亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        橡膠樹(shù)產(chǎn)膠生物學(xué)研究進(jìn)展

        2020-12-09 05:37:02唐朝榮
        熱帶作物學(xué)報(bào) 2020年10期
        關(guān)鍵詞:橡膠樹(shù)

        唐朝榮

        摘? 要:天然橡膠(順式-1,4-聚異戊二烯)是一種重要的工業(yè)原料,主要來(lái)自橡膠樹(shù)。以天然橡膠的生物合成與產(chǎn)量形成為主要內(nèi)容的產(chǎn)膠生物學(xué)研究為橡膠樹(shù)高產(chǎn)遺傳改良提供理論指導(dǎo),近10年取得了重要進(jìn)展。本文從橡膠樹(shù)基因組測(cè)序、橡膠轉(zhuǎn)移酶、轉(zhuǎn)基因、以及轉(zhuǎn)錄組和蛋白質(zhì)組等4個(gè)方面介紹產(chǎn)膠生物學(xué)研究主要進(jìn)展,并討論了相關(guān)領(lǐng)域研究存在的問(wèn)題,對(duì)未來(lái)5~10年需重點(diǎn)關(guān)注的研究?jī)?nèi)容提出了建議。在介紹橡膠轉(zhuǎn)移酶時(shí),同時(shí)概述其他幾種產(chǎn)膠植物的相關(guān)研究進(jìn)展。

        關(guān)鍵詞:橡膠樹(shù);產(chǎn)膠生物學(xué);基因組測(cè)序;橡膠轉(zhuǎn)移酶

        中圖分類號(hào):S794.1? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A

        Abstract: Natural rubber (cis-1, 4-polyisoprene) is an important industrial raw material, commercially harvested mainly from rubber tree (Hevea brasiliensis). Important progresses have been made in the past decade on Hevea biology of rubber production, focusing on rubber biosynthesis and latex production. The present review summarized the major progress in four research areas with relation to rubber production, i.e. Hevea genome sequencing, rubber transferase, transgenic research, and transcriptomics & proteomics. Moreover, the problems were discussed and a few of research emphasis in the next 5 to 10 years were proposed. When describing the studies of rubber transferase, the recent progress in several other rubber-producing plants were included.

        Keywords: Hevea brasiliensis (para rubber tree); biology of rubber production; genome sequencing; rubber transferase

        DOI: 10.3969/j.issn.1000-2561.2020.10.003

        天然橡膠是一種重要的工業(yè)原料,在交通運(yùn)輸、醫(yī)療衛(wèi)生、國(guó)防軍工等領(lǐng)域應(yīng)用廣泛,其優(yōu)異的綜合性能迄今仍無(wú)法被人工合成橡膠完全替代[1]。我國(guó)是世界最大的天然橡膠消費(fèi)國(guó),年消費(fèi)量(約550萬(wàn)t)約占世界天然橡膠總產(chǎn)量(約1400萬(wàn)t)的40%,但自給率僅約15%[2]。目前,天然橡膠的商業(yè)來(lái)源幾乎全部來(lái)自巴西橡膠樹(shù)這一個(gè)熱帶樹(shù)種,無(wú)論是理論預(yù)測(cè)[3]或是生產(chǎn)上超高產(chǎn)橡膠樹(shù)單株的發(fā)現(xiàn)[4]都顯示橡膠樹(shù)的產(chǎn)膠潛力巨大,可在現(xiàn)有最高產(chǎn)橡膠樹(shù)品種單產(chǎn)水平(年產(chǎn)約2500 kg/hm2)的基礎(chǔ)上提升3~5倍。產(chǎn)膠生物學(xué)基礎(chǔ)研究,將為橡膠樹(shù)高產(chǎn)分子育種提供理論依據(jù)與靶標(biāo)基因。

        近10年,隨著高通量、低成本的二代和三代測(cè)序技術(shù)以及蛋白質(zhì)組學(xué)技術(shù)的飛速發(fā)展,橡膠樹(shù)產(chǎn)膠生物學(xué)研究取得了顯著進(jìn)展。本文從橡膠樹(shù)基因組、橡膠轉(zhuǎn)移酶、轉(zhuǎn)基因以及轉(zhuǎn)錄組和蛋白質(zhì)組學(xué)等4個(gè)方向介紹產(chǎn)膠生物研究領(lǐng)域的主要進(jìn)展,并對(duì)該研究領(lǐng)域存在的問(wèn)題和發(fā)展方向提出了思考,以期增進(jìn)研究者對(duì)本領(lǐng)域發(fā)展現(xiàn)狀和未來(lái)工作重點(diǎn)的了解。

        1? 橡膠樹(shù)基因組測(cè)序研究

        2013年,馬來(lái)西亞研究者公布了第一個(gè)橡膠樹(shù)基因組[5],此后包含筆者團(tuán)隊(duì)在內(nèi)的不同研究者又陸續(xù)報(bào)道了4個(gè)版本[6-9](表1)。從拼接質(zhì)量上看,筆者團(tuán)隊(duì)在2016年發(fā)表的版本[6]僅次于最近以三代測(cè)序?yàn)橹魍瓿傻陌姹綶9],但明顯優(yōu)于其他3個(gè)同樣以二代測(cè)序技術(shù)為主的版本(表1)[10]。從對(duì)產(chǎn)膠生物學(xué)問(wèn)題的闡述上看,筆者團(tuán)隊(duì)發(fā)現(xiàn)了橡膠樹(shù)物種高產(chǎn)橡膠的遺傳線索、提出乙烯刺激產(chǎn)膠新機(jī)制等重要產(chǎn)膠生物學(xué)問(wèn)題[6],是迄今最受關(guān)注和認(rèn)可的橡膠樹(shù)基因組版本。

        1.1? 橡膠樹(shù)基因組的大小

        最早基于孚爾根染色微密度測(cè)定法(Feulgen microdensitometry)測(cè)定橡膠樹(shù)基因組的大小為2.15 Gb[11],而筆者團(tuán)隊(duì)用二代測(cè)序k-mer分析法估算橡膠樹(shù)‘熱研7-33-97等6個(gè)品種的基因組大小在1.41~1.55 Gb之間[6],這與53份橡膠樹(shù)栽培種質(zhì)基因組大小的流式細(xì)胞分析結(jié)果(1.46~1.60 Gb, 平均1.53 Gb)[12]一致。結(jié)合幾個(gè)較高質(zhì)量橡膠樹(shù)基因組的實(shí)際拼接大小[6-9](表1),我們認(rèn)為橡膠樹(shù)這個(gè)物種基因組的大小應(yīng)為1.5 Gb左右。

        1.2? 橡膠生物合成單體IPP的來(lái)源

        在橡膠樹(shù)的產(chǎn)膠細(xì)胞乳管中存在2種異戊烯基焦磷酸(IPP)的合成途徑,即細(xì)胞質(zhì)胞漿的甲羥戊酸途徑(MVA)和質(zhì)體的2-C-甲基-D-赤蘚糖醇-4-磷酸途徑(MEP)。多數(shù)研究認(rèn)為MVA途徑可能是橡膠生物合成單體IPP的主要來(lái)源[13],但MEP途徑是否參與橡膠生物合成長(zhǎng)期存在爭(zhēng)議[14-15]。

        筆者團(tuán)隊(duì)在橡膠樹(shù)基因組中鑒定到18個(gè)MVA和22個(gè)MEP途徑家族基因(圖1A)。組織表達(dá)分析發(fā)現(xiàn),MVA途徑的6個(gè)催化酶中都至少有1個(gè)在膠乳(乳管細(xì)胞的細(xì)胞質(zhì))中特異高表達(dá)的基因,而MEP途徑中僅DXS有2個(gè)編碼基因在膠乳中的表達(dá)量相對(duì)較高,其他6個(gè)酶的編碼基因在膠乳中表達(dá)量很低或明顯低于其他組織。這些結(jié)果表明,MVA途徑是橡膠樹(shù)中橡膠生物合成IPP的主要來(lái)源,MEP途徑可能對(duì)橡膠生物合成的貢獻(xiàn)很小。

        1.3? 橡膠樹(shù)高產(chǎn)橡膠的遺傳線索

        在已知的2500余種產(chǎn)膠植物中,為何橡膠樹(shù)具有優(yōu)異的產(chǎn)膠能力,筆者團(tuán)隊(duì)從基因組研究上獲得了科學(xué)線索。

        通過(guò)與其他17種植物基因組比較,我們發(fā)現(xiàn)橡膠樹(shù)中橡膠延伸因子/小橡膠粒子蛋白(REF/ SRPP)基因家族發(fā)生了顯著擴(kuò)增,共有18個(gè)基因,數(shù)目遠(yuǎn)高于其他植物[6],類似發(fā)現(xiàn)在另外2個(gè)關(guān)于橡膠樹(shù)基因組的研究[7, 9]中也有報(bào)道。在橡膠樹(shù)基因組上,有12個(gè)REF/SRPP基因形成一個(gè)跨度約160 kb的基因簇,并且在膠乳中特異高表達(dá)的4個(gè)基因(REF1、SRPP1、REF3和REF7)都在這個(gè)基因簇上;從進(jìn)化關(guān)系上看,膠乳中表達(dá)量最高的REF1基因可能是由表達(dá)量較低的REF/SRPP基因逐步進(jìn)化而來(lái)(圖1)。從蛋白序

        列比對(duì)結(jié)果來(lái)看,REF1類似于一個(gè)C-端被截?cái)嗟腟RPP1(膠乳表達(dá)量?jī)H次于REF1基因)。有趣的是,僅在橡膠樹(shù)中存在與REF1編碼蛋白(138 aa)大小相當(dāng)?shù)腞EF/SRPP基因,而其他植物中只有編碼大小與SRPP1(204 aa)相當(dāng)或更大的REF/SRPP蛋白。

        按粒徑尺寸將橡膠粒子分為大(>400 nm)、小(<400 nm)兩類,雖然大橡膠粒子的數(shù)目只占膠乳中橡膠粒子總數(shù)的6%,卻貢獻(xiàn)了93%的橡膠產(chǎn)量[16]。SRPP和REF在橡膠粒子上的分布模式存在明顯差異,SRPP主要位于小橡膠粒子膜的表面,而REF主要鑲嵌在大橡膠粒子的膜中[17]。綜合上述結(jié)果,我們推測(cè)REF/SRPP基因家族的顯著擴(kuò)增和乳管特異性功能分化,特別是乳管中超高表達(dá)特異REF1的出現(xiàn)可能是橡膠樹(shù)進(jìn)化出優(yōu)異高產(chǎn)橡膠性狀的根本原因,這種性狀有利于橡膠樹(shù)在熱帶叢林中抵御蛀食性害蟲(chóng)的侵害[18]。

        1.4? 乙烯刺激橡膠樹(shù)產(chǎn)膠的新機(jī)制

        在橡膠樹(shù)的樹(shù)干上涂抹乙烯利(2-氯乙基磷酸,乙烯釋放劑)或直接施用氣體乙烯可刺激橡膠樹(shù)排膠、顯著提高膠乳產(chǎn)量,是橡膠樹(shù)生產(chǎn)上的一項(xiàng)重要增產(chǎn)措施[18]。在過(guò)去40多年中,國(guó)內(nèi)外發(fā)表了大量關(guān)于乙烯刺激橡膠樹(shù)膠乳產(chǎn)生機(jī)制的論文,發(fā)現(xiàn)乙烯處理增強(qiáng)了乳管細(xì)胞中蔗糖的吸收和降解[19-22]、促進(jìn)水分吸收[23]和能量代謝[24]、導(dǎo)致胞漿pH堿性化[24]、促進(jìn)氮同化[25]和引起防御應(yīng)答[26]等,這些過(guò)程與膠乳再生或膠乳排出直接或間接相關(guān),但都未能從根本上回答乙烯處理能顯著刺激橡膠樹(shù)乳管產(chǎn)膠的原因。

        利用RNAseq深度測(cè)序,筆者團(tuán)隊(duì)共鑒定出500多個(gè)受乙烯調(diào)控的膠乳差異表達(dá)基因。進(jìn)一步分析發(fā)現(xiàn),乙烯合成關(guān)鍵酶ACO家族基因在膠乳中不表達(dá)或表達(dá)量極低[6],結(jié)合膠乳中氧含量低[19]和ACO催化ACC氧化產(chǎn)生乙烯時(shí)需要氧氣的事實(shí),推測(cè)橡膠樹(shù)乳管細(xì)胞中的乙烯合成能力很弱;同時(shí),膠乳中乙烯信號(hào)傳遞和應(yīng)答通路中的多個(gè)關(guān)鍵基因,包括4個(gè)ETR、2個(gè)EIN2和1個(gè)EIL1基因受乙烯刺激后顯著上調(diào)表達(dá)[6],表明乳管細(xì)胞中存在活躍的乙烯信號(hào)傳遞與應(yīng)答通路。這一發(fā)現(xiàn),從源頭上回答了在橡膠樹(shù)上使用外源乙烯刺激可顯著刺激膠乳增產(chǎn)的根本原因。

        2? 橡膠轉(zhuǎn)移酶研究

        1969年Archer等[27]將催化橡膠生物合成的酶稱為橡膠轉(zhuǎn)移酶(rubber transferase),其催化橡膠生物合成單體IPP逐個(gè)摻入到不斷延伸的橡膠烴(順式-1,4-聚異戊二烯)上,分布在膠乳的水相和橡膠粒子上。此后至今的50余年,人們對(duì)橡膠轉(zhuǎn)移酶的生化、分子特性和調(diào)控機(jī)制的認(rèn)識(shí)不斷深入,特別是在2015—2016年出現(xiàn)了突破性進(jìn)展。研究者分別以萵苣[28]、短角蒲公英[29]和橡膠樹(shù)[30]這3種產(chǎn)膠植物為研究對(duì)象,發(fā)現(xiàn)橡膠轉(zhuǎn)移酶不是一種單一蛋白,而是以順式異戊烯基轉(zhuǎn)移酶(cis-prenyl-transferase, CPT)為核心,并包含CPT結(jié)合蛋白(一種人NogoB受體類似蛋白,也稱CPT類似蛋白、橡膠轉(zhuǎn)移酶活化劑)、橡膠延伸因子(rubber elongation factor,REF)和小橡膠粒子蛋白(small rubber particle protein,SRPP)等多種蛋白組分,定位在橡膠粒子上催化橡膠烴大分子合成的一種復(fù)雜的蛋白復(fù)合體[31]。

        2.1? 順式異戊烯基轉(zhuǎn)移酶

        1989年,Light等[32]報(bào)道從橡膠樹(shù)膠乳中純化了橡膠轉(zhuǎn)移酶,在橡膠粒子存在時(shí)可催化橡膠烴的合成,在無(wú)橡膠粒子但有二甲基烯丙基焦磷酸(DMAPP)存在時(shí)可催化合成牻牛兒基焦磷酸(GPP)和法尼基焦磷酸(FPP)。但Cornish[33]隨后的研究發(fā)現(xiàn)Light等純化的不是橡膠轉(zhuǎn)移酶,而是在膠乳中催化橡膠合成起始分子FPP的可溶性反式異戊烯基轉(zhuǎn)移酶,真正的橡膠轉(zhuǎn)移酶是與橡膠粒子密切結(jié)合的順式異戊烯基轉(zhuǎn)移酶(CPT)。Asawatreratanakul等[34]首先克隆了2個(gè)在橡膠樹(shù)膠乳中特異表達(dá)的CPT基因(HRT1和HRT2),其中原核表達(dá)的HRT2重組蛋白在膠乳離心洗滌后的底層顆粒存在時(shí)可催化合成橡膠大分子。Takahashi等[35]在酵母和擬南芥細(xì)胞中表達(dá)HRT1和HRT2基因,但發(fā)現(xiàn)HRT重組蛋白并不能催化生成橡膠大分子,推測(cè)橡膠轉(zhuǎn)移酶活性需要一些特定的膠乳成分。Post等[36]證明短角蒲公英中乳管特異表達(dá)的CPT是橡膠生物合成所必需的,相關(guān)基因經(jīng)RNAi沉默后,膠乳中的橡膠含量減低90%以上。利用蛋白質(zhì)組學(xué)分析,Dai等[37]從橡膠樹(shù)膠乳的橡膠粒子上鑒定到6個(gè)CPT蛋白,證實(shí)了早期關(guān)于CPT與橡膠粒子緊密結(jié)合的報(bào)道[33]。Tang等[6]發(fā)現(xiàn)橡膠樹(shù)基因組上共有11個(gè)CPT基因,其中3個(gè)在膠乳中高豐度表達(dá),這與Uthup等[38]認(rèn)為橡膠樹(shù)中僅有3個(gè)與橡膠生物合成相關(guān)的CPT基因(RubCPT1、RubCPT2和RubCPT3)的結(jié)論一致。Uthup等[38]同時(shí)發(fā)現(xiàn)RubCPT1在不同橡膠品系中的單倍體類型與其基因表達(dá)水平和產(chǎn)膠性狀密切相關(guān)。最近,Ding等[39]利用轉(zhuǎn)錄組學(xué)和基因組學(xué)整合分析研究手段發(fā)現(xiàn)1個(gè)CPT基因(CPT2)是所鑒定的3個(gè)橡膠生物合成樞紐基因之一。

        2.2? 橡膠延伸因子和小橡膠粒子蛋白

        橡膠延伸因子(REF)和小橡膠粒子蛋白(SRPP)是橡膠樹(shù)膠乳中豐度最高的蛋白,同屬REF/SRPP蛋白家族。橡膠樹(shù)基因組中有18個(gè)REF/SRPP基因,是已報(bào)道植物基因組中家族基因數(shù)量最多的物種[6],其中一些膠乳特異高表達(dá)的家族基因在多個(gè)蛋白質(zhì)組研究中被鑒定到[37, 40-42]。關(guān)于橡膠樹(shù)REF/SRPP蛋白參與橡膠生物合成的研究主要集中在2個(gè)膠乳特異高表達(dá)家族成員上,即REF1(138 aa, 14.6 kDa)和SRPP1(204 aa, 24 kDa)[6],它們具有較高的氨基酸序列同源性,都主要分布在膠乳中的橡膠粒子上,但與橡膠粒子的結(jié)合方式和生化特性存在明顯差別[43-44]:SRPP1松散地結(jié)合在小橡膠粒子膜的表面,而REF1同時(shí)存在于大、小橡膠粒子上且與膜結(jié)合緊密;在溶液中,REF1聚合成富含β-折疊的淀粉樣蛋白,并很快形成微米級(jí)別的大聚合體,SRPP1則形成穩(wěn)定的納米級(jí)別的近球形多聚體;SRPP1與REF1可發(fā)生相互作用,SRPP1會(huì)抑制REF1的聚集。

        Dennis等[13]發(fā)現(xiàn)橡膠粒子上的REF蛋白與橡膠烴分子的比例約1∶1,膠乳中REF蛋白的含量與橡膠含量正相關(guān),同時(shí)在體外橡膠生物合成體系中加入REF抗體或去除橡膠粒子上的REF蛋白均會(huì)顯著抑制橡膠合成。Priya等[45]發(fā)現(xiàn)REF基因在橡膠樹(shù)高產(chǎn)品系膠乳中的表達(dá)水平高于低產(chǎn)品系,割膠和乙烯利刺激均能誘導(dǎo)REF基因的表達(dá),表明REF基因表達(dá)與膠乳產(chǎn)量正相關(guān)。Oh等[46]發(fā)現(xiàn)在體外橡膠生物合成體系中添加SRPP重組蛋白可顯著促進(jìn)橡膠合成,推測(cè)SRPP和REF可能都是橡膠生物合成系統(tǒng)的重要組成部分。

        在2種產(chǎn)膠蒲公英——俄羅斯蒲公英和短角蒲公英中,SRPP/REF被RNA干擾下調(diào)表達(dá)后,根中的橡膠含量顯著降低,幅度可高達(dá)50%以上[47-49]。不同的是,在俄羅斯蒲公英干擾植株中,橡膠粒子的穩(wěn)定性和橡膠分子量都顯著下降[47];而在短角蒲公英干擾植株中,橡膠粒子的穩(wěn)定性、橡膠分子量和分子分散度則均不受影響[48-49]。Hillebrand等[48]推測(cè),在短角蒲公英中SRPP是維持橡膠粒子穩(wěn)定性的重要蛋白,RNA干擾植株中橡膠含量下降的主要原因是橡膠粒子的穩(wěn)定性受到影響。奇怪的是,在另一種產(chǎn)膠植物萵苣中,RNA干擾膠乳中2個(gè)主要SRPP基因并不影響橡膠生物合成,干擾植株膠乳中的橡膠含量、橡膠分子量和分子分散度都不受影響[50]。

        需要指出的是,系統(tǒng)進(jìn)化分析結(jié)果顯示橡膠樹(shù)膠乳中特異高表達(dá)的REF/SRPP基因單獨(dú)聚為一簇,其他產(chǎn)膠植物中一些REF/SRPP基因聚為另一簇,而橡膠樹(shù)和其他產(chǎn)膠植物其余的REF/SRPP基因則分散開(kāi)來(lái)與非產(chǎn)膠植物聚為不同的簇[6],這表明其他產(chǎn)膠植物膠乳中關(guān)于特異高表達(dá)REF/ SRPP基因的研究結(jié)果可能難以真實(shí)反映橡膠樹(shù)中相應(yīng)基因的功能。最近,Ding等[39]研究鑒定了3個(gè)參與橡膠生物合成的樞紐基因,其中包括膠乳中表達(dá)豐度最高的2個(gè)REF/SRPP基因(REF1和SRPP1)。

        2.3? 橡膠轉(zhuǎn)移酶復(fù)合體

        Qu等[28]從萵苣中鑒定到一個(gè)在膠乳中高表達(dá)的CPT-like 2(CPTL2)蛋白,該蛋白與人NogoB受體和典型的CPT都有一定的同源性,但缺乏CPT的保守motif。萵苣中CPTL2基因經(jīng)RNA干擾后,膠乳中的橡膠含量降至野生植株的5%;CPT3和CPTL2可直接互作,在煙草和酵母細(xì)胞中共表達(dá)CPT3和CPTL2基因時(shí),原本在細(xì)胞溶質(zhì)中表達(dá)的CPT3定位到內(nèi)質(zhì)網(wǎng)上;在酵母微粒體中添加CPT3/CPTL2重組蛋白后低聚合度順式-聚異戊二烯的合成能力增強(qiáng),卻不能合成橡膠大分子。根據(jù)以上結(jié)果,作者推測(cè)CPTL2可能作為一種腳手架蛋白將CPT3拉到內(nèi)質(zhì)網(wǎng)上,進(jìn)而形成橡膠生

        物合成的細(xì)胞器——橡膠粒子。在短角蒲公英中,Epping等[29]從膠乳蛋白質(zhì)組上鑒定了一個(gè)與萵苣CPTL2功能近似的NogoB受體蛋白,該蛋白在橡膠粒子膜上與CPT互作,是橡膠轉(zhuǎn)移酶復(fù)合物的必需組分;在該蛋白基因的RNA干擾的植株中,橡膠生物合成能力幾乎完全喪失,膠乳中檢測(cè)不到CPT蛋白,但多萜醇(dolichol)的含量和蛋白質(zhì)的糖基化不受影響,因此將該蛋白命名為橡膠轉(zhuǎn)移酶活化劑(rubber transferase activator, RTA)。

        Yamashita等[30]在橡膠轉(zhuǎn)移酶復(fù)合體研究中更進(jìn)了一步,發(fā)現(xiàn)REF1也是橡膠轉(zhuǎn)移酶復(fù)合體的一個(gè)關(guān)鍵組分。利用去污劑(8 mmol/L CHAPS)處理,獲得了去除大部分膜蛋白的橡膠樹(shù)橡膠粒子(WRP),結(jié)合無(wú)細(xì)胞蛋白翻譯系統(tǒng)建立了橡膠體外合成反應(yīng)的研究體系。在WRP懸浮液中同時(shí)表達(dá)橡膠樹(shù)CPT(HRT1)、REF和HRT1-REF橋梁蛋白(HRBP,系萵苣CPTL2和短角蒲公英RTA的同源蛋白)這3種蛋白,發(fā)現(xiàn)橡膠轉(zhuǎn)移酶的活性遠(yuǎn)高于單獨(dú)表達(dá)HRT1或同時(shí)表達(dá)HRT1和HRBP的活性。橡膠粒子蛋白質(zhì)組學(xué)和互作網(wǎng)絡(luò)的研究表明,HRT1、REF和HRBP三者可能在橡膠粒子上形成復(fù)合體,其中HRBP同時(shí)與HRT1和REF互作,在復(fù)合體形成中發(fā)揮橋梁作用?;谙嚓P(guān)結(jié)果,提出了在橡膠樹(shù)膠乳中的橡膠粒子上進(jìn)行橡膠合成以及橡膠粒子發(fā)生機(jī)制的模型圖(圖2)[30],指出在橡膠粒子上形成正確的HRT1蛋白復(fù)合體是進(jìn)行橡膠大分子生物合成的關(guān)鍵。

        3? 橡膠樹(shù)轉(zhuǎn)基因研究

        橡膠樹(shù)遺傳轉(zhuǎn)化的效率低、周期長(zhǎng),轉(zhuǎn)基因研究進(jìn)展緩慢。1994年Arokiaraj等[51]將GUS報(bào)告基因?qū)胂鹉z樹(shù)的基因組,但其后十幾年僅有幾篇進(jìn)行橡膠樹(shù)轉(zhuǎn)基因體系優(yōu)化研究的報(bào)道[52-56]。2012年發(fā)表了第一篇對(duì)轉(zhuǎn)基因橡膠樹(shù)植株表型和所轉(zhuǎn)基因的功能進(jìn)行系統(tǒng)研究的文章[57],研究者在橡膠樹(shù)中過(guò)表達(dá)了其自身的細(xì)胞質(zhì)胞漿CuZnSOD酶,轉(zhuǎn)基因植株在干旱脅迫處理時(shí)氣孔導(dǎo)度下降、脯氨酸含量增加,干旱耐受能力明顯增強(qiáng),并發(fā)現(xiàn)這種增強(qiáng)與轉(zhuǎn)基因植株中活性氧清除能力的提高直接相關(guān)[57]。近幾年,橡膠樹(shù)轉(zhuǎn)基因研究取得可喜進(jìn)展,有望通過(guò)轉(zhuǎn)基因手段明顯改進(jìn)橡膠樹(shù)的抗逆和產(chǎn)量性狀[58-60]。

        Lestari等[59]在橡膠樹(shù)中過(guò)表達(dá)1個(gè)擬南芥ERF1(ethylene response factor 1)的橡膠樹(shù)同源基因HbERF-IXc5,發(fā)現(xiàn)轉(zhuǎn)基因植株的根系發(fā)達(dá),莖圍和株高明顯增加,植株干重顯著增大,這與以往報(bào)道的ERF1過(guò)表達(dá)植株矮化嚴(yán)重的現(xiàn)象明顯不同,表明HbERF-IXc5的功能可能有別于經(jīng)典的植物ERF1;HbERF-IXc5轉(zhuǎn)基因植株對(duì)干旱、冷、鹽等非生物脅迫的耐受力有所增強(qiáng),與相關(guān)植株生態(tài)生理指標(biāo)的測(cè)定結(jié)果一致;轉(zhuǎn)基因植株主葉脈和綠色嫩莖中的初生乳管數(shù)量明顯增加,其中一個(gè)轉(zhuǎn)基因株系老化莖中的次生乳管數(shù)量也明顯增多,推測(cè)HbERF-IXc5基因可能通過(guò)參與乙烯和茉莉酸信號(hào)傳導(dǎo)間的“竄擾”(crosstalk),從而控制一些直接參與乳管分化的基因。Jayashree等[60]在橡膠樹(shù)中過(guò)表達(dá)IPP甲羥戊酸合成途徑的關(guān)鍵酶HMGR基因(hmgr1),結(jié)果令人振奮,所有轉(zhuǎn)基因植株的莖圍和膠乳產(chǎn)量均高于對(duì)照植株,膠乳產(chǎn)量最高可達(dá)對(duì)照的5倍,顯示通過(guò)轉(zhuǎn)基因手段培養(yǎng)高產(chǎn)甚至超高產(chǎn)橡膠樹(shù)的前景誘人。

        最近,中國(guó)熱帶農(nóng)業(yè)科學(xué)研究院橡膠研究所的科研人員[61]將體外組合的Cas9/sgRNA核蛋白導(dǎo)入橡膠樹(shù)原生質(zhì)體中,實(shí)現(xiàn)了對(duì)橡膠樹(shù)靶標(biāo)基因FT和TFL1的有效編輯,結(jié)合該團(tuán)隊(duì)前期建立的橡膠樹(shù)原生質(zhì)體植株再生體系[62],有望將無(wú)外源DNA導(dǎo)入的基因編輯技術(shù)應(yīng)用到橡膠樹(shù)遺傳改良中。

        4? 橡膠樹(shù)轉(zhuǎn)錄組與蛋白質(zhì)組研究

        橡膠樹(shù)基因組測(cè)序推動(dòng)了與產(chǎn)膠直接或間接相關(guān)的轉(zhuǎn)錄組和蛋白質(zhì)組研究。研究?jī)?nèi)容涉及以下方面:膠乳蛋白質(zhì)組[63]與轉(zhuǎn)錄組的研究方法[10, 64-65];不同橡膠樹(shù)組織的轉(zhuǎn)錄組[66-69];膠乳[41, 70]及其不同亞細(xì)胞組分(橡膠粒子、c-乳清和黃色體)的蛋白組[37, 42, 63, 71-73];乙烯和茉莉酸刺激[68, 74],以及與死皮相關(guān)[75]的膠乳或樹(shù)皮轉(zhuǎn)錄組;乙烯刺激的膠乳蛋白質(zhì)組[41, 70];不同產(chǎn)膠水平單株或品系[4, 76]以及排膠相關(guān)的膠乳轉(zhuǎn)錄組[77];基于轉(zhuǎn)錄組的產(chǎn)膠相關(guān)基因家族發(fā)掘[78-79]、分子標(biāo)記開(kāi)發(fā)與遺傳連鎖圖譜構(gòu)建[61, 80];橡膠樹(shù)基因組與轉(zhuǎn)錄組的整合數(shù)據(jù)庫(kù)[81]等。這些研究產(chǎn)生了海量的以產(chǎn)膠組織膠乳為主的轉(zhuǎn)錄組和蛋白質(zhì)組數(shù)據(jù),加深了人們對(duì)橡膠樹(shù)的橡膠生物合成、激素應(yīng)答和割膠脅迫等生物學(xué)問(wèn)題的認(rèn)識(shí)。但從整體上看,多數(shù)研究只是對(duì)相關(guān)組學(xué)數(shù)據(jù)進(jìn)行初步分析,未能對(duì)所發(fā)現(xiàn)的產(chǎn)膠相關(guān)候選基因或蛋白進(jìn)行深入探究。

        最近幾年,在橡膠樹(shù)組學(xué)研究上有了一些新變化,取得一些新進(jìn)展,這里簡(jiǎn)要介紹幾項(xiàng)代表性的研究。Wang等[70]鑒定到143個(gè)表達(dá)豐度顯著受乙烯刺激調(diào)控的膠乳蛋白,進(jìn)一步利用磷酸化蛋白質(zhì)組學(xué)技術(shù)鑒定到59個(gè)應(yīng)答乙烯處理的磷酸化蛋白,其中包括一些REF和SRPP的同源異構(gòu)體(isoform),推測(cè)蛋白翻譯后修飾和isoform特異性磷酸化修飾可能在乙烯刺激產(chǎn)膠中發(fā)揮重要作用。Makita等[65]建立了橡膠樹(shù)不同組織的全長(zhǎng)cDNA文庫(kù),利用Sanger和Illumina兩種測(cè)序手段結(jié)合更新了5500個(gè)基因結(jié)構(gòu),新注釋了9500個(gè)轉(zhuǎn)錄起始位點(diǎn),結(jié)合橡膠樹(shù)不同品種和組織的RNAseq數(shù)據(jù),對(duì)橡膠生物合成、膠乳產(chǎn)量和抗病有了新認(rèn)識(shí)。Chow等[10]利用PacBio三代測(cè)序技術(shù)對(duì)橡膠樹(shù)全長(zhǎng)cDNA文庫(kù)進(jìn)行轉(zhuǎn)錄組測(cè)序,共得到3.7萬(wàn)余個(gè)平均長(zhǎng)度約2 kb的全長(zhǎng)轉(zhuǎn)錄本,這些轉(zhuǎn)錄本對(duì)應(yīng)約1.5萬(wàn)個(gè)基因座,與‘熱研7-33-97基因組比對(duì)后發(fā)現(xiàn),超過(guò)一半的轉(zhuǎn)錄本可能是新的基因isoform。Ding等[82]利用公共數(shù)據(jù)庫(kù)中的129個(gè)RNAseq數(shù)據(jù)包進(jìn)行基因共表達(dá)分析,共鑒定到25個(gè)基因共表達(dá)模塊,其中1個(gè)模塊基因注釋富集為類異戊二烯代謝,在膠乳中高豐度表達(dá)并顯著應(yīng)答乙烯、茉莉酸處理和死皮發(fā)生,分析認(rèn)為模塊中的SRPP1、CPT2和REF1是橡膠生物合成的中心(hub)基因;基因組進(jìn)化分析發(fā)現(xiàn)REF/SRPP基因家族在橡膠樹(shù)物種中進(jìn)化產(chǎn)生2個(gè)分別包含SRPP1和REF1基因的特異基因簇,推測(cè)與橡膠生物合成密切相關(guān),這些結(jié)果與基因組研究[6]發(fā)現(xiàn)“REF1基因可能是橡膠樹(shù)物種進(jìn)化出高產(chǎn)橡膠性狀的關(guān)鍵事件”一致。

        5? 問(wèn)題與展望

        過(guò)去10年,橡膠樹(shù)產(chǎn)膠生物學(xué)研究取得了顯著進(jìn)展,加深了人們對(duì)橡膠樹(shù)的產(chǎn)膠機(jī)制以及與產(chǎn)膠相關(guān)的抗逆與激素應(yīng)答等重要生物學(xué)問(wèn)題的認(rèn)識(shí),也為橡膠樹(shù)高產(chǎn)分子改良提供了思路和技術(shù)儲(chǔ)備。但與水稻等重要糧食作物相比,橡膠樹(shù)橡膠產(chǎn)量性狀形成的分子機(jī)制研究尚處于比較初級(jí)的水平,相關(guān)研究成果還無(wú)法對(duì)橡膠樹(shù)高產(chǎn)遺傳改良提供切實(shí)支持。根據(jù)橡膠樹(shù)高產(chǎn)分子育種研究與實(shí)踐發(fā)展的需要,筆者認(rèn)為在未來(lái)5~10年,應(yīng)對(duì)以下幾個(gè)方面予以重點(diǎn)關(guān)注:

        (1)構(gòu)建橡膠樹(shù)主要栽培品種和核心種質(zhì)的泛基因組及膠乳等主要組織的泛轉(zhuǎn)錄組,揭示橡膠樹(shù)基因組物種水平的基因結(jié)構(gòu)、序列變異和可變剪輯模式;

        (2)利用各組學(xué)相結(jié)合的整合生物學(xué)研究手段以及豐富的橡膠樹(shù)栽培與種質(zhì)材料,揭示橡膠產(chǎn)量形成的關(guān)鍵代謝途徑與節(jié)點(diǎn)基因;

        (3)利用橡膠樹(shù)膠乳體外橡膠合成體系,以及酵母或植物懸浮細(xì)胞等表達(dá)體系,揭示橡膠轉(zhuǎn)移酶復(fù)合體的精準(zhǔn)結(jié)構(gòu)與作用機(jī)制;

        (4)利用橡膠樹(shù)懸浮培養(yǎng)細(xì)胞以及產(chǎn)膠模式植物——橡膠草的轉(zhuǎn)基因與基因編輯研究,揭示產(chǎn)膠細(xì)胞器(橡膠粒子)的發(fā)生與發(fā)育機(jī)制;

        (5)探索橡膠樹(shù)體胚發(fā)生與植株再生的分子調(diào)控機(jī)制,建立橡膠樹(shù)高效遺傳轉(zhuǎn)化和基因編輯技術(shù)平臺(tái)。

        參考文獻(xiàn)

        Van Beilen J B, Poirier Y. Establishment of new crops for the production of natural rubber[J]. Trends in Biotechnology, 2007, 25(11): 522-529.

        莫業(yè)勇. 天然橡膠供需形勢(shì)和風(fēng)險(xiǎn)分析[J]. 中國(guó)熱帶農(nóng)業(yè), 2019(2): 4-6, 10.

        Paardekooper E. Exploitation of the rubber tree[M]//Webster C, Baulkwill W. Rubber. New York: Longman Scientific and Technical, 1989.

        Tang C, Xiao X, Li H, et al. Comparative analysis of latex transcriptome reveals putative molecular mechanisms underlying super productivity of Hevea brasiliensis[J]. PLoS One, 2013, 8(9): e75307.

        Rahman A Y A, Usharraj A O, Misra B B, et al. Draft genome sequence of the rubber tree Hevea brasiliensis[J]. BMC Genomics, 2013, 14: 75.

        Tang C, Yang M, Fang Y, et al. The rubber tree genome reveals new insights into rubber production and species adaptation[J]. Nature Plants, 2016, 2(6): 16073.

        Lau N S, Makita Y, Kawashima M, et al. The rubber tree genome shows expansion of gene family associated with rubber biosynthesis[J]. Scientific Reports, 2016, 6(1): 28594.

        Pootakham W, Sonthirod C, Naktang C, et al. De novo hybrid assembly of the rubber tree genome reveals evidence of paleotetraploidy in Hevea species[J]. Scientific Reports, 2017, 7: 41457.

        Liu J, Shi C, Shi C C, et al. The Chromosome-based rubber tree genome provides new insights into spurge genome evolution and rubber biosynthesis[J]. Molecular Plant, 2020, 13(2): 336-350.

        Chow K S, Khoo J S, Mohd-Zainuddin Z, et al. Utility of PacBio Iso-Seq for transcript and gene discovery in Hevea latex[J]. Journal of Rubber Research, 2019, 22(4): 169-186.

        Bennett M D, Leitch I J. Nuclear DNA amounts in angiosperms-583 new estimates[J]. Annals of Botany, 1997, 80(2): 169-196.

        柳? 覲, 牛迎鳳, 吳? 裕, 等. 巴西橡膠樹(shù)栽培種質(zhì)基因組C值測(cè)定和變異分析[J]. 熱帶亞熱帶植物學(xué)報(bào), 2018, 26 (5): 523-528.

        Dennis M S, Light D R. Rubber elongation factor from Hevea brasiliensis. Identification, characterization, and role in rubber biosynthesis[J]. The Journal of Biological Chemistry, 1989, 264(31): 18608-18617.

        Sando T, Takeno S, Watanabe N, et al. Cloning and characterization of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway genes of a natural-rubber producing plant, Hevea brasiliensis[J]. Bioscience, Biotechnology and Biochemistry, 2008, 72(11): 2903-2917.

        Chow K S, Matisa M N, Bahari A, et al. Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex[J]. Journal of Experimental Botany, 2012, 63(5): 1863-1871.

        Yeang H Y, Yip E, Hamzah S. Characterisation of Zone 1 and Zone 2 rubber particles in Hevea brasiliensis latex[J]. Journal of Natural Rubber Ressearch, 1995, 10: 108-123.

        Berthelot K, Lecomte S, Estevez Y, et al. Rubber particle proteins, HbREF and HbSRPP, show different interactions with model membranes[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2014, 1838(1): 287-299.

        dAuzac J, Jacob J L, Prév?t J C, et al. The regulation of cis-polyisoprene production (natural rubber) from Hevea brasiliensis[M]//Pandalai S G. Recent research developments in plant physiology. Trivandrum: Research Singpost, 1997.

        Tupy J. Sucrose supply and utilization for latex production[M]//DAuzac J, Jacob J-L, Chrestin H. Physiology of rubber tree latex. Boca Raton: CRC Press, 1989.

        Tang C, Huang D, Yang J, et al. The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree)[J]. Plant, Cell and Environment, 2010, 33(10): 1708-1720.

        Dusotoit-Coucaud A, Kongsawadworakul P, Maurousset L, et al. Ethylene stimulation of latex yield depends on the expression of a sucrose transporter (HbSUT1B) in rubber tree (Hevea brasiliensis)[J]. Tree Physiology, 2010, 30(12): 1586-1598.

        Liu S, Lan J, Zhou B, et al. HbNIN2, a cytosolic alkaline/neutral-invertase, is responsible for sucrose catabolism in rubber-producing laticifers of Hevea brasiliensis (para rubber tree)[J]. New Phytologist, 2015, 206(2): 709-725.

        Tungngoen K, Kongsawadworakul P, Viboonjun U, et al. Involvement of HbPIP2; 1 and HbTIP1;1 aquaporins in ethylene stimulation of latex yield through regulation of water exchanges between inner liber and latex cells in Hevea brasiliensis[J]. Plant Physiology, 2009, 151: 843-856.

        Amalou Z, Bangratz J, Chrestin H. Ethrel (ethylene releaser)-induced increases in the adenylate pool and transtonoplast delta pH within Hevea latex cells[J]. Plant Physiology, 1992, 98(4): 1270-1276.

        Pujade-Renaud V, Clement A, Perrotrechenmann C, et al. Ethylene-Induced increase in glutamine synthetase activity and mRNA levels in Hevea brasiliensis latex cells[J]. Plant Physiology, 1994, 105(1): 127-132.

        Putranto R A, Duan C, Kuswanhadi, et al. Ethylene response factors are controlled by multiple harvesting stresses in Hevea brasiliensis[J]. PLoS One, 2015, 10(4): e0123618.

        Archer B L, Cockbain E G. Rubber transferase from Hevea brasiliensis latex[J]. Methods in Enzymology, 1969, 15: 476-480.

        Qu Y, Chakrabarty R, Tran H T, et al. A lettuce (Lactuca sativa) homolog of human Nogo-B receptor interacts with cis-prenyltransferase and is necessary for natural rubber biosynthesis[J]. Journal of Biological Chemistry, 2015, 290(4): 1898-1914.

        Epping J, Van Deenen N, Niephaus E, et al. A rubber transferase activator is necessary for natural rubber biosynthesis in dandelion[J]. Nature Plants, 2015, 1(5): 15048.

        Yamashita S, Yamaguchi H, Waki T, et al. Identification and reconstitution of the rubber biosynthetic machinery on rubber particles from Hevea brasiliensis[J]. eLife, 2016, 5: e19022.

        Cherian S, Ryu S B, Cornish K. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects[J]. Plant Biotechnology Journal, 2019, 17(11): 2041-2061.

        Light D R, Dennis M S. Purification of a prenyltransferase that elongates cis-isoprene rubber from latex of Hevea brasiliensis[J]. Journal of Biological Chemistry, 1989, 264(31): 18589-18597.

        Cornish K. The separate roles of plant cis and trans prenyl transferases in cis-1,4-polyisoprene biosynthesis[J]. European Journal of Biochemistry, 1993, 218(1): 267-271.

        Asawatreratanakul K, Zhang Y W, Wititsuwannakul D, et al. Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis: a key factor participating in natural rubber biosynthesis[J]. European Journal of Biochemistry, 2003, 270(23): 4671- 4680.

        Takahashi S, Lee H J, Yamashita S, et al. Characterization of cis-prenyltransferases from the rubber producing plant Hevea brasiliensis heterologously expressed in yeast and plant cells[J]. Plant Biotechnology, 2012, 29(4): 411-417.

        Post J, van Deenen N, Fricke J, et al. Laticifer-specific cis-prenyltransferase silencing affects the rubber, triterpene, and inulin content of Taraxacum brevicorniculatum[J]. Plant Physiology, 2012, 158(3): 1406-1417.

        Dai L, Kang G, Li Y, et al. In-depth proteome analysis of the rubber particle of Hevea brasiliensis (para rubber tree)[J]. Plant Molecular Biology, 2013, 82(1-2): 155-168.

        Uthup T K, Rajamani A, Ravindran M, et al. Distinguishing CPT gene family members and vetting the sequence structure of a putative rubber synthesizing variant in Hevea brasiliensis[J]. Gene, 2019, 689: 183-193.

        Ding Z, Fu L, Tan D, et al. An integrative transcriptomic and genomic analysis reveals novel insights into the hub genes and regulatory networks associated with rubber synthesis in H. brasiliensis[J]. Industrial Crops and Products, 2020, 153: 112562 .

        Dai L, Nie Z, Kang G, et al. Identification and subcellular localization analysis of two rubber elongation factor isoforms on Hevea brasiliensis rubber particles[J]. Plant Physiology and Biochemistry, 2017, 111: 97-106.

        Tong Z, Wang D, Sun Y, et al. Comparative proteomics of rubber latex revealed multiple protein species of REF/SRPP family respond diversely to ethylene stimulation among different rubber tree clones[J]. International Journal of Molecular Sciences, 2017, 18(5): 958.

        Wang D, Sun Y, Chang L L, et al. Subcellular proteome profiles of different latex fractions revealed washed solutions from rubber particles contain crucial enzymes for natural rubber biosynthesis[J]. Journal of Proteomics, 2018, 182: 53-64.

        Berthelot K, Lecomte S, Estevez Y, et al. Homologous Hevea brasiliensis REF (Hevb1) and SRPP (Hevb3) present different auto-assembling[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2014, 1844(2): 473-485.

        Berthelot K, Lecomte S, Estevez Y, et al. Hevea brasiliensis REF (Hev b 1) and SRPP (Hev b 3): An overview on rubber particle proteins[J]. Biochimie, 2014, 106: 1-9.

        Priya P, Venkatachalam P, Thulaseedharan A, et al. Differential expression pattern of rubber elongation factor (REF) mRNA transcripts from high and low yielding clones of rubber tree (Hevea brasiliensis Muell. Arg.) [J]. Plant Cell Reports, 2007, 26(10): 1833-1838.

        Oh S K, Kang H, Shin D H, et al. Isolation, characterization and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis[J]. Journal of Biological Chemistry, 1999, 274(24): 17132- 17138.

        Collinssilva J, Nural A T, Skaggs A, et al. Altered levels of the Taraxacum kok-saghyz (Russian dandelion) small rubber particle protein, TkSRPP3, result in qualitative and quantitative changes in rubber metabolism[J]. Phytochemistry, 2012, 79: 46-56.

        Hillebrand A, Post J, Wurbs D, et al. Down-regulation of small rubber particle protein expression affects integrity of rubber particles and rubber content in Taraxacum brevicorniculatum[J]. PLoS One, 2012, 7(7): e41874.

        Laibach N, Hillebrand A, Twyman R M, et al. Identification of a Taraxacum brevicorniculatum rubber elongation factor protein that is localized on rubber particles and promotes rubber biosynthesis[J]. The Plant Journal, 2015, 82(4): 609- 620.

        Chakrabarty R, Qu Y, Ro D K. Silencing the lettuce homologs of small rubber particle protein does not influence natural rubber biosynthesis in lettuce (Lactuca sativa)[J]. Phytochemistry, 2015, 113: 121-129.

        Arokiaraj P, Jones H, Cheong K F, et al. Gene insertion into Hevea brasiliensis[J]. Plant Cell Reports, 1994, 13(8): 425-431.

        Arokiaraj P, Yeang H Y, Cheong K F, et al. CaMV 35S promoter directs β-glucuronidas expression in the laticiferous system of transgenic Hevea brasiliensis (rubber tree)[J]. Plant Cell Reports, 1998, 17: 621-625.

        Montoro P, Rattana W, Pugade-Renaud V, et al. Production of Hevea brasiliensis transgenic embryogenic callus lines by Agrobacterium tumefaciens: roles of calcium[J]. Plant Cell Reports, 2003, 21: 1095-1102.

        Blanc G, Baptiste C, Oliver G, et al. Efficient Agrobacterium tumefaciens-mediated transformation of embryogenic calli and regeneration of Hevea brasiliensis Mull Arg. plants[J]. Plant Cell Reports, 2006, 24: 724-733.

        Montoro P, Lagier S, Baptiste C, et al. Expression of the HEV2.1 gene promoter in transgenic Hevea brasiliensis[J]. Plant Cell Tissue and Organ Culture, 2008, 94(1): 55-63.

        Leclercq J, Lardet L, Martin F, et al. The green fluorescent protein as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation in Hevea brasiliensis (Mull. Arg)[J]. Plant Cell Reports, 2010, 29: 513-522.

        Leclercq J, Martin F, Sanier C, et al. Over-expression of a cytosolic isoform of the HbCuZnSOD gene in Hevea brasiliensis changes its response to a water deficit[J]. Plant Molecular Biology, 2012, 80: 255-272.

        Rekha K, Nazeem P A, Venkatachalam P, et al. Development of osmotin transgenics in Hevea brasiliensis Muell. Arg. using explants of zygotic origin[J]. Journal of Tropical Agriculture, 2014, 52(1): 7-20.

        Lestari R, Rio M, Martin F, et al. Overexpression of Hevea brasiliensis ethylene response factor HbERF‐IXc5 enhances growth and tolerance to abiotic stress and affects laticifer differentiation[J]. Plant Biotechnology Journal, 2018, 16(1): 322-336.

        Jayashree R, Nazeem P A, Rekha K, et al. Over-expression of 3-hydroxy-3- methylglutaryl-coenzyme A reductase 1 (hmgr1) gene under super-promoter for enhanced latex biosynthesis in rubber tree (Hevea brasiliensis Muell. Arg.)[J]. Plant Physiology and Biochemistry, 2018, 127: 414-424.

        Fan Y, Xin S, Dai X, et al. Efficient genome editing of rubber tree (Hevea brasiliensis) protoplasts using CRISPR/ Cas9 ribonucleoproteins[J]. Industrial Crops and Products, 2020, 146: 112146 .

        戴雪梅, 黃天帶, 李? 季, 等. 不同外植體對(duì)橡膠樹(shù)原生質(zhì)體分離和再生的影響[J]. 分子植物育種, 2014, 12(6): 1259-1264.

        Wang X, Shi M, Lu X, et al. A method for protein extraction from different subcellular fractions of laticifer latex in Hevea brasiliensis compatible with 2-DE and MS[J]. Proteome Science, 2010, 8: 35.

        Chow K, Ghazali A, Hoh C, et al. RNA sequencing read depth requirement for optimal transcriptome coverage in Hevea brasiliensis[J]. BMC Research Notes, 2014, 7(1): 69.

        Makita Y, Ng K K, Singham G V, et al. Large-scale collection of full-length cDNA and transcriptome analysis in Hevea brasiliensis[J]. DNA Research, 2017, 24(2): 159-167.

        Xia Z, Xu H, Zhai J, et al. RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis[J]. Plant Molecular Biology, 2011, 77(3): 299.

        Li D, Deng Z, Qin B, et al. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.)[J]. BMC Genomics, 2012, 13(1): 192.

        Pirrello J, Leclercq J, Dessailly F, et al. Transcriptional and post-transcriptional regulation of the jasmonate signalling pathway in response to abiotic and harvesting stress in Hevea brasiliensis[J]. BMC Plant Biology, 2014, 14(1): 341.

        Fang Y, Mei H, Zhou B, et al. De novo transcriptome analysis reveals distinct defense mechanisms by young and mature leaves of Hevea brasiliensis (para rubber tree)[J]. Scientific Reports, 2016, 6: 33151.

        Wang X, Wang D, Sun Y, et al. Comprehensive proteomics analysis of laticifer latex reveals new insights into ethylene stimulation of natural rubber production[J]. Scientific Reports, 2015, 5: 13778.

        Xiang Q, Xia K, Dai L, et al. Proteome analysis of the large and the small rubber particles of Hevea brasiliensis using 2D-DIGE[J]. Plant Physiology and Biochemistry, 2012, 60: 207-213.

        Wang X, Shi M, Wang D, et al. Comparative proteomics of primary and secondary lutoids reveals that chitinase and glucanase play a crucial combined role in rubber particle aggregation in Hevea brasiliensis[J]. Journal of Proteome Research, 2013, 12(11): 5146-5159.

        Habib M A H, Gan C Y, Othman F, et al. Proteomics analysis of latex from Hevea brasiliensis (clone RRIM 600)[J]. Biochemistry and Cell Biology, 2017, 95(2): 232-242.

        Liu J, Zhuang Y, Guo X, et al. Molecular mechanism of ethylene stimulation of latex yield in rubber tree (Hevea brasiliensis) revealed by de novo sequencing and transcriptome analysis[J]. BMC Genomics, 2016, 17(1): 257.

        Li D, Wang X, Deng Z, et al. Transcriptome analyses reveal molecular mechanism underlying tapping panel dryness of rubber tree ( Hevea brasiliensis)[J]. Scientific Reports, 2016, 6: 23540.

        Chao J, Chen Y, Wu S, et al. Comparative transcriptome analysis of latex from rubber tree clone CATAS8-79 and PR107 reveals new cues for the regulation of latex regeneration and duration of latex flow[J]. BMC Plant Biology, 2015, 15: 104.

        Wei F, Luo S, Zheng Q, et al. Transcriptome sequencing and comparative analysis reveal long-term flowing mechanisms in Hevea brasiliensis latex[J]. Gene, 2015, 556(2): 153-162.

        Piyatrakul P, Yang M, Putranto R A, et al. Sequence and expression analyses of ethylene response factors highly expressed in latex cells from Hevea brasiliensis[J]. PLoS One, 2014, 9(6): e99367

        Nie Z, Kang G, Li Y, et al. Whole-transcriptome survey of the putative ATP-binding cassette (ABC) transporter family genes in the latex-producing laticifers of Hevea brasiliensis[J]. PLoS One, 2015, 10(1): e0116857.

        Shearman J R, Sangsrakru D, Jomchai N, et al. SNP identification from RNA sequencing and linkage map construction of rubber tree for anchoring the draft genome[J]. PLoS One, 2015, 10(4): e0121961.

        Makita Y, Kawashima M, Lau N S, et al. Construction of Pará rubber tree genome and multi-transcriptome database accelerates rubber researches[J]. BMC Genomics, 2018, 19(Suppl 1): 922.

        Ding Z, Fu L, Tan D, et al. An integrative transcriptomic and genomic analysis reveals novel insights into the hub genes and regulatory networks associated with rubber synthesis in H. brasiliensis[J]. Industrial Crops and Products, 2020, 153: 112562.

        猜你喜歡
        橡膠樹(shù)
        橡膠樹(shù)白粉病拮抗放線菌的篩選及田間防效評(píng)價(jià)
        橡膠樹(shù)寒害減災(zāi)技術(shù)研究
        中國(guó)熱科院突破橡膠樹(shù)死皮康復(fù)技術(shù)難關(guān)
        中國(guó)熱科院突破橡膠樹(shù)死皮康復(fù)技術(shù)難關(guān)
        中國(guó)熱科院突破橡膠樹(shù)死皮康復(fù)技術(shù)難關(guān)
        天然橡膠種植管理技術(shù)研究
        能生產(chǎn)輪胎的樹(shù)
        橡膠樹(shù)miRNA 探查
        橡膠樹(shù)開(kāi)割季在5月已經(jīng)開(kāi)始
        越南西原地區(qū)橡膠樹(shù)種植面積占全國(guó)26%
        国产成人av一区二区三| 日韩在线一区二区三区免费视频 | 九九99久久精品午夜剧场免费| 久久99热精品免费观看欧美| 亚洲处破女av一区二区| 伊人久久大香线蕉av五月| 日本中文字幕有码网站| 最新系列国产专区|亚洲国产| 人妻无码中文字幕| 亚洲综合无码一区二区| 毛片在线啊啊| 亚洲av成熟国产精品一区二区| 日本高清成人一区二区三区| 国产亚洲成性色av人片在线观| 欧美三级不卡在线观看| 精品国产一二三产品区别在哪| 在线播放免费播放av片| 在线国产小视频| 亚洲av人片在线观看调教| 美女丝袜美腿玉足视频| 在线欧美中文字幕农村电影| 色欲国产精品一区成人精品| 亚洲黄片av在线免费观看| 国产内射一级一片内射视频| 无遮无挡爽爽免费毛片| 无码国产精品第100页| 97女厕偷拍一区二区三区 | 日韩不卡无码三区| 亚洲另类国产精品中文字幕| 狂猛欧美激情性xxxx大豆行情| 337p日本欧洲亚洲大胆| 日韩成人无码一区二区三区| 久久久久无码中文字幕| 国产一区二区黄色的网站| 国产ww久久久久久久久久| 日本久久久| 少妇一级内射精品免费| 三级全黄裸体| 国产精品污www一区二区三区| 波多野结衣有码| 插入中文字幕在线一区二区三区 |