-7范圍內(nèi)生成經(jīng)緯度的標(biāo)準(zhǔn)差,在[1 m 5 m]范圍內(nèi)生成大地高的標(biāo)準(zhǔn)差(見圖1)。

        執(zhí)行1 000次Monte Carlo實(shí)驗(yàn),每次實(shí)驗(yàn)的參數(shù)真值和坐標(biāo)是固定的,但每次實(shí)驗(yàn)的隨機(jī)誤差是通過上述的標(biāo)準(zhǔn)差采用零均值高斯分布獨(dú)立生成,分別采用以下兩種方法求解:

        1)傳統(tǒng)方法;

        2)本文提出的直接采用大地坐標(biāo)進(jìn)行解算。

        根據(jù)不同方案的計(jì)算結(jié)果,分別計(jì)算轉(zhuǎn)換七參數(shù)以及5個(gè)非公共點(diǎn)在目標(biāo)框架下三維坐標(biāo)的RMS,具體計(jì)算公式如下:

        (6)

        轉(zhuǎn)換參數(shù)的均方根誤差見表1。非公共點(diǎn)解算的差值序列統(tǒng)計(jì)見表2。

        表1 轉(zhuǎn)換參數(shù)的均方根誤差

        表2 非公共點(diǎn)解算的差值序列統(tǒng)計(jì)

        根據(jù)表1,表2以及圖2可以發(fā)現(xiàn):

        1)在轉(zhuǎn)換參數(shù)求解方面,兩種求解方法的精度都較高。但相比之下,直接采用大地坐標(biāo)進(jìn)行坐標(biāo)轉(zhuǎn)換的方案2與傳統(tǒng)方法的方案1相比,平移、尺度和旋轉(zhuǎn)參數(shù)的RMS分別提高23%,28%,19%,15%,27%,10%以及8%。

        2)在5個(gè)非公共站的轉(zhuǎn)換精度方面,相比較于方案2,在X方向上最大值、最小值以及均方根誤差平均提高11%,23%以及16%;在Y方向上最大值、最小值以及均方根誤差平均提高26%,17%以及24%;在Z方向上最大值、最小值以及均方根誤差平均提高23%,14%以及16%。

        通過上述分析1 000次Monte Carlo實(shí)驗(yàn)的結(jié)果表明:直接采用大地坐標(biāo)的方法獲得結(jié)果均優(yōu)于傳統(tǒng)方法,驗(yàn)證了在大地坐標(biāo)變換為直角坐標(biāo)時(shí),由于非線性影響導(dǎo)致點(diǎn)位精度傳播時(shí)出現(xiàn)了損失,導(dǎo)致轉(zhuǎn)換參數(shù)以及非公共點(diǎn)的轉(zhuǎn)換的精度降低。因此,當(dāng)涉及大地坐標(biāo)時(shí),應(yīng)采用本文提出的方法進(jìn)行求解。

        4 結(jié)語(yǔ)

        由于大地坐標(biāo)變換為同框架下的直角坐標(biāo)時(shí),點(diǎn)位精度的傳播受非線性影響較大,導(dǎo)致點(diǎn)位精度出現(xiàn)損失。本文提出的直接采用大地坐標(biāo)進(jìn)行轉(zhuǎn)換參數(shù)求解方法,相比較于傳統(tǒng)方法,轉(zhuǎn)換參數(shù)的精度以及非公共站的轉(zhuǎn)換精度都優(yōu)于傳統(tǒng)方法。另外,本文方法的理論依據(jù)是經(jīng)典最小二乘的Gauss-Markov模型,通過本文推導(dǎo)的公式可以發(fā)現(xiàn),系數(shù)矩陣A中也是存在大地坐標(biāo)觀測(cè)值,但該部分的誤差并未考慮。因此,針對(duì)系數(shù)矩陣含有的觀測(cè)值需要采用整體最小二乘的思想進(jìn)行進(jìn)一步研究。

        猜你喜歡
        方法模型
        一半模型
        重要模型『一線三等角』
        重尾非線性自回歸模型自加權(quán)M-估計(jì)的漸近分布
        學(xué)習(xí)方法
        可能是方法不對(duì)
        3D打印中的模型分割與打包
        用對(duì)方法才能瘦
        Coco薇(2016年2期)2016-03-22 02:42:52
        FLUKA幾何模型到CAD幾何模型轉(zhuǎn)換方法初步研究
        四大方法 教你不再“坐以待病”!
        Coco薇(2015年1期)2015-08-13 02:47:34
        賺錢方法
        综合图区亚洲另类偷窥| 精品三级久久久久久久| 国产精品丝袜一区二区三区在线| 久久国产精品男人的天堂av| 手机av在线播放网站| 国产成人亚洲系列毛片| 国产av无码专区亚洲av果冻传媒| 肥老熟妇伦子伦456视频| 日日澡夜夜澡人人高潮| 亚洲第一看片| 日韩亚洲午夜精品一区二区三区 | 少妇夜夜春夜夜爽试看视频 | 午夜福利啪啪片| 久久精品国产亚洲av高清色欲 | 男人的天堂手机版av| 干日本少妇一区二区三区| 网禁拗女稀缺资源在线观看| 国产偷窥熟女精品视频| 亚洲av色香蕉一区二区蜜桃| 24小时在线免费av| 亚瑟国产精品久久| 欧美a级在线现免费观看| 久久青青草原亚洲av| 国产人妖视频一区二区| 无码人妻一区二区三区兔费| 一二三四在线视频社区3| 男女在线免费视频网站| 日韩精品在线视频一二三| 狠狠色成人综合网| 国产欧美日韩不卡一区二区三区 | 中文字幕乱码高清完整版| 久久欧美与黑人双交男男| 国产91AV免费播放| 国产亚洲av成人噜噜噜他| 亚洲欧美日韩综合一区二区| 久久人人玩人妻潮喷内射人人| 国产精品久久久久电影网| 手机色在线| 午夜男女靠比视频免费| 真人抽搐一进一出视频| 小sao货水好多真紧h视频|