高永超 王爽 王靜
[摘要] 環(huán)狀RNA(circRNA)是一種長(zhǎng)鏈非編碼RNA分子,廣泛存在于真核細(xì)胞中,有高度的表達(dá)保守性,具有海綿吸附、與蛋白質(zhì)結(jié)合和參與蛋白翻譯的功能。circRNA可以參與多種疾病的調(diào)控,如腫瘤、心血管疾病及神經(jīng)系統(tǒng)疾病。新近的研究發(fā)現(xiàn),circRNA在神經(jīng)系統(tǒng)中表達(dá)豐度很高,具有組織特異性,尤其在腦組織中表達(dá)豐富,參與神經(jīng)系統(tǒng)的發(fā)育和信號(hào)傳遞,調(diào)控大腦復(fù)雜的功能和多種神經(jīng)活動(dòng)。circRNA與神經(jīng)系統(tǒng)疾病的發(fā)生發(fā)展有著密切的關(guān)系,在腦性癱瘓、阿爾茲海默病及腦卒中都能發(fā)現(xiàn)其參與其中。circRNA結(jié)構(gòu)穩(wěn)定,在外泌體中半衰期長(zhǎng),不易降解。因此,circRNA被認(rèn)為是一種理想的生物標(biāo)志物,可用于監(jiān)測(cè)多種神經(jīng)系統(tǒng)疾病。本文就circRNA的生物學(xué)功能及其在神經(jīng)系統(tǒng)疾病中的研究現(xiàn)狀進(jìn)行綜述。
[關(guān)鍵詞] 環(huán)狀RNA;神經(jīng)系統(tǒng)疾病;研究進(jìn)展;綜述
[中圖分類號(hào)] Q752? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1673-7210(2020)10(b)-0045-03
[Abstract] Circular RNA (circRNA) is a long-chain non-coding RNA molecule, which is widely found in eukaryotic cells. It is highly conserved in expression and has the functions of sponge adsorption, protein binding and protein translation. CircRNA can be involved in the regulation of a variety of diseases, such as tumors, cardiovascular diseases and nervous system diseases. Recent studies have found that circRNA is highly expressed in the nervous system and has tissue specificity, especially in the brain tissue. It is involved in the development and signal transmission of the nervous system and regulates the complex functions and various neural activities of the brain. CircRNA is closely associated with the development of nervous system diseases, and it has been found to be involved in cerebral palsy, alzheimer′s disease, and stroke. CircRNA is stable in structure, has a long half-life in exosomes, and is not easily degraded. Therefore, circRNA is considered as an ideal biomarker for monitoring a variety of nervous system diseases. This paper reviews the biological functions of circRNA and its application in nervous system diseases.
[Key words] Circular RNA; Nervous system diseases; Research progress; Review
環(huán)狀RNA(circRNA)封閉環(huán)狀結(jié)構(gòu)與線性RNA分子完全不同。這種結(jié)構(gòu)是通過一種特殊類型的替代剪接而產(chǎn)生的,稱為反向剪接[1]。該剪接方式是由上游的剪接受體與下游的剪接供體連接形成[2],具有共價(jià)閉合結(jié)構(gòu)特點(diǎn),獨(dú)特的結(jié)構(gòu)使得circRNA分子更加穩(wěn)定[3]。過去一度認(rèn)為circRNA是由錯(cuò)誤剪接產(chǎn)生的[4]?,F(xiàn)在研究顯示[5],在人類的遺傳基因中,僅有1%~2%的基因能夠編碼蛋白質(zhì),而絕大部分基因產(chǎn)生的是非編碼RNA,circRNA則是其中一種特殊的非編碼RNA分子。circRNA大量存在于真核細(xì)胞的細(xì)胞質(zhì)與細(xì)胞核內(nèi),與絕大多數(shù)的細(xì)胞功能有著密切的聯(lián)系,對(duì)疾病的發(fā)生和發(fā)展起著重要的調(diào)控作用[6]。
1 circRNA的生物學(xué)功能
1.1 海綿吸附功能
circRNA擁有大量的微小RNA(miRNA)結(jié)合位點(diǎn),能夠競(jìng)爭(zhēng)性結(jié)合miRNA,通過促進(jìn)或抑制miRNA的作用調(diào)控下游靶基因的表達(dá)水平,以此發(fā)揮自身的調(diào)節(jié)功能[7]。研究發(fā)現(xiàn)[8],circRNA與相關(guān)的miRNA結(jié)合以后可以調(diào)節(jié)細(xì)胞的凋亡、侵襲和轉(zhuǎn)移等一些疾病途徑。例如,CDR1as內(nèi)含有大量的miR-7結(jié)合位點(diǎn),作為miR-7的“分子海綿”,能夠吸附、結(jié)合并抑制miR-7的功能[9]。CDR1as與miR-7結(jié)合以后,抑制了miR-7的功能,而miR-7能夠下調(diào)一些與惡性腫瘤相關(guān)的致癌基因。CiRS-7對(duì)miR-7的抑制作用直接促進(jìn)了腫瘤的發(fā)生、發(fā)展[10]。
1.2 與蛋白質(zhì)結(jié)合的功能
circRNA與不同蛋白結(jié)合相互作用,可以形成具有特定功能的復(fù)合物,最后對(duì)相應(yīng)蛋白的作用模式產(chǎn)生影響[11]。有研究顯示[12],circRNA是腫瘤發(fā)生發(fā)展的一種重要調(diào)節(jié)分子,而circRNA對(duì)腫瘤的這種調(diào)節(jié)作用主要是通過特異性結(jié)合蛋白的途徑實(shí)現(xiàn)的。circRNA還被證明與RNA結(jié)合蛋白相互作用,并可作為支架,促進(jìn)蛋白質(zhì)相互作用,調(diào)節(jié)蛋白質(zhì)功能,或根據(jù)特定的circRNA-蛋白質(zhì)組合而固定結(jié)合蛋白[13]。由于circRNA具有獨(dú)特的三級(jí)結(jié)構(gòu),其蛋白質(zhì)結(jié)合能力可能比先前所認(rèn)為的要復(fù)雜得多[14]。
1.3 參與蛋白的翻譯功能
circRNA是具有獨(dú)特結(jié)構(gòu)和功能的轉(zhuǎn)錄體,這就提示circRNA可以與核糖體結(jié)合影響蛋白質(zhì)的翻譯或直接進(jìn)行翻譯產(chǎn)生蛋白質(zhì)。Wesselhoeft等[15]發(fā)現(xiàn)利用高效液相色譜純化的基因工程,circRNA可以在真核細(xì)胞中翻譯合成相應(yīng)蛋白,并且在翻譯及合成方面都具有出色的穩(wěn)定性,其開創(chuàng)了外源circRNA在真核細(xì)胞中穩(wěn)定表達(dá)蛋白研究的先河。Abe等[16]通過滾動(dòng)循環(huán)擴(kuò)增機(jī)制證明circRNA在活細(xì)胞中的高效翻譯,從而產(chǎn)生豐富的蛋白質(zhì)產(chǎn)物。
2 circRNA參與神經(jīng)系統(tǒng)的發(fā)育
circRNA在不同組織中均有表達(dá),但不同組織內(nèi)表達(dá)水平相差較大,功能同樣存在一定差異,其中一類特異性分布在神經(jīng)系統(tǒng)中[17]。中腦、大腦的新皮質(zhì)區(qū)、海馬區(qū)、胚胎的新皮質(zhì)區(qū)都存在不同種類的circRNA,特別集中分布在神經(jīng)突觸部位[18]。一般來說,神經(jīng)元越多的部位,circRNA的含量也越多[19],并且伴隨著大腦的發(fā)育,其表達(dá)也逐漸增加。Li等[20]集中研究circRNA在大腦和神經(jīng)系統(tǒng)疾病中的推進(jìn)特征和功能,發(fā)現(xiàn)circRNA在大腦中表現(xiàn)出組織發(fā)育階段性表達(dá)的特點(diǎn)。circRNA的表達(dá)與神經(jīng)系統(tǒng)發(fā)育過程的這種緊密聯(lián)系,使它很有可能對(duì)一些神經(jīng)系統(tǒng)發(fā)育類疾病的診斷和治療帶來幫助[21]。
3 circRNA與神經(jīng)系統(tǒng)疾病
在對(duì)神經(jīng)系統(tǒng)疾病的研究中,發(fā)現(xiàn)circRNA可以對(duì)細(xì)胞的活性甚至修復(fù)再生能力產(chǎn)生影響,神經(jīng)膠質(zhì)瘤組織中的circRNA circ-0080229結(jié)合蛋白以后具有提高膠質(zhì)瘤的增殖、遷移和侵襲能力的作用[22]。外泌體可以通過血腦屏障,存在于腦脊液中。而外泌體中的DNA、RNA、蛋白質(zhì)和脂質(zhì)等成分變化較大,與疾病的進(jìn)展密切相關(guān)。circRNA結(jié)構(gòu)穩(wěn)定,在外泌體中半衰期長(zhǎng),不易降解。因此,circRNA被認(rèn)為是一種理想的生物標(biāo)志物用于監(jiān)測(cè)多種中樞神經(jīng)系統(tǒng)疾病[23]。
3.1 circRNA與腦性癱瘓
腦性癱瘓的主要病理生理機(jī)制是少突膠質(zhì)細(xì)胞發(fā)育不良、脫髓鞘、損傷和變性引起的腦室周圍白質(zhì)損傷[24]。作為白質(zhì)的重要組成部分,髓鞘是由雪旺細(xì)胞和髓鞘細(xì)胞膜組成的一層包裹在神經(jīng)軸突上的膜結(jié)構(gòu)[25]。在周圍神經(jīng)中,有髓鞘的雪旺細(xì)胞利用幾種分子機(jī)制來維持髓鞘結(jié)構(gòu)的穩(wěn)定,如髓鞘厚度和節(jié)間長(zhǎng)度的獨(dú)立調(diào)節(jié)[26]。雪旺細(xì)胞的增殖,是周圍神經(jīng)損傷的一個(gè)重要反應(yīng),在損傷的坐骨神經(jīng)中雪旺細(xì)胞中的circ-Ankib1高表達(dá)促進(jìn)了雪旺細(xì)胞的增殖和軸突的再生。提示circRNA在調(diào)節(jié)參與坐骨神經(jīng)再生的雪旺細(xì)胞增殖中的重要作用[27]。
3.2 circRNA與阿爾茨海默病
有人認(rèn)為circRNA可能與年齡存在著某種關(guān)系,并以此做為老年病新的研究切入點(diǎn)。研究發(fā)現(xiàn)[28],隨著小鼠的衰老,circRNA在小鼠腦內(nèi)的出現(xiàn)積累的趨勢(shì)。阿爾茨海默病是一種常見于老年人的神經(jīng)退行性疾病[29]。CiRS-7具有調(diào)節(jié)、翻譯小腦變性相關(guān)蛋白1的轉(zhuǎn)錄物的功能,又稱之為CDR1as。CDR1as含有豐富的miR-7結(jié)合位點(diǎn),作為miR-7結(jié)合的“分子海綿”,能夠吸引、結(jié)合并抑制miR-7功能[9]。在CDR1as的海綿功能缺失時(shí),miR-7表達(dá)上調(diào),極有可能下調(diào)阿爾茨海默病相關(guān)靶點(diǎn)蛋白表達(dá),如泛素化蛋白連接酶A,進(jìn)而影響阿爾茨海默病的進(jìn)程[30]。
3.3 circRNA與腦卒中
腦卒中是有腦血管意外引起的腦部缺血缺氧性損傷。目前腦卒中與circRNA關(guān)系的研究仍在進(jìn)行中[31],尚處于早期階段。腦卒中極易損傷血腦屏障而引起血液滲出,使腦組織遭到破壞[32]。血腦屏障損傷的生化特征包括緊密連接蛋白表達(dá)減少、結(jié)構(gòu)改變以及內(nèi)源性血腦屏障轉(zhuǎn)運(yùn)蛋白功能表達(dá)的改變[33],內(nèi)皮間充質(zhì)轉(zhuǎn)化可以通過降低緊密連接蛋白的表達(dá)參與腦卒中后血腦屏障的破壞,而CircDLGAP 4的高表達(dá)明顯抑制內(nèi)皮間充質(zhì)轉(zhuǎn)化,減輕腦梗死面積和血腦屏障損傷,減輕神經(jīng)功能缺損[34]。
4 總結(jié)與展望
circRNA廣泛參與神經(jīng)系統(tǒng)的生理、病理過程,并能透過血腦屏障穩(wěn)定存在于腦脊液中。在神經(jīng)系統(tǒng)中circRNA可以直接影響神經(jīng)系統(tǒng)發(fā)育,調(diào)節(jié)神經(jīng)細(xì)胞的增殖、分化和凋亡過程;另外,circRNA還能參與神經(jīng)系統(tǒng)的病理過程,對(duì)疾病的發(fā)生發(fā)展、損傷后修復(fù)都有重要的調(diào)節(jié)作用;circRNA以其在腦脊液中的穩(wěn)定存在使其成為中樞神經(jīng)系統(tǒng)疾病預(yù)測(cè)、診斷及預(yù)后判斷的重要潛在標(biāo)志物。circRNA在神經(jīng)系統(tǒng)中作用機(jī)制的研究發(fā)展迅速,隨著生物學(xué)技術(shù)及測(cè)序技術(shù)的快速發(fā)展,circRNA的功能將越來越多的被揭示出來。circRNA將有望成為未來臨床疾病的重要診斷指標(biāo)和治療靶點(diǎn)。
[參考文獻(xiàn)]
[1]? 劉旭慶,高宇幫,趙良真,等.環(huán)狀RNA的產(chǎn)生、研究方法及功能[J].遺傳,2019,41(6):469-485.
[2]? Barrett SP,Salzman J. Circular RNAs:analysis,expression and potential functions [J]. Development,2016,143(11):1838-1847.
[3]? 潘勁輝,姚文霞,林海,等.環(huán)狀RNAhsa_circ_0082626的特征分析及過表達(dá)載體構(gòu)建[J].醫(yī)學(xué)研究生學(xué)報(bào),2019, 32(5):495-500.
[4]? 肖時(shí)曦,王濤.環(huán)狀RNA的研究進(jìn)展[J].嶺南現(xiàn)代臨床外科,2017,17(1):122-127.
[5]? ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome [J]. Nature,2012, 489(7414):57-74.
[6]? 呂玲雙,王建明.環(huán)狀RNA與人類疾病研究進(jìn)展[J].醫(yī)學(xué)研究雜志,2017,46(1):18-21.
[7]? Zurawska A,Mycko MP,Selmaj KW. Circular RNAs as a novel layer of regulatory mechanism in multiple sclerosis [J]. J Neuroimmunol,2019,334:576971.
[8]? Rong D,Sun H,Li Z,et al. An emerging function of circRNA-miRNAs-mRNA axis in human diseases [J]. Oncotarget,2017,8(42):73271-73281.
[9]? Hansen TB,Jensen TI,Clausen BH,et al. Natural RNA circular function as efficient microRNA sponses [J]. Nature,2013,495(7441):384-388.
[10]? Tang W,Ji M,He G,et al. Silencing CDR1as inhibits colorectal cancer progression through regulating micro RNA-7 [J]. Oncotargets Ther,2017,10:2045-2056.
[11]? 靳也,郭杰,魏福蘭.環(huán)狀RNA的研究進(jìn)展[J].口腔醫(yī)學(xué),2019,39(5):450-454.
[12]? He J,Xie Q,Xu H,et al. Circular RNAs and cancer [J]. Cancer Lett,2017,396:138-144.
[13]? Ebbesen KK,Hansen TB,Kjems J. Insights into circular RNA biology [J]. RNA Biol,2017,14(8):1035-1045.
[14]? Hentze MW,Preiss T. Circular RNAs:splicing′s enigma variations [J]. Embo J,2013,32(7):923-925.
[15]? Wesselhoeft RA,Kowalski PS,Anderson DG,et al. Engineering circular RNA for potent and stable translation in eukaryotic cells [J]. Nat Commun,2018,9(1):2629.
[16]? Abe N,Matsumoto K,Nishihara M,et al. Rolling Circle Translation of Circular RNA in Living Human Cells [J]. Sci Rep,2015,5:16435.
[17]? Westholm JO,Miura P,Olson S,et al. Genome-wide Analysis of Drosophila Circular RNAs Reveals Their Structural and Sequence Properties and Age-Dependent Neural Accumulation [J]. Cell Rep,2014,9(5):1966-1980.
[18]? You X,Vlatkovic I,Babic A,et al. Neural circular RNAs are derivedfrom synaptic genes and regulated by development and plasticity [J]. Nat Neurosci,2015,18(4):603-610.
[19]? Rybak-Wolf A,Stottmeister C,Glazar P,et al. Circular RNAs in the Mammalian Brain Are Highly Abundant,Conserved,and Dynamically Expressed [J]. Mol Cell,2015, 58(5):870-885.
[20]? Li TR,Jia YJ,Wang Q,et al. Circular RNA:a new star in neurological diseases [J]. Int J Neurosci,2017,127(8):726-734.
[21]? Lukiw WJ. Circular RNA(circRNA)in Alzheimer′s disease (AD) [J]. Front Genet,2013,4:307.
[22]? 周志威,雷炳喜,黃毓韜,等.Circ-0080229結(jié)合蛋白的篩選及其在膠質(zhì)瘤調(diào)控中的意義[J].嶺南現(xiàn)代臨床外科,2019,19(2):145-149.
[23]? He J,Ren M,Li H,et al. Exosomal Circular RNA as a Biomarker Platform for the Early Diagnosis of Immune-Mediated Demyelinating Disease [J]. Front Genet,2019,10:860.
[24]? Yesilirmak DC,Kumral A,Baskin H,et al. Activated protein C reduces endotoxin-induced white matter injury in the developing rat brain [J]. Brain Res,2007,1164:14-23.
[25]? Simons M,Nave KA. Oligodendrocytes:Myelinationand Axonal Support [J]. Csh Perspect Biol,2015,8(1):a020479.
[26]? Tricaud N. Myelinating Schwann Cell Polarity and Mechanically-Driven Myelin Sheath Elongation [J]. Front Cell Neurosci,2018,11:414.
[27]? Mao S,Zhang S,Zhou S,et al. A Schwann cell-enriched circular RNA circ-Ankib1 regulates Schwann cell proliferation following peripheral nerve injury [J]. FASEB J,2019,33(11):12409-12424.
[28]? Gruner H,Cortés-López M,Cooper DA,et al. CircRNA accumulation in the aging mouse brain [J]. Sci Rep,2016,6:38907.
[29]? 史長(zhǎng)華,張玲,陳巍,等.RNA-Seq技術(shù)篩選APP/PS1阿爾茨海默病模型小鼠差異表達(dá)基因及功能分析[J].中國(guó)比較醫(yī)學(xué)雜志,2018,28(10):1-7.
[30]? Bingol B,Sheng M. Deconstruction for reconstruction the role of proteolysis in neural plasticity and disease [J].Neuron,2011,69(1):22-32.
[31]? 汪普求,謝芬高,文航華,等.微RNA在缺血性卒中的作用[J].醫(yī)學(xué)綜述,2019,25(2):312-316.
[32]? Jiang X,Andjelkovic AV,Zhu L,et al. Blood-brain barrier dysfunction and recovery after ischemic stroke [J]. Prog Neurobiol,2018,163/164:144-171.
[33]? Abdullahi W,Tripathi D,Ronaldson PT. Blood-brain barrier dysfunction in ischemic stroke:targeting tight junctions and transporters for vascular protection [J]. Am J Physiol Cell Physiol,2018,315(3):C343-C356.
[34]? Bai Y,Zhang Y,Han B,et al. Circular RNA DLGAP4 Ameliorates Ischemic Stroke Outcomes by Targeting miR-143 to Regulate Endothelial-Mesenchymal Transition Associated with Blood-Brain Barrier Integrity [J]. J Neurosci,2018,38(1):32-50.
(收稿日期:2020-04-09)
中國(guó)醫(yī)藥導(dǎo)報(bào)2020年29期