亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        南方紅壤丘陵區(qū)侵蝕溝道內(nèi)土壤團(tuán)聚體及有機(jī)碳特征

        2020-12-25 01:22:26曾廣偌崔琳琳
        關(guān)鍵詞:坡位坡腳土壤侵蝕

        張 相,李 肖,林 杰,錢 洲,曾廣偌,崔琳琳

        南方紅壤丘陵區(qū)侵蝕溝道內(nèi)土壤團(tuán)聚體及有機(jī)碳特征

        張 相1,李 肖1,林 杰1※,錢 洲2,曾廣偌3,崔琳琳1

        (1. 南京林業(yè)大學(xué)南方現(xiàn)代協(xié)同創(chuàng)新中心,江蘇省水土保持與生態(tài)修復(fù)重點(diǎn)實(shí)驗(yàn)室,南京 210037;2. 南京市水土保持管理中心,南京 210008;3. 江西省吉安林業(yè)科學(xué)研究所,吉安 343000)

        為了更好地揭示特殊地形下水蝕過程對(duì)土壤結(jié)構(gòu)和有機(jī)碳含量分配的影響,選取典型南方紅壤丘陵區(qū)—青原山小流域?yàn)檠芯繀^(qū),采用核素137Cs示蹤技術(shù)研究小流域侵蝕溝道內(nèi)水土流失現(xiàn)狀,分析了溝道侵蝕對(duì)土壤團(tuán)聚體穩(wěn)定性及有機(jī)碳含量的影響。結(jié)果表明:侵蝕溝道的坡頂處137Cs含量最高,且高于背景值,屬于沉積區(qū),而坡上、坡腳屬于中度侵蝕,坡中屬于輕度侵蝕;侵蝕溝道順坡而下侵蝕過程依次表現(xiàn)為絕對(duì)沉積、絕對(duì)侵蝕、相對(duì)沉積和絕對(duì)侵蝕,其中植被和地形因子是主導(dǎo)因素;沉積區(qū)相比于侵蝕區(qū)平均質(zhì)量直徑(Mean Weight Diameter,MWD)和大團(tuán)聚體含量(粒徑≥0.25 mm)更高,侵蝕區(qū)中相對(duì)沉積的坡中有著更穩(wěn)定的土壤團(tuán)粒結(jié)構(gòu);沉積區(qū)各個(gè)粒徑的土壤團(tuán)聚體有機(jī)碳含量均高于侵蝕區(qū),侵蝕區(qū)的土壤團(tuán)聚體有機(jī)碳更趨向于均勻分配,土壤理化性質(zhì)的空間差異也會(huì)影響土壤團(tuán)聚體有機(jī)碳含量。侵蝕溝道中土壤侵蝕模式與傳統(tǒng)坡面并不一致,土壤結(jié)構(gòu)及相關(guān)碳組分主要受地形和植被支配下的土壤侵蝕程度影響。

        土壤;侵蝕;侵蝕溝道;團(tuán)聚體;有機(jī)碳;137Cs

        0 引 言

        土壤侵蝕是土壤及其母質(zhì)在外營(yíng)力作用下,被破壞、分離、搬運(yùn)和沉積的過程[1]。近10 a來,隨著認(rèn)識(shí)的深入和社會(huì)需求的變化,土壤侵蝕研究逐步從過程和機(jī)理的剖析延伸至面源污染、物質(zhì)循環(huán)與全球變化等科學(xué)領(lǐng)域[2]。水蝕過程破壞土壤結(jié)構(gòu),導(dǎo)致土壤中的有機(jī)碳以徑流泥沙為載體,跨越坡面,匯集至溝道,遷移至流域出口,大大增加了土壤碳循環(huán)的不確定性[3]。傳統(tǒng)的侵蝕模式往往是由上坡位的“侵蝕源”,向下坡位的“沉積匯”進(jìn)行物質(zhì)遷移,但隨著侵蝕過程的不斷進(jìn)行,沉積區(qū)可能發(fā)生源/匯轉(zhuǎn)變,導(dǎo)致有機(jī)碳遭受損失[4-5]。137Cs作為土壤侵蝕有效的示蹤劑,與有機(jī)碳有著相似的遷移規(guī)律,能定量的表征土壤流失模數(shù)[6]。鑒于此,利用核素示蹤技術(shù)探究侵蝕溝道內(nèi)土壤侵蝕過程與有機(jī)碳分布格局具有重要的現(xiàn)實(shí)意義。

        團(tuán)聚體作為土壤的基本單元[7],其形成機(jī)制和有機(jī)碳儲(chǔ)存與土壤結(jié)構(gòu)穩(wěn)定性密切相關(guān)[8]。Six等[9]發(fā)現(xiàn)粒徑≥0.25 mm大團(tuán)聚體可以有效阻止微生物對(duì)團(tuán)聚體的礦化,從而達(dá)到保護(hù)有機(jī)碳的目的;彭新華等[10]認(rèn)為土壤中大部分有機(jī)碳存在于粒徑<0.25 mm微團(tuán)聚體中,并揭示了不同粒徑團(tuán)聚體對(duì)有機(jī)碳固定的作用機(jī)制;邸佳穎等[11]發(fā)現(xiàn)長(zhǎng)期施肥會(huì)促進(jìn)紅壤水稻土≥0.25 mm大團(tuán)聚體形成和穩(wěn)定性,增加土壤有機(jī)碳的固持;但少有探究團(tuán)聚體有機(jī)碳對(duì)于土壤侵蝕的響應(yīng)。南方紅壤低山丘陵區(qū)環(huán)境的特殊性和生態(tài)系統(tǒng)的脆弱性導(dǎo)致土壤侵蝕現(xiàn)象尤為明顯,區(qū)域內(nèi)仍有將近1.6×105km2的水土流失面積,主要以崩崗為主[12]。前人的研究[13-14]大多聚焦于侵蝕坡面而忽略了侵蝕溝道土壤侵蝕的現(xiàn)狀,作為兩側(cè)山脊的匯水區(qū)域,切溝侵蝕造成的狹窄谷地的土壤分離與有機(jī)碳遷移機(jī)制知之甚少。因此,本文將研究區(qū)設(shè)在南方紅壤丘陵區(qū)的青原山小流域,選擇坡面匯水的侵蝕溝道并按照局部地形劃分坡位,結(jié)合核素137Cs示蹤技術(shù)量化各個(gè)坡位土壤侵蝕特征,分析不同侵蝕/沉積背景下土壤團(tuán)聚體穩(wěn)定性以及有機(jī)碳特征,深入揭示水蝕過程對(duì)土壤結(jié)構(gòu)穩(wěn)定性及有機(jī)碳再分配的影響機(jī)制,以期為該區(qū)域水土流失防治和低效林地肥力提升提供理論依據(jù)。

        1 材料與方法

        1.1 研究區(qū)域

        研究區(qū)設(shè)在江西省吉安市青原區(qū)青原山小流域(115°6′38″E,27°4′17″N),位于江西省中部。該區(qū)屬于亞熱帶季風(fēng)濕潤(rùn)性氣候,年降雨量1 500 mm,多年平均氣溫18 ℃左右,平均日照時(shí)間1 814 h,無霜期277 d。土壤類型包括紅壤、山地黃壤、水稻土、潮土、紫色土等,紅壤分布于全區(qū)丘陵和坡地,占全區(qū)土壤總面積60%以上,主要由第四紀(jì)淺變質(zhì)巖發(fā)育而成,屬于酸性土壤。植被多為亞熱帶常綠闊葉林與針葉林,以人工林為主,主要包括馬尾松、香樟、無患子等喬木樹種以及鉤藤、絞股藍(lán)等林下草本;土壤侵蝕以水蝕為主,人為干擾較小,屬于保存好的坡林地,樣地基本信息見表1。

        表1 樣地基本信息

        1.2 試驗(yàn)設(shè)計(jì)

        2018年3月,按照典型性和代表性原則在研究區(qū)設(shè)置3個(gè)斷面作為重復(fù),基本理化性質(zhì)見表2。在每處樣地內(nèi)設(shè)置1個(gè)20 m×20 m的樣方,在每個(gè)樣方內(nèi)按照S形布設(shè)5個(gè)樣點(diǎn),除去土壤表層枯枝落葉,按0~10、>10~20和>20~30 cm土壤深度用鋁盒采集原狀土樣用于土壤團(tuán)聚體組成測(cè)定,然后將樣點(diǎn)相同土層混合,即每個(gè)樣地混合成3個(gè)分層土樣,共計(jì)36個(gè)土壤團(tuán)聚體測(cè)定樣品,用來研究水蝕背景下土壤團(tuán)聚體及有機(jī)碳特征;為測(cè)定土壤中核素含量,用直徑為5 cm土鉆分別采集0~20 cm土壤全樣及以5 cm間隔獲得分層樣品,取樣重復(fù)同上,共計(jì)60個(gè)核素樣品。將樣品帶回實(shí)驗(yàn)室內(nèi),所有土壤樣品手工移除植物殘?bào)w、石塊及侵入體等,核素樣品研磨后過0.150 mm篩孔在150 ℃烘箱中烘干至質(zhì)量恒定,冷卻至室溫后稱取300 g密封21 d。核素委托南京師范大學(xué)虛擬地理與環(huán)境實(shí)驗(yàn)室進(jìn)行測(cè)定。土壤團(tuán)聚體樣品進(jìn)行預(yù)處理,按照自然裂隙掰成1 cm3的小土塊用作土壤團(tuán)聚體粒徑的進(jìn)一步分級(jí)。

        表2 研究區(qū)基本理化性質(zhì)

        注:BD為容重;WHC為飽和持水量;CAP為毛管孔隙;AP為堿解氮;TN為全氮;SOC為有機(jī)碳;C/N為碳氮比。下同

        Note: BD is bulk density; WHC is saturated water content; CAP is capillary pore; AN is available nitrogen; AP is available phosphorus; TN is total nitrogen; SOC is soil organic carbon; C/N is carbon-nitrogen ratio. Same as below.

        1.3 指標(biāo)計(jì)算

        137Cs示蹤技術(shù)是反映土壤侵蝕過程的重要手段。計(jì)算結(jié)果為137Cs的比活度,表示為Bq/kg,并可以通過計(jì)算轉(zhuǎn)化為單位面積的活度值。

        采樣點(diǎn)面積活度值計(jì)算如下[15]:

        式中CPI為樣地的137Cs面積活度,Bq/m2;為采樣層序號(hào);為采樣的總層數(shù);C為第層的137Cs比活度,Bq/kg;BD為第層的土壤容重,g/cm3;D為第層的土層深度,m;103為校正系數(shù)。

        選用鄰近濮勵(lì)杰等[16]研究的背景值作為參考依據(jù),確定137Cs的背景值為1 992.45 Bq/m2,與王曉燕等[17]、唐翔宇等[18]在南方紅壤區(qū)的研究結(jié)果類似,說明背景值可靠。

        1)當(dāng)土壤137Cs含量低于背景值時(shí),采用楊浩等[19]提出的非耕作土壤137Cs指數(shù)衰減模型計(jì)算土壤侵蝕特征參數(shù),公式如下:

        ()=e?bx(2)

        式中為土層分布深度,mm;為土壤表層的137Cs比活度,Bq/kg;為137Cs比活度垂直衰減系數(shù),1/mm;BD為土壤容重,g/cm3;A為參考點(diǎn)面積活度,Bq/m2;A為年時(shí)采樣的面積活度,Bq/m2;h為1963年以來總的土壤侵蝕厚度,mm;為年均土壤侵蝕厚度,mm/a;為年均土壤侵蝕模數(shù),t/(km2·a)。

        2)當(dāng)采樣區(qū)土壤137Cs含量大于背景值時(shí),采用Lowrance等[20]提出的沉積模型來計(jì)算土壤沉積特征參數(shù),公式如下:

        式中為年均土壤侵蝕模數(shù),t/(km2·a);為樣點(diǎn)137Cs的面積活度,Bq/m2;為背景區(qū)137Cs的面積活度,Bq/m2;W為沉積區(qū)137Cs平均比活度,Bq/kg;為采樣年份,a;103為校正系數(shù)。

        本試驗(yàn)采用濕篩法[21]得到>2、2~0.25、>0.25~0.053和<0.053 mm 4個(gè)粒徑團(tuán)聚體組成的百分比。土壤大團(tuán)聚體含量(0.25)為≥0.25 mm團(tuán)聚體百分含量,土壤團(tuán)聚體平均質(zhì)量直徑(Mean Weight Diameter,MWD)計(jì)算公式[22]如下:

        式中X代表第粒徑的平均直徑,mm;W代表第粒徑團(tuán)聚體的質(zhì)量百分比,%;代表某粒徑團(tuán)聚體;代表團(tuán)聚體分級(jí)數(shù)量。

        濕篩結(jié)束后,將>2、2~0.25、>0.25~0.053和<0.053 mm土壤團(tuán)聚體放置于60 ℃烘箱中進(jìn)行烘干處理,然后采用重鉻酸鉀水浴加熱法[23]測(cè)定其土壤團(tuán)聚體有機(jī)碳含量。

        1.4 數(shù)據(jù)處理及分析

        利用SPSS 25.0進(jìn)行單因素方差分析(One-way ANOVA)、鄧肯顯著性檢驗(yàn)(Duncan significance test);采用Canoco 5.0軟件進(jìn)行RDA分析(Redundancy analysis);用Origin 2019b軟件繪制圖形。

        2 結(jié)果與分析

        2.1 不同坡位137Cs比活度

        從山坡頂部到坡腳部,基于標(biāo)準(zhǔn)源比對(duì)法分析了137Cs的空間分布特征,發(fā)現(xiàn)137Cs比活度在不同土壤剖面深度以及坡位均表現(xiàn)出明顯的差異(圖1)。除坡上處,其他坡位137Cs的比活度均隨土層深度增加呈現(xiàn)指數(shù)型下降,說明137Cs被表土吸附后在地表富集的現(xiàn)象以及孑遺的137Cs在剖面有限的分布形式。在相同土層,坡頂處的比活度明顯高于其他坡位,與背景值相比,坡頂處的比活度表現(xiàn)出了絕對(duì)的沉積現(xiàn)象。大部分的137Cs比活度(坡頂94.08%,坡上86.33%,坡中75.56%以及坡腳94.83%)均富集在表土0~15 cm土層。坡腳處0~5 cm土層137Cs的比活度約為10.06 Bq/kg,分別是坡上和坡中的2.22和1.39倍,但低于背景點(diǎn)和坡頂,表明137Cs在坡腳處土壤中出現(xiàn)了相對(duì)的匯集現(xiàn)象。

        圖1 不同坡位剖面137Cs比活度分布

        2.2 不同坡位土壤侵蝕特征

        由表3可知,137Cs的面積活度值域范圍為576.33~4 488.08 Bq/m2,最大值是最小值的7.79倍,表明在同一個(gè)小流域不同坡位土壤侵蝕的差異非常明顯。坡頂處137Cs的面積活度明顯高于背景值,表明該處出現(xiàn)了凈沉積現(xiàn)象,而其他坡位均低于背景值,表明出現(xiàn)了凈流失現(xiàn)象。根據(jù)137Cs含量計(jì)算土壤侵蝕模數(shù)和年均土壤流失厚度,結(jié)果表明坡頂年土壤流失厚度約為2.79 mm,土壤堆積現(xiàn)象明顯,137Cs含量也表現(xiàn)出明顯的富集;各坡位的土壤模數(shù)變化范圍為660.08~3 654.97 t/(km2?a),按照中國(guó)土壤侵蝕強(qiáng)度標(biāo)準(zhǔn)劃分,坡腳和坡上均屬于中度侵蝕,坡中屬于輕度侵蝕,坡腳作為坡面徑流的主要匯集場(chǎng)所,存在明顯的水力侵蝕作用。坡中137Cs含量低于背景值,屬于侵蝕區(qū),但又明顯高于坡上,表明地表徑流攜帶的泥沙在此處出現(xiàn)了沉積現(xiàn)象。從泥沙遷移角度來看,整個(gè)侵蝕溝道順坡而下侵蝕過程依次表現(xiàn)為絕對(duì)沉積、絕對(duì)侵蝕、相對(duì)沉積和絕對(duì)侵蝕。

        表3 不同坡位137Cs含量及土壤侵蝕模數(shù)

        注:正、負(fù)數(shù)分別代表凈侵蝕與凈沉積。

        Note: Positive and negative numbers represent net erosion and net deposition, respectively.

        2.3 不同坡位土壤團(tuán)聚體的組成及穩(wěn)定性

        不同粒徑土壤團(tuán)聚體在保護(hù)有機(jī)碳及土壤穩(wěn)定性的方面發(fā)揮重要的作用。不同侵蝕區(qū)坡位土壤團(tuán)聚體含量變化差異較大(表4),沉積區(qū)和侵蝕區(qū)各粒徑土壤團(tuán)聚體含量差異顯著(0.05),沉積區(qū)>2 mm團(tuán)聚體含量相比于侵蝕區(qū)增加了1.57倍,而其他粒徑的團(tuán)聚體含量分別減少了31.72%,65.85%,46.17%。侵蝕區(qū)團(tuán)聚體含量受坡位影響顯著(表4),坡中處>2 mm團(tuán)聚體含量最高,坡上和坡腳團(tuán)聚體含量相比于坡中分別降低了28.94%、40.93%,除>2 mm團(tuán)聚體含量外,2~0.25、>0.25~0.053和<0.053 mm團(tuán)聚體含量在侵蝕區(qū)沿著侵蝕坡面表現(xiàn)出先減小后增加的趨勢(shì);坡中處>0.25~0.053 mm團(tuán)聚體含量最少,約為22.4%;此外,土壤團(tuán)聚體含量隨粒徑的減小呈現(xiàn)先減少后增加的趨勢(shì),坡上與坡腳處<0.25 mm團(tuán)聚體含量約占30%,接近>2 mm的團(tuán)聚體含量。

        表4 研究區(qū)各粒徑土壤團(tuán)聚體質(zhì)量分?jǐn)?shù)

        Table.4 Mass fraction of soil aggregates with different particle sizes in study area %

        注:同一列不同小寫字母表示侵蝕區(qū)不同坡位組內(nèi)差異顯著(0.05);同一列不同大寫字母表示侵蝕-沉積區(qū)組間差異顯著(0.05),下同。

        Note: Different lowercase letters in the same column indicate a significant difference between different slope positions of erosional sites(0.05); Different capital letters in the same column indicate a significant difference between erosional and depositional sites(0.05), same as below.

        土壤大團(tuán)聚體含量(0.25)與平均質(zhì)量直徑(MWD)在侵蝕區(qū)和沉積區(qū)存在顯著差異(圖2)。研究區(qū)主要以大團(tuán)聚體為主,約占67.47%~86.34%。沉積區(qū)土壤大團(tuán)聚體含量顯著高于侵蝕區(qū)(0.05),約為侵蝕區(qū)的1.22倍。在侵蝕區(qū)中,坡中的大團(tuán)聚體含量相比于坡上和坡腳分別增加了19.39%和25.41%,差異達(dá)到顯著水平(0.05)。與大團(tuán)聚體分布相似,沉積區(qū)的MWD值顯著高于侵蝕區(qū),約為侵蝕區(qū)的1.29倍。對(duì)于侵蝕區(qū)而言,坡中的MWD值約為1.45 mm,顯著高于其他坡位(0.05)。

        圖2 不同坡位平均質(zhì)量直徑與大團(tuán)聚體含量分布

        為了更好的揭示土壤侵蝕對(duì)土壤團(tuán)聚體組成及穩(wěn)定性的影響,通過RDA三序圖來解釋不同坡位處樣方信息之間的差異。如圖3所示,軸一和軸二的總的解釋率為84.11%,表明土壤侵蝕過程能夠解釋大部分土壤團(tuán)聚體組成及穩(wěn)定性的變化。從矢量的相關(guān)性來看,137Cs比活度與平均質(zhì)量直徑MWD值以及大團(tuán)聚體含量0.25呈現(xiàn)顯著的正相關(guān)關(guān)系(0.05),年均土壤侵蝕模數(shù)與年均土壤流失厚度與2~0.25、>0.25~0.053以及<0.053 mm團(tuán)聚體含量呈現(xiàn)顯著的負(fù)相關(guān)關(guān)系(0.05),這與土壤侵蝕崩解團(tuán)聚體,破壞土壤團(tuán)聚體穩(wěn)定性的結(jié)果一致。>2 mm和大團(tuán)聚體含量0.25分布在第二象限,其余粒徑均分布在第一和第四象限,2個(gè)組之間的差異主要體現(xiàn)在軸一上,表明>2 mm團(tuán)聚體對(duì)于侵蝕的響應(yīng)敏感。從樣方之間的差異來看,沉積區(qū)與侵蝕區(qū)的差異顯著(0.05),差異性指標(biāo)包括土壤團(tuán)聚體組成及穩(wěn)定性的所有參數(shù)。

        注:PSA1、PSA2、PSA3、PSA4分別為>2、2~0.25、>0.25~0.053和<0.053 mm團(tuán)聚體含量;MWD代表平均質(zhì)量直徑;R0.25代表大團(tuán)聚體含量;137Cs代表137Cs比活度;M代表年均土壤侵蝕模數(shù);h代表年均土壤流失厚度。

        2.4 不同坡位土壤團(tuán)聚體有機(jī)碳

        土壤團(tuán)聚體是有機(jī)碳的重要儲(chǔ)存場(chǎng)所,各粒徑團(tuán)聚體有機(jī)碳含量見表5。不同侵蝕區(qū)有機(jī)碳含量為8.05~39.87 g/kg,其中,沉積區(qū)>2、2~0.25、>0.25~0.053mm團(tuán)聚體有機(jī)碳含量相比于侵蝕區(qū)分別增加了150.13%、194.56%和78.25%,差異顯著(0.05),而<0.053 mm團(tuán)聚體有機(jī)碳含量沒有顯著性差異。表5還表明侵蝕區(qū)內(nèi)各個(gè)粒徑土壤團(tuán)聚體有機(jī)碳含量坡腳與坡中、坡腳與坡上差異顯著(0.05)。其中坡腳處>2和<0.053 mm團(tuán)聚體有機(jī)碳含量顯著高于其他坡位(0.05),而2~0.25 mm團(tuán)聚體有機(jī)碳含量最低;坡中處>2和2~0.25 mm團(tuán)聚體有機(jī)碳含量近似;坡腳處<0.053 mm團(tuán)聚體有機(jī)碳含量是坡中處<0.053 mm團(tuán)聚體有機(jī)碳含量的2.94倍。>0.25~0.053 mm團(tuán)聚體有機(jī)碳含量變化范圍為12.46~15.24 g/kg,其中坡腳顯著高于坡中(0.05)。從各個(gè)團(tuán)聚體粒徑來看,侵蝕區(qū)相比于沉積區(qū)各粒徑團(tuán)聚體有機(jī)碳呈現(xiàn)出均勻分配,但在不同坡位處有所差異,隨著侵蝕強(qiáng)度的增加,<0.25 mm團(tuán)聚體有機(jī)碳含量顯著提高,沉積區(qū)各個(gè)粒徑的團(tuán)聚體有機(jī)碳含量均高于侵蝕區(qū)。

        表5 各粒徑土壤團(tuán)聚體有機(jī)碳含量

        土壤侵蝕與沉積造成土壤理化性質(zhì)的空間差異也會(huì)影響有機(jī)碳分布的變化,尤其是團(tuán)聚體有機(jī)碳。對(duì)基本理化指標(biāo)、侵蝕指標(biāo)、土壤團(tuán)聚體穩(wěn)定性參數(shù)與各粒徑團(tuán)聚體有機(jī)碳進(jìn)行相關(guān)性分析(表6)。土壤微團(tuán)聚體在有機(jī)碳和菌絲的膠結(jié)作用下逐步形成較大粒徑的團(tuán)聚體,促進(jìn)土壤結(jié)構(gòu)穩(wěn)定,相關(guān)性分析結(jié)果表明2~0.25 mm團(tuán)聚體有機(jī)碳對(duì)團(tuán)聚體穩(wěn)定性的貢獻(xiàn)是正向的(0.05),相關(guān)系數(shù)為0.75。大部分的養(yǎng)分指標(biāo)均與>0.053 mm團(tuán)聚體有機(jī)碳含量呈現(xiàn)正相關(guān)關(guān)系(0.05),土壤侵蝕模數(shù)則為負(fù)相關(guān)關(guān)系(0.05)。土壤容重、砂粒含量、黏粒含量、飽和持水量與團(tuán)聚體有機(jī)碳相關(guān)性不顯著。土壤pH值、毛管孔隙與2~0.25 mm團(tuán)聚體有機(jī)碳含量呈現(xiàn)負(fù)相關(guān)關(guān)系(0.05),相關(guān)系數(shù)分別為?0.82和0.58;黏粒含量、團(tuán)聚體穩(wěn)定性參數(shù)MWD、大團(tuán)聚體含量0.25與2~0.25 mm團(tuán)聚體有機(jī)碳含量為正相關(guān)關(guān)系(0.05),相關(guān)系數(shù)均為0.75。

        表6 土壤理化性質(zhì)指標(biāo)與團(tuán)聚體有機(jī)碳含量相關(guān)分析

        注:C是砂粒含量;C是粉粒含量;C是黏粒含量;*,<0.05;**,<0.01,下同。

        Note:Cis sand content;Cis silt content; Cis clay content; *,<0.05;**,<0.01, the same below.

        3 討 論

        3.1 侵蝕溝道內(nèi)土壤侵蝕過程

        侵蝕溝道的坡頂處的土壤137Cs平均含量為4 288.21 Bq/m2(表3),遠(yuǎn)高于其他坡位處137Cs的含量,表明坡頂處有著明顯的沉積現(xiàn)象。前人的研究[24-25]多集中在山脊的侵蝕坡面上,呈現(xiàn)出上坡侵蝕,下坡沉積的景觀格局,但坡面尺度是由兩側(cè)匯水面與溝道組成,溝頭即坡頂在整個(gè)徑流匯集過程中既是源頭也是兩側(cè)分水嶺的匯水區(qū),當(dāng)發(fā)生降雨時(shí),溝頭對(duì)于來自分水嶺的泥沙優(yōu)先淤積在低洼處,所以表現(xiàn)出沉積而非侵蝕的特征。李航等[26]通過對(duì)山脊和山谷2種地形的土壤侵蝕特征研究也驗(yàn)證了這一結(jié)果。李小宇等[27]在人工林地的研究也指出地形對(duì)土壤侵蝕有著顯著的影響,峁坡和坡腳發(fā)生了顯著的沉積并含有更高的有機(jī)碳儲(chǔ)量。在侵蝕區(qū)中,坡上發(fā)生了明顯的土壤侵蝕,137Cs的含量顯著低于其他坡位,主要是較大的坡度與溝道縱比降,以及來自兩側(cè)分水嶺的坡面匯流和坡頂?shù)屯萏幍乃此斐傻?。土壤侵蝕模數(shù)與坡度呈現(xiàn)顯著的正相關(guān)關(guān)系,而與林草覆蓋度呈現(xiàn)顯著的負(fù)相關(guān)關(guān)系(<0.05)(表7)。與坡上相比,坡中的林下植被絞股藍(lán)以及鉤藤等對(duì)徑流泥沙有攔截作用,較厚的枯落物覆蓋也在一定程度上提高了土壤的抗沖性,所以坡中成為一個(gè)相對(duì)的“沉積區(qū)”。坡腳處137Cs的含量出現(xiàn)了明顯的下降,主要因?yàn)槠履_處坡度較陡,無植被覆蓋(表1)。以前的研究[28-29]表明坡腳處多為沉積區(qū),但本研究并未體現(xiàn)這種結(jié)論。原因可能是一方面流水的沖刷中斷了土壤物質(zhì)的沉積過程;另一方面坡腳處的泥沙仍然有朝著更為低洼處外流的趨勢(shì),所以表現(xiàn)出侵蝕特征。對(duì)于侵蝕溝道,地形因子在土壤侵蝕過程中占據(jù)主導(dǎo)地位,伴隨著坡度和起伏度的變化順坡而下可能出現(xiàn)侵蝕沉積交替進(jìn)行的景觀格局,并有相對(duì)侵蝕與相對(duì)沉積的現(xiàn)象產(chǎn)生。從更深遠(yuǎn)的角度來說,傳統(tǒng)意義上的土壤侵蝕模數(shù)刻畫的是流出小流域出口的凈泥沙量損失量而非真實(shí)的坡面土壤分離的侵蝕量[30]。基于侵蝕泥沙的分選特性[31],細(xì)顆粒的團(tuán)聚體以懸浮/躍移方式搬運(yùn),粗顆粒的團(tuán)聚體以滾動(dòng)的形式搬運(yùn),運(yùn)動(dòng)形式受控于水流剪切力、水流功率、顆粒尺寸等多種因素,這就形成了泥沙遷移的原位異位效應(yīng),更說明了溝道系統(tǒng)的土壤結(jié)構(gòu)及養(yǎng)分分布不同于坡面系統(tǒng)。未來的研究更應(yīng)著眼于“坡面與溝道”的整體系統(tǒng),建立注重水、沙匯流的侵蝕產(chǎn)沙模型,為水土保持關(guān)鍵技術(shù)和瓶頸問題提供依據(jù)。

        表7 土壤侵蝕模數(shù)與環(huán)境因子相關(guān)性分析

        3.2 土壤侵蝕對(duì)土壤結(jié)構(gòu)的影響

        不同的地形對(duì)土壤侵蝕的響應(yīng)不一,侵蝕區(qū)內(nèi)各個(gè)坡位的土壤團(tuán)聚體穩(wěn)定性存在差異。胡亞鮮等[4]在利用泥沙分餾裝置模擬泥沙遷移的研究中指出,大粒徑泥沙顆粒的去向主要為就地沉積,而細(xì)顆粒物質(zhì)則會(huì)隨流水遷移到較遠(yuǎn)的距離或者流出小流域。本研究坡腳處是主要的匯水區(qū),<0.053 mm團(tuán)聚體含量以及飽和持水量也表明該處的土壤質(zhì)地偏細(xì)(表2)。冗余分析的結(jié)果表明,土壤大團(tuán)聚體有機(jī)碳含量與土壤137Cs呈現(xiàn)正相關(guān)關(guān)系(圖3),這與朱茜等[32]在淮北土石山區(qū)的研究結(jié)果一致。此外,本研究還發(fā)現(xiàn)>2 mm團(tuán)聚體與土壤團(tuán)聚體的穩(wěn)定性呈現(xiàn)正相關(guān)關(guān)系,而≤2mm土壤團(tuán)聚體則均為負(fù)相關(guān)關(guān)系(圖3),2mm粒徑團(tuán)聚體似乎對(duì)土壤侵蝕的響應(yīng)比較敏感,可能的原因有兩點(diǎn):1)侵蝕強(qiáng)度的閾值變化與土壤不同粒徑遷移的動(dòng)力學(xué)特征有著直接的關(guān)系,輕度侵蝕條件下的降雨對(duì)>2 mm土壤團(tuán)聚體的沖刷和搬運(yùn)能力小于<0.25 mm團(tuán)聚體,所以前期基本都以微團(tuán)聚體的流失為主,這與Lu等[33]在黑土區(qū)的模擬降雨的結(jié)果一致;當(dāng)侵蝕強(qiáng)度上升至中度侵蝕條件下,降雨動(dòng)能的增加和下墊面摩擦力的減小促使大團(tuán)聚體拆分為微團(tuán)聚體進(jìn)行遷移,并且伴隨著部分不完全崩解的>2 mm團(tuán)聚體。2)不同粒徑的劃分會(huì)導(dǎo)致各個(gè)粒徑土壤團(tuán)聚體對(duì)侵蝕強(qiáng)度轉(zhuǎn)變的響應(yīng)規(guī)律不同。李肖等[34]的研究也指出0.5 mm粒徑是>2 mm團(tuán)聚體向<0.25 mm團(tuán)聚體轉(zhuǎn)化的過渡粒徑,對(duì)土壤侵蝕響應(yīng)更為敏感。本文中侵蝕區(qū)>2 mm粒徑的土壤團(tuán)聚體含量約為40%(表4),明顯高于其他粒徑,土壤穩(wěn)定性的變化更多的是反映在>2 mm團(tuán)聚體的數(shù)量上的變化,所以導(dǎo)致該粒徑對(duì)侵蝕強(qiáng)度的轉(zhuǎn)變響應(yīng)敏感。

        3.3 土壤侵蝕對(duì)團(tuán)聚體有機(jī)碳的影響

        地形主導(dǎo)的土壤侵蝕過程普遍減少了陸地生態(tài)系統(tǒng)的固碳能力,進(jìn)而導(dǎo)致各粒徑團(tuán)聚體碳含量發(fā)生變化,侵蝕區(qū)各個(gè)粒徑的土壤團(tuán)聚體有機(jī)碳均低于沉積區(qū),這可能是由于土壤團(tuán)聚體在水蝕過程中的機(jī)械破壞引起的,大團(tuán)聚體的破碎使得受物理保護(hù)的有機(jī)碳暴露在空氣中,加之泥沙的水熱條件加速了其礦化速率,細(xì)小團(tuán)聚體的流失降低了侵蝕區(qū)各粒徑土壤團(tuán)聚體中有機(jī)碳的含量[35]。這與本文的研究結(jié)果相一致,侵蝕區(qū)的土壤團(tuán)聚體有機(jī)碳含量低于沉積區(qū)(表5)。在本研究中,侵蝕區(qū)各個(gè)粒徑有機(jī)碳的平均含量比較接近,這說明侵蝕引起了有機(jī)碳的比例更趨向于均勻分配,而沉積區(qū)的主要表現(xiàn)為大團(tuán)聚體的有機(jī)碳含量明顯高于微團(tuán)聚體有機(jī)碳。在植被恢復(fù)背景下,Wang等[36]也指出大團(tuán)聚體含有更高的土壤有機(jī)碳和氮,這與本文的研究結(jié)果一致(表5)。此外,在侵蝕區(qū)中坡腳處各個(gè)粒徑的團(tuán)聚體有機(jī)碳相比于坡中處偏高,這可能是由于土壤的再團(tuán)聚化引起的,集水溝道中各種富集的養(yǎng)分以及水生植物促進(jìn)了膠結(jié)物質(zhì)的產(chǎn)生,有利于增加團(tuán)聚體中有機(jī)碳的含量,坡腳處較低的土壤碳氮比和較高的礦物顆粒含量可能刺激微生物的活性并加速腐殖化過程(表2),因?yàn)槲F(tuán)聚體和礦物顆粒聚集在腐殖化植物周圍,形成較大的團(tuán)聚體,同時(shí)保護(hù)了有機(jī)碳[37]。本文的研究結(jié)果表明<0.053 mm團(tuán)聚體有機(jī)碳與土壤侵蝕的關(guān)系不大(表6),較高的有機(jī)碳水平可能與粉黏團(tuán)聚體對(duì)有機(jī)碳的吸附有關(guān),Kosters等[38]指出相比于大團(tuán)聚體中的有機(jī)碳,微團(tuán)聚體中的有機(jī)碳更為穩(wěn)定。各個(gè)粒徑團(tuán)聚體有機(jī)碳對(duì)土壤侵蝕的敏感性可能影響對(duì)全土有機(jī)碳的貢獻(xiàn),本文研究結(jié)果顯示大團(tuán)聚體(≥0.25 mm)有機(jī)碳含量高于微團(tuán)聚體(<0.25 mm),這與Nie等[39]在南方紅壤區(qū)團(tuán)聚體固碳的研究結(jié)果一致。

        4 結(jié) 論

        本文利用137Cs核素示蹤技術(shù)劃分土壤侵蝕與沉積區(qū),研究了不同坡位土壤侵蝕特征以及理化性質(zhì)的空間變異,分析了侵蝕區(qū)與沉積區(qū)土壤團(tuán)聚體穩(wěn)定性以及有機(jī)碳特征。主要結(jié)論如下:

        1)沖刷溝道的坡頂處137Cs含量最高,且高于背景值,屬于沉積區(qū),而坡上、坡腳屬于中度侵蝕,坡中屬于輕度侵蝕;侵蝕溝道沿著坡面依次表現(xiàn)為絕對(duì)沉積、絕對(duì)侵蝕、相對(duì)沉積和絕對(duì)侵蝕,其中植被和地形因子是主導(dǎo)因素。

        2)沉積區(qū)的大團(tuán)聚體含量(≥0.25 mm)顯著高于侵蝕區(qū),微團(tuán)聚體含量顯著低于侵蝕區(qū),且隨著侵蝕強(qiáng)度增加,微團(tuán)聚體組分不斷增加。沉積區(qū)的土壤團(tuán)聚體更穩(wěn)定,侵蝕區(qū)中的坡中相比于坡上和坡腳,其大團(tuán)聚體含量和平均質(zhì)量直徑更高,侵蝕最嚴(yán)重的坡腳處土壤團(tuán)聚體穩(wěn)定性最低。

        3)沉積區(qū)各個(gè)粒徑的土壤團(tuán)聚體有機(jī)碳含量均高于侵蝕區(qū),其中大團(tuán)聚體有機(jī)碳明顯高于微團(tuán)聚體有機(jī)碳含量,侵蝕區(qū)的土壤團(tuán)聚體有機(jī)碳更趨向于均勻分配,其中微團(tuán)聚體碳含量隨著侵蝕強(qiáng)度的增加不斷增加,土壤理化性質(zhì)的空間差異也會(huì)影響土壤團(tuán)聚體有機(jī)碳分布。

        與傳統(tǒng)坡面相比,侵蝕溝道坡頂為沉積區(qū)而其他坡位屬于侵蝕區(qū),地形和植被覆蓋是主導(dǎo)因子,兩者的綜合作用導(dǎo)致了土壤團(tuán)聚體穩(wěn)定性及有機(jī)碳的空間差異。

        [1] Morgan R P C. Soil Erosion & Conservation[M]. 3rd eds. Oxford: Blackwell Publishing, 2005.

        [2] 史志華,宋長(zhǎng)青. 土壤水蝕過程研究回顧[J]. 水土保持學(xué)報(bào),2016,30(5):1-10.

        Shi Zhihua, Song Changqing. Water erosion processes:a historical review[J]. Journal of Soil and Water Conservation, 2016, 30(5): 1-10. (in Chinese with English abstract)

        [3] An J, Liu Q. Soil aggregate breakdown in response to wetting rate during the inter-rill and rill stages of erosion in a contour ridge system[J]. Catena, 2017, 157: 241-249.

        [4] 胡亞鮮,Kuhn Nikolaus J. 利用土壤顆粒的沉降粒級(jí)研究泥沙的遷移與分布規(guī)律[J]. 土壤學(xué)報(bào),2017,54(5):1115-1124.

        Hu Yaxian, Kuhn Nikolaus J. Using settling velocity to investigate the patterns of sediment transport and deposition[J]. Acta Pedologica Sinica, 2017, 54(5): 1115-1124. (in Chinese with English abstract)

        [5] 周咪,肖海兵,聶小東,等. 近30年國(guó)內(nèi)外土壤有機(jī)碳研究進(jìn)程解析與展望[J]. 水土保持研究,2020,27(3):391-400.

        Zhou Mi, Xiao Haibing, Nie Xiaodong, et al. Analysis and prospect of soil organic carbon research process in recent 30 years. at home and abroad[J]. Research of Soil Water Conservation, 2020, 27(3): 391-400. (in Chinese with English abstract)

        [6] 樊紅柱,張建輝,王勇,等. 川北山區(qū)坡耕地侵蝕耕作對(duì)土壤團(tuán)聚體碳的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(11):157-164.

        Fan Hongzhu, Zhang Jianhui, Wang Yong, et al. Tillage erosion impacts on soil aggregate associated carbon in mountainous re-gion slope farmland of Northern Sichuan[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(11): 157-164. (in Chinese with English abstract)

        [7] Wang J, Yu B, Ni S, et al. Effects of sediment load on the abrasion of soil aggregate and hydraulic parameters in experimental overland flow[J]. Journal of Integrative Agriculture, 2020, 19(4): 1117-1126.

        [8] 陸銀梅,李忠武,聶小東,等. 紅壤緩坡地徑流與土壤可蝕性對(duì)土壤有機(jī)碳流失的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(19):135-141.

        Lu Yinmei, Li Zhongwu, Nie Xiaodong, et al. Effects of overland flow and soil erodibility on soil organic carbon loss in red soil sloping land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(19): 135-141. (in Chinese with English abstract)

        [9] Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology & Biochemistry, 2000, 32(14): 2099-2103.

        [10] 彭新華,張斌,趙其國(guó). 土壤有機(jī)碳庫與土壤結(jié)構(gòu)穩(wěn)定性關(guān)系的研究進(jìn)展[J]. 土壤學(xué)報(bào),2004,41(4):618-623.

        Peng Xinhua, Zhang Bin, Zhao Qiguo. A review on relationship between soil organic carbon pools and soil structure stability[J]. Acta Pedologica Sinica, 2004, 41(4): 618-623. (in Chinese with English abstract)

        [11] 邸佳穎,劉小粉,杜章留,等. 長(zhǎng)期施肥對(duì)紅壤性水稻土團(tuán)聚體穩(wěn)定性及固碳特征的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)報(bào),2014,22(10):1129-1138.

        Di Jiaying, Liu Xiaofen, Du Zhangliu, et al. Influences of long-term organic and chemical fertilization on soil aggregation and associated organic carbon fractions in a red paddy soil[J]. Chinese Journal of Ecological Agriculture, 2014, 22(10): 1129-1138. (in Chinese with English abstract)

        [12] 史志華,楊潔,李忠武,等. 南方紅壤低山丘陵區(qū)水土流失綜合治理[J]. 水土保持學(xué)報(bào),2018,32(1):6-9.

        Shi Zhihua, Yang Jie, Li Zhongwu, et al. Soil conservation in the hilly red soil region of Southern China[J]. Journal of Soil and Water Conservation, 2018, 32(1): 6-9. (in Chinese with English abstract)

        [13] Lin J, Huang Y, Zhao G, et al. Flow-driven soil erosion processes and the size selectivity of eroded sediment on steep slopes using colluvial deposits in a permanent gully[J]. Catena, 2017, 157: 47-57.

        [14] 史東梅,金慧芳,蔣光毅. 土壤侵蝕對(duì)坡耕地耕層質(zhì)量退化作用及其評(píng)價(jià)趨勢(shì)展望[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(18):118-126.

        Shi Dongmei, Jin Huifang, Jiang Guangyi. Degradation effect of soil erosion on tillage-layer quality of slope farmland and its evaluation trend[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 118-126. (in Chinese with English abstract)

        [15] 胡云鋒,張?jiān)浦? 內(nèi)蒙古渾善達(dá)克沙地南緣137Cs、210Pbex復(fù)合示蹤研究[J]. 地理學(xué)報(bào),2019,74(9):1890-1903.

        Hu Yunfeng, Zhang Yunzhi. Using137Cs and210Pbexto investigate the soil erosion and accumulation moduli on the southern margin of the Hunshandake Sandy Land in Inner Mongolia[J]. Journal of Geographical Sciences, 2019, 74(9): 1890-1903. (in Chinese with English abstract)

        [16] 濮勵(lì)杰,趙姚陽,金平華,等.137Cs示蹤紅壤丘陵區(qū)坡地土壤侵蝕的研究:以江西豐城市為例[J]. 長(zhǎng)江流域資源與環(huán)境,2004,13(6):562-567.

        Pu Lijie, Zhao Yaoyang, Jin Pinghua, et al. Application of137Cs as tracing method to study soil erosion on sloping lands in the hilly red soil area: A case study in Fengcheng City, Jiangxi Province[J]. Resources and Environment in the Yangtze Basin, 2004, 13(6): 562-567. (in Chinese with English abstract)

        [17] 王曉燕,李忠武,修成賢. 基于137Cs示蹤的南方紅壤丘陵區(qū)不同土地利用管理方式的侵蝕效應(yīng)[J]. 水土保持研究,2013,20(2):1-4.

        Wang Xiaoyan, Li Zhongwu, Xiu Chengxian. Study on soil erosion and its effect on different landuse types in the red soil hilly area of South China based on137Cs tracing[J]. Research of Soil and Water Conservation, 2013, 20(2): 1-4. (in Chinese with English abstract)

        [18] 唐翔宇,楊浩,李仁英,等.7Be在土壤侵蝕示蹤中的應(yīng)用研究進(jìn)展[J]. 地球科學(xué)進(jìn)展,2001,16(4):520-525.

        Tang Xiangyu, Yang Hao, Li Renying, et al. A review on progresses on application of the7Be tracer technique in the estimate of soil erosion[J]. Advances In Earth Science, 2001, 16(4): 520-525. (in Chinese with English abstract)

        [19] 楊浩,杜明遠(yuǎn),趙其國(guó),等. 基于137Cs地表富集作用的土壤侵蝕速率的定量模型[J]. 水土保持學(xué)報(bào),1999(3):43-49.

        Yang Hao, Du Mingyuan, Zhao Qiguo, et al. Quantitative model considering surface enrichment to estimate soil erosion rates using137Cs[J]. Journal of Soil and Water Conservation, 1999(3): 43-49. (in Chinese with English abstract)

        [20] Lowrance R, Mcintyre S, Lance C. Erosion and deposition in a field/forest system estimated using cesium-137 activity[J]. Journal of Soil and Water Conservation, 1988, 43(8): 756-762.

        [21] 付玉,李光錄,鄭騰輝,等. 雨滴擊濺對(duì)耕作層土壤團(tuán)聚體粒徑分布的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):155-160.

        Fu Yu, Li Guanglu, Zheng Tenghui, et al. Effects of raindrop splash on aggregate particle size distribution of soil plough layer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 155-160. (in Chinese with English abstract)

        [22] 劉嬌. 降雨侵蝕對(duì)土壤團(tuán)聚體穩(wěn)定性及碳氮礦化的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2018.

        Liu Jiao. Effects of Rainfall Erosion on Stability of Soil Aggregate and Mineralization of Organic Carbon and Nitrogen[D]. Yangling: Northwest A & F University, 2018. (in Chinese with English abstract)

        [23] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京:中國(guó)農(nóng)業(yè)科技出版社,2000.

        [24] 姜義亮. 黑土區(qū)坡耕地土壤侵蝕對(duì)土壤有機(jī)碳流失的影響研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2019.

        Jiang Yiliang. Effect of Soil Erosion on Soil Organic Carbon Loss in Sloping Farmlands of Chinese Mollisol Region[D]. Yangling: Northwest A&F University, 2019. (in Chinese with English abstract)

        [25] 郝好鑫,郭忠錄,王先舟,等. 降雨和徑流條件下紅壤坡面細(xì)溝侵蝕過程[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(8):134-140.

        Hao Haoxin, Guo Zhonglu, Wang Xianzhou, et al. Rill erosion process on red soil slope under interaction of rainfall and scouring flow[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 134-140. (in Chinese with English abstract)

        [26] 李航,劉建華,耿其明,等. 低山丘陵區(qū)不同地形部位新增耕地土壤侵蝕特征研究[J]. 林業(yè)與生態(tài)科學(xué),2019,34(4):401-408.

        Li Hang, Liu Jianhua, Geng Qiming, et al. Study on soil erosion characteristics of new cultivated land in different topographic sites in low hilly areas[J]. Forestry and Ecological Science, 2019, 34(4): 401-408. (in Chinese with English abstract)

        [27] 李小宇,李勇,于寒青,等. 退耕還林坡地土壤CO2排放的空間變化:地形的控制作用[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2015,21(5):1217-1224.

        Li Xiaoyu, Li Yong, Yu Hanqing, et al. Spatial changes in soil CO2emission from reforested hillslopes on the Loess Plateau: A Geomorphic Control[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(5): 1217-1224. (in Chinese with English abstract)

        [28] 張合兵,聶小軍,程靜霞.137Cs示蹤采煤沉陷坡土壤侵蝕及其對(duì)土壤養(yǎng)分的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(4):137-143.

        Zhang Hebing, Nie Xiaojun, Cheng Jingxia.137Cs tracing of soil erosion and its impact on soil nutrients across subsidence slope induced by coal mining[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 137-143. (in Chinese with English abstract)

        [29] 袁久芹,梁音,曹龍熹. 紅壤坡地香根草植物籬產(chǎn)流產(chǎn)沙過程模擬[J]. 中國(guó)水土保持科學(xué),2014,12(4):14-20.

        Yuan Jiuqin, Liang Yin, Cao Longxi. Simulation on the process of runoff and sediment yield of hedgerows in red-soil hilly area[J]. Science of Soil & Water Conservation, 2014, 12(4): 14-20. (in Chinese with English abstract)

        [30] 張光輝. 對(duì)土壤侵蝕研究的幾點(diǎn)思考[J]. 水土保持學(xué)報(bào),2020,34(4):21-30.

        Zhang Guanghui. Several ideas related to soil erosion research[J]. Journal of Soil and Water Conservation, 2020, 34(4): 21-30. (in Chinese with English abstract)

        [31] Wang L, Shi Z. Size selectivity of eroded sediment associated with soil texture on steep slopes[J]. Soil Science Society of America Journal, 2015, 79(3): 917-929.

        [32] 朱茜,林杰,張陽. 經(jīng)濟(jì)林營(yíng)建后基于137Cs示蹤法的土壤侵蝕特征研究[J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2019,21(6):135-142.

        Zhu Xi, Lin Jie, Zhang Yang. Research on soil erosion characteristics based on137Cs tracer method after economic forest construction[J]. Journal of Agricultural Science and Technology, 2019, 21(6): 135-142. (in Chinese with English abstract)

        [33] Lu J, Zheng F, Li G, et al. The effects of raindrop impact and runoff detachment on hillslope soil erosion and soil aggregate loss in the Mollisol region of Northeast China[J]. Soil and Tillage Research, 2016, 161: 79-85.

        [34] 李肖,陳晨,林杰,等. 侵蝕強(qiáng)度對(duì)淮北土石山區(qū)土壤團(tuán)聚體組成及穩(wěn)定性的影響[J]. 水土保持研究,2019,26(4):56-61.

        Li Xiao, Chen Chen, Lin Jie, et al. Effect of erosion intensity on composition and stability of soil aggregates in rocky mountain area of Huaibei[J]. Research of Soil and Water Conservation, 2019, 26(4): 56-61. (in Chinese with English abstract)

        [35] 鄭粉莉,高學(xué)田. 黃土坡面土壤侵蝕過程與模擬[M]. 西安:陜西人民出版社,2000.

        [36] Wang Y, Ran L, Fang N, et al. Aggregate stability and associated organic carbon and nitrogen as affected by soil erosion and vegetation rehabilitation on the Loess Plateau[J]. Catena, 2018, 167: 257-265.

        [37] Zhong Z, Han X, Xu Y, et al. Effects of land use change on organic carbon dynamics associated with soil aggregate fractions on the Loess Plateau, China[J]. Land Degradation & Development, 2019, 30(9): 1070-1082.

        [38] Kosters R, Preger A C, Du Preez C C, et al. Re-aggregation dynamics of degraded cropland soils with prolonged secondary pasture management in the South African Highveld[J]. Geoderma, 2013, 192: 173-181.

        [39] Nie X, Li Z, Huang J, et al. Thermal stability of organic carbon in soil aggregates as affected by soil erosion and deposition[J]. Soil & Tillage Research, 2018, 175: 82-90.

        Characteristics of soil aggregates and organic carbon in eroded gully in red soil region of Southern China

        Zhang Xiang1, Li Xiao1, Lin Jie1※, Qian Zhou2, Zeng Guangruo3, Cui Linlin1

        (1.210037; 2.210008,; 3.,343000,)

        This study aims to present the influence of water erosion on the soil structure and distribution of organic carbon in a special terrain. The samples were collected in a small watershed of Qingyuan Mountain, a typical hilly area of red soil in southern China. The nuclide137Cs tracer technology was used to analyze the water and soil loss during the gully erosion in the small watershed. An attempt was also made on the influence of soil erosion on the stability of soil aggregates and the content of organic carbon in the gully erosion area. Three soil depths (0-10, >10-20, >20-30 cm) were set to identify soil aggregates, and the scouring features of soil aggregates and organic carbon. The whole soil samples were gathered at the depth of 0-20 cm by the soil auger in the diameter of 5 cm, where the interval of 5 cm from different soil layers was used to determine the content of soil nuclide. A gamma spectrometer was used to measure the137Cs content, and further to calculate the area specific activity. A wet sieving was utilized to obtain the aggregates with four particle sizes (>2 mm, 2-0.25 mm, 0.25-0.053 mm and <0.053 mm). The approach of heating on a potassium acid water-bath was adopted to obtain the content of organic carbon in the aggregates. One-Way ANOVA, Duncan significance test and redundancy analysis operations were used to examine the correlation between content of soil aggregate organic carbon and physical and chemical properties. The results found that the top layer of gully erosion had the highest137Cs content, even higher than the background value, indicating the sedimentary area, whereas, the upper slope and the lope toe were moderately eroded, while the slope mildly was eroded. The evolution of gully erosion area successively went through the absolute deposition, absolute erosion, relative deposition, absolute erosion in a top-down way along the slope, in which the vegetation and terrain were the dominant factors. The content of large aggregates in the sedimentary area was significantly higher than that in the eroded area, whereas, the eroded area had significantly higher content of microaggregates, whose components continued to increase as the erosion intensity strengthened. Moreover, the soil aggregates in the sedimentary area had a higher stability, whereas, the lowest stability occurred at the mostly eroded toe of slope. Compared with the upper and toe slope, the soil aggregates in the middle slope of erosion area showed higher valuesofmacroaggreages content and mean weight diameter. The content of organic carbon in soil aggregates for all particle sizes was higher in the sedimentary area than that in the erosion area. There was also uniform distribution of organic carbon in soil aggregates in the erosion area. The content of organic carbon in the large aggregates was significantly higher than that in the microaggregates. The correlation analysis results showed that the organic carbon of only 2-0.25 mm aggregate contributed positively to aggregate stability (0.05), and the correlation coefficient was 0.75. It infers that the content of organic carbon in the microaggregates was positively correlated with the increase of erosion intensity. Compared with traditional slopes, the top of gully erosion area was a depositional site, but other slopes were erosional sites. The soil structure and related carbon components were mainly affected by the degree of soil erosion under the domination of terrain and vegetation. Therefore, the specific measures of water and soil conservation if appropriate can be taken in special terrains in red soil areas of southern China.

        soils; erosion; eroded gully; aggregates; organic carbon;137Cs

        張相,李肖,林杰,等. 南方紅壤丘陵區(qū)侵蝕溝道內(nèi)土壤團(tuán)聚體及有機(jī)碳特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(19):115-123.doi:10.11975/j.issn.1002-6819.2020.19.013 http://www.tcsae.org

        Zhang Xiang, Li Xiao, Lin Jie, et al. Characteristics of soil aggregates and organic carbon in eroded gully in red soil region of Southern China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2020, 36(19): 115-123. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.19.013 http://www.tcsae.org

        2020-06-18

        2020-09-08

        基于侵蝕與沉積過程的林下水蝕區(qū)碳源匯效應(yīng)研究(31870600)

        張相,主要從事水土保持與荒漠化防治。Email:1586615433@qq.com

        林杰,博士,教授,主要從事水土保持與遙感監(jiān)測(cè)。Email:jielin@njfu.edu.cn

        10.11975/j.issn.1002-6819.2020.19.013

        S714.2

        A

        1002-6819(2020)-19-0115-09

        猜你喜歡
        坡位坡腳土壤侵蝕
        軟土路基施工對(duì)鄰近管線的影響及保護(hù)措施
        軟弱結(jié)構(gòu)面位置對(duì)巖質(zhì)順傾邊坡穩(wěn)定性的影響
        鄉(xiāng)村聚落土壤侵蝕環(huán)境與水土流失研究綜述
        順層巖質(zhì)邊坡坡腳開挖穩(wěn)定性數(shù)值模擬分析
        坡向坡位及郁閉度對(duì)森林公園內(nèi)林下南方紅豆杉生長(zhǎng)的影響
        綠色科技(2017年1期)2017-03-01 10:14:33
        不同坡位對(duì)毛竹林小氣候及地上生長(zhǎng)的影響
        海壇島土壤侵蝕問題研究
        大別山區(qū)土壤侵蝕動(dòng)態(tài)變化及趨勢(shì)預(yù)測(cè)
        南水北調(diào)中線水源地土壤侵蝕經(jīng)濟(jì)損失估算
        種植地坡向和坡位對(duì)楸樹引種早期生長(zhǎng)的影響
        免费一区啪啪视频| 日本又色又爽又黄的a片18禁 | 美女把尿囗扒开让男人添| japanese无码中文字幕| 桃花影院理论片在线| 手机看片久久国产免费| 中文字幕一区二区网站| 女同性恋一区二区三区四区| 久久国产精品婷婷激情| 最近2019年好看中文字幕视频| 欧美成人形色生活片| 人妻少妇av中文字幕乱码免费| 性生大片免费观看性少妇| 97精品久久久久中文字幕| 精品久久久久久久久午夜福利| 中文字幕日韩人妻高清在线| 亚洲精品98中文字幕| 免费视频爱爱太爽了| 在线视频你懂的国产福利| 亚洲综合天堂一二三区| 亚洲夫妻性生活免费视频| 黄色a级国产免费大片| 亚洲色偷偷综合亚洲AVYP| 国产我不卡在线观看免费| 极品少妇hdxx麻豆hdxx| a级黑人大硬长爽猛出猛进| 国产裸体AV久无码无遮挡| 人妻少妇精品视频一区二区三| 国产精品福利一区二区| 又硬又粗又大一区二区三区视频| 国产 无码 日韩| 天天射综合网天天插天天干| 99久久精品国产一区二区三区| 久久久亚洲欧洲日产国产成人无码| 92自拍视频爽啪在线观看| 伊人久久大香线蕉av波多野结衣| 亚洲有码转帖| 素人系列免费在线观看| 女同精品一区二区久久| 一本一道久久a久久精品综合| 一级午夜视频|