關(guān)鍵詞: PNP方程組;適定性;臨界Besov空間
中圖分類號(hào): TP3? ? 文獻(xiàn)標(biāo)識(shí)碼: A? ? DOI:10.3969/j.issn.1003-6970.2020.10.020
本文著錄格式:徐然. 三維Nernst-Planck系統(tǒng)的適定性[J]. 軟件,2020,41(10):8687+97
4? 結(jié)論
本文研究了NP系統(tǒng)在三維臨界空間下解的整體適定性,并對(duì)一類端點(diǎn)情況加以討論;但是關(guān)于系統(tǒng)爆破解的研究,本文仍然沒有解決,有待后續(xù)研究。
參考文獻(xiàn)
[1]H. Bahouri, J.-Y. Chemin, R. Danchin. Fourier Analysis and?Nonlinear Partial Difffferential Equations[M]. in: Grundlehren der Mathematischen Wissenschaften, vol. 343, Springer, Heidelberg, 2011.
[2]P. Debye, E. Hückel. De la theorie des electrolytes. I. Abaissement du point de congelation et phenomenes associes[J]. Phys. Zft. 24(1923): 185-206.
[3]C. Deng, C. Li. Chao Deng and Congming Li. Endpoint bilinear estimates and applications to the two- dimensional Poisson-Nerst-Plank system[J]. Nonlinearity. 26(2013): 2993- 3009.
[4]C. Deng, C. Liu. Largest well-posed spaces for the general diffffusion equations with nonlocal interactions[J]. J. Funct. Anal. 272(2017): 4030-4062.
[5]R. S. Eisenberg. Mass action and conservation of current[J]. Hungarian Journal of Industry and Chemistry. 44(2016): 1-28.
[6]B. Eisenberg, Y. Hyon, C. Liu. Energy variational analysis EnVarA of ions in water and channels: fifield theory for primitive models of complex ionic flfluids[J]. J. Chem. Phys. 133: 104-104 (2010).
[7]L. Grafakos. Modern Fourier Analysis[M]. Springer New York, 2009.
[8]J.Fan, H. Gao. Uniqueness of weak solutions to a nonlinear hyperbolic system in electrophydrodynamics[J]. Nonlinear Anal. 70(2009): 2382-2386.
[9]G. Mura. Global strong solution to the 2D density-dependent liquid crystal flows with vacuum[J]. Nonlinear Analysis. 97(2014): 185-190.
[10]Robert S and Eisenberg. Mass Action and Conservation of Current[J]. Hungarian Journal of Industry and Chemistry (44)2016: 1-28.
[11]趙蘭梅. 基于設(shè)計(jì)的三維形態(tài)研究[J]. 軟件, 2014, 35(2): 139-140.