祝錦霞,徐保根
基于變化向量的耕地利用方式變化下耕地質(zhì)量評(píng)價(jià)
祝錦霞,徐保根
(浙江財(cái)經(jīng)大學(xué)土地與城鄉(xiāng)發(fā)展研究院,杭州 310018)
耕地利用方式變化下耕地質(zhì)量的變化研究意義重大。該文以浙江省耕地質(zhì)量監(jiān)測(cè)試點(diǎn)松陽(yáng)縣為例,以變化向量凸顯耕地利用方式變化,探討基于變化向量的耕地利用方式變化下耕地質(zhì)量變化的快速評(píng)價(jià)方法。充分考慮各特征向量之間的聯(lián)系以及不同意義不同量綱元素間的共同作用問(wèn)題,選擇典型相關(guān)分析CCA(canonical correlation analysis)構(gòu)建變化向量;采用CCA為基礎(chǔ)的多元變化檢測(cè)MAD(multivariate alteration detection)最大限度的消除相關(guān)性影響,以方差最大的形式凸顯耕地利用方式變化下耕地質(zhì)量的變化;選擇基于高斯混合模型(GMM)的期望最大化算法(EM)快速評(píng)價(jià)耕地利用方式變化下耕地質(zhì)量的變化情況。重點(diǎn)分析基于快速評(píng)價(jià)的耕地利用方式變化下耕地質(zhì)量變化區(qū)域的空間分布及其和傳統(tǒng)因素法的對(duì)比分析。結(jié)果表明:基于變化向量法得到的耕地質(zhì)量變化結(jié)果與傳統(tǒng)的因素法在監(jiān)測(cè)耕地質(zhì)量水平不變的吻合度在80%~100%以上,耕地質(zhì)量水平提高的吻合度在16.6%~50%,耕地質(zhì)量水平下降的吻合度在66.7%~100%。提出的基于變化向量法的耕地質(zhì)量變化評(píng)價(jià)模型能對(duì)耕地利用方式變化下耕地的質(zhì)量變化做出正確的評(píng)價(jià),評(píng)價(jià)方法科學(xué)、合理、易操作推廣,為合理優(yōu)化配置耕地利用方式提供定量數(shù)據(jù)支撐。
土地利用;等別;變化向量;耕地質(zhì)量
農(nóng)業(yè)、農(nóng)村和農(nóng)民問(wèn)題始終是中國(guó)建設(shè)發(fā)展的根本問(wèn)題。鄉(xiāng)村治理作為國(guó)家治理體系的重要環(huán)節(jié)之一,其治理水平直接影響中國(guó)治理的現(xiàn)代化水平。作為鄉(xiāng)村現(xiàn)代化重要體現(xiàn)的農(nóng)業(yè)現(xiàn)代化,就要不斷發(fā)展效益農(nóng)業(yè)。本質(zhì)上就是要完善耕地種植結(jié)構(gòu),合理配置耕地種植利用方式。近年來(lái),以農(nóng)產(chǎn)品市場(chǎng)為目標(biāo)導(dǎo)向農(nóng)業(yè)土地利用格局趨勢(shì)顯著,農(nóng)產(chǎn)品市場(chǎng)變化逐漸成為農(nóng)村耕地種植利用方式變化的重要驅(qū)動(dòng)力之一。糧食種植面積逐年遞減,取而代之的是經(jīng)濟(jì)作物種植面積的不斷上升。2009年浙江和河北兩省進(jìn)行的農(nóng)戶(hù)調(diào)查表明,耕地流轉(zhuǎn)后用于非糧食作物種植的耕地面積比例分別上升了61.8%和62.9%[1]。作物種植結(jié)構(gòu)的調(diào)整會(huì)對(duì)耕地質(zhì)量產(chǎn)生較大的影響。土地利用行為的變化使得耕地質(zhì)量在空間上形成不同的分布特征。在耕地?cái)?shù)量有限、后備資源不足的壓力下,耕地?cái)?shù)量和質(zhì)量建設(shè)與管理對(duì)保障國(guó)家糧食安全和維護(hù)社會(huì)穩(wěn)定至關(guān)重要。迫切需要加強(qiáng)對(duì)耕地質(zhì)量的監(jiān)測(cè),快速及時(shí)掌握耕地質(zhì)量的動(dòng)態(tài)變化及耕地質(zhì)量等別演變的方向和特征。
目前耕地質(zhì)量的研究主要從自然科學(xué)角度出發(fā),分析基于農(nóng)戶(hù)土地利用行為的耕地質(zhì)量評(píng)價(jià)、耕地質(zhì)量的變化趨勢(shì)、耕地質(zhì)量變化的驅(qū)動(dòng)機(jī)制等方面[2-3]。耕地質(zhì)量?jī)?nèi)涵的研究方面,研究者普遍認(rèn)為耕地質(zhì)量是土壤質(zhì)量、地形坡度等自然因素與對(duì)耕地投入、管理水平、區(qū)位等社會(huì)經(jīng)濟(jì)因素共同構(gòu)成的綜合體[4];秦靜等提出區(qū)域外自然和社會(huì)經(jīng)濟(jì)因素對(duì)農(nóng)用地質(zhì)量的影響也應(yīng)納入耕地質(zhì)量的內(nèi)涵[5]。耕地質(zhì)量評(píng)價(jià)的研究方面,金東海等提出了基于農(nóng)用地分等成果的2層7參數(shù)法[6];吳賽男等提出在經(jīng)濟(jì)等的基礎(chǔ)上通過(guò)修正法評(píng)定耕地質(zhì)量的定級(jí)[7]。隨著人類(lèi)活動(dòng)對(duì)耕地利用干預(yù)的增加,人文因素成為影響耕地質(zhì)量變化的另一重要因素[8-9]。徐梓津等提出了綜合農(nóng)戶(hù)投入行為的耕地綜合質(zhì)量評(píng)價(jià)方法[10];張貞等提出了綜合農(nóng)戶(hù)投入行為的耕地質(zhì)量修正方法[11];石淑芹等提出了耦合耕地利用質(zhì)量的耕地質(zhì)量評(píng)價(jià)方法[12]。
現(xiàn)有的研究對(duì)耕地質(zhì)量和耕地質(zhì)量變化的研究大多集中在耕地分等特征研究、耕地質(zhì)量變化的單因素分析。從單因素方面研究耕地質(zhì)量的時(shí)空間變化,如農(nóng)戶(hù)作物種植行為單一影響因素對(duì)耕地質(zhì)量的影響分析[2-4]。在耕地質(zhì)量的評(píng)價(jià)方法上主要圍繞因素法、模糊評(píng)價(jià)法、層次分析法、主成分分析法、灰色關(guān)聯(lián)度法、熵權(quán)法等。但傳統(tǒng)的因素法基于所有指標(biāo)統(tǒng)一加權(quán)求和,弱化了各分項(xiàng)指標(biāo)對(duì)耕地質(zhì)量的影響[13-22]。耕地質(zhì)量變化的研究主要集中在不同年份耕地質(zhì)量評(píng)價(jià)結(jié)果的時(shí)空變化特征。不考慮屬性特征之間統(tǒng)計(jì)相關(guān)性的傳統(tǒng)差值方,使得絕對(duì)值不同的數(shù)值相減得到同樣大小的差值,導(dǎo)致潛在可利用信息的丟失[23-28]。
農(nóng)戶(hù)是廣大農(nóng)村土地生產(chǎn)和經(jīng)營(yíng)等經(jīng)濟(jì)活動(dòng)的主體,是農(nóng)業(yè)土地利用最基本的決策單位,其行為決定著土地資源是否能否合理利用[2]。種植結(jié)構(gòu)的選擇是農(nóng)戶(hù)土地利用方式的直接體現(xiàn)。種植結(jié)構(gòu)的變化影響土壤肥力水平與農(nóng)業(yè)生態(tài)系統(tǒng)中的物質(zhì)循環(huán),最終引發(fā)耕地質(zhì)量變化。因此,從農(nóng)戶(hù)土地利用行為的視角出發(fā)研究耕地質(zhì)量變化,揭示土地利用行為與耕地質(zhì)量變化之間的邏輯關(guān)系[29]。通過(guò)集成多學(xué)科理論以及遙感與地理信息技術(shù)等信息獲取、分析技術(shù),構(gòu)建基于變化向量的耕地質(zhì)量變化指數(shù),由此合理配置經(jīng)濟(jì)效益好、可促進(jìn)或保持耕地質(zhì)量的耕地利用方式。指導(dǎo)農(nóng)戶(hù)摒棄引起負(fù)效應(yīng)的土地利用行為,把握耕地可持續(xù)利用的正效應(yīng),對(duì)維持耕地穩(wěn)定和提高耕地質(zhì)量具有重要意義[30]。
松陽(yáng)縣位于浙江省西南部(圖1),地處119°10′~119°42′E,28°14′~28°37′N(xiāo)。東西最寬處53.7 km,南北最長(zhǎng)40.2 km,面積1 406 km2。松陽(yáng)縣地處上海經(jīng)濟(jì)區(qū)的南翼,位于浙、皖、贛、閩經(jīng)濟(jì)協(xié)作區(qū)的腹地,屬于中國(guó)沿海對(duì)外開(kāi)放的經(jīng)濟(jì)發(fā)達(dá)地區(qū)和內(nèi)陸經(jīng)濟(jì)欠發(fā)達(dá)地區(qū)的交接過(guò)渡地帶。全境以中、低山丘陵地帶為主,中部盆地以其開(kāi)闊平坦稱(chēng)“松古平原”,為縣內(nèi)主要產(chǎn)糧區(qū)。
松陽(yáng)縣耕地面積為18 604.16 hm2,占土地總面積比例高達(dá)13.28%,其中松古平原作為浙南山地區(qū)內(nèi)規(guī)模較大的盆地,是浙南的主要糧食生產(chǎn)區(qū)域。低丘緩坡資源豐富,耕地后備資源相對(duì)充足。浙江省松陽(yáng)縣是全國(guó)特色產(chǎn)茶縣和綠茶集散地之一,良種茶園覆蓋率90.5%,居全省第二位,被評(píng)為“浙江省良種茶之鄉(xiāng)”和“浙江省茶樹(shù)良種化先進(jìn)縣”。茶葉種植集中分布在松古盆地,水稻種植較為分散,全縣都有分布。耕地種植利用方式變化的區(qū)域主要集中在松古盆地。
耕地質(zhì)量的內(nèi)涵在不斷與時(shí)俱進(jìn),不斷添加新的內(nèi)容。從系統(tǒng)學(xué)角度講,耕地質(zhì)量系統(tǒng)是由2個(gè)子系統(tǒng)組成,一個(gè)是土地利用子系統(tǒng),一個(gè)是土壤子系統(tǒng)。自然因素對(duì)耕地質(zhì)量變化有一定的主導(dǎo)作用,但其在較短時(shí)間內(nèi)相對(duì)穩(wěn)定。隨著人類(lèi)活動(dòng)對(duì)耕地干預(yù)程度的提高,社會(huì)經(jīng)濟(jì)等人文因素容易通過(guò)土地利用間接促進(jìn)耕地質(zhì)量的變化[31]。因此,在充分遵循生產(chǎn)性、可行性、典型性、主導(dǎo)性原則的基礎(chǔ)上,結(jié)合松陽(yáng)縣耕地的特點(diǎn),對(duì)耕地質(zhì)量評(píng)價(jià)指標(biāo)進(jìn)行初步篩選,從自然要素、人文要素、區(qū)位因素等方面建立耕地質(zhì)量評(píng)價(jià)體系的目標(biāo)層,構(gòu)建以地形、土壤、土地利用、基礎(chǔ)設(shè)施、耕作條件、區(qū)位條件為基礎(chǔ)的準(zhǔn)則層[32-34]。從數(shù)據(jù)客觀性、可獲得性以及指標(biāo)量化可行性等原則出發(fā),通過(guò)征詢(xún)有關(guān)專(zhuān)家意見(jiàn),對(duì)指標(biāo)進(jìn)行調(diào)整最終得到耕地質(zhì)量評(píng)價(jià)指標(biāo)體系(表1)。各指標(biāo)原始數(shù)據(jù)均取自2006和2013年《松陽(yáng)縣統(tǒng)計(jì)年鑒》及相關(guān)數(shù)據(jù)分析處理提取。
圖1 松陽(yáng)縣行政區(qū)劃
表1 松陽(yáng)縣耕地質(zhì)量評(píng)價(jià)指標(biāo)體系
共計(jì)2006年松陽(yáng)縣共有耕地土壤樣本1 408個(gè),其中茶葉種植利用方式的樣本441個(gè),水稻種植利用方式的樣本595個(gè)。2014年測(cè)得樣本數(shù)相對(duì)較少,只有408個(gè)。其中,其中茶葉種植利用方式的樣本119個(gè),水稻種植利用方式的樣本181個(gè)。通過(guò)分析樣本的耕地利用方式變化及樣本數(shù)據(jù)的科學(xué)性,選擇耕地利用方式變化類(lèi)型“茶葉-水稻”18對(duì),“水稻-茶葉”33對(duì)作為研究數(shù)據(jù)對(duì)象。圖2為松陽(yáng)縣2006和2013年采樣點(diǎn)的耕地利用方式分布圖。農(nóng)戶(hù)作物種植方式在空間上呈現(xiàn)明顯的分化,其中松古盆地主要種植經(jīng)濟(jì)作物茶葉,水稻種植較為分散,全縣都有分布。耕地種植利用方式變化的區(qū)域主要集中在松古盆地。根據(jù)浙江省目前茶樹(shù)栽培品種的實(shí)際情況,本文以灌木中小葉型品種為代表。
圖2 松陽(yáng)縣不同耕地利用方式的土壤樣本分布
假設(shè)特征向量分別用隨機(jī)變量和表示,期望值均為0,維數(shù)表示特征個(gè)數(shù)。然后對(duì)和進(jìn)行典型變換,尋找相關(guān)性最小的針對(duì)原始變量的線性組合對(duì),使得它們之間的差值包含最大的差異信息。即尋找向量和使得變換后得到的和相關(guān)系數(shù)最大,向量和限定約束條件
式中,和分別代表2個(gè)時(shí)期耕地質(zhì)量的屬性特征。在這些約束條件下,最大化差異的方差等價(jià)于最小化典型相關(guān)分析中和的正相關(guān)性。MAD結(jié)果中數(shù)值越接近于0,說(shuō)明對(duì)應(yīng)位置上的兩時(shí)期耕地質(zhì)量之間的差異越小,耕地質(zhì)量越有可能沒(méi)有發(fā)生變化;反之,MAD結(jié)果越遠(yuǎn)離0,即絕對(duì)值越大,對(duì)應(yīng)位置上的不同時(shí)相之間的耕地質(zhì)量等指數(shù)差異越大,耕地質(zhì)量越有可能發(fā)生變化。
松陽(yáng)縣pH值、有機(jī)質(zhì)等土壤單因子肥力的局部空間插值結(jié)果[38]、農(nóng)田水利基礎(chǔ)設(shè)施的排水條件、灌溉保證率等量化的結(jié)果[38]都很好的體現(xiàn)了耕地的空間穩(wěn)定性。
3.1.1 水稻改種茶葉
1)耕地質(zhì)量多特征變化向量的構(gòu)建
松陽(yáng)縣耕地質(zhì)量評(píng)價(jià)指標(biāo)體系中2006和2013兩個(gè)年份的12個(gè)屬性特征變量經(jīng)過(guò)典型變換CCA得到相關(guān)性最小的線性組合對(duì),同時(shí)通過(guò)MAD變換得到相應(yīng)組合對(duì)的最大差值信息,即12個(gè)MAD變量。相關(guān)性越大的典型變量包含的原始數(shù)據(jù)信息更為豐富,即原始數(shù)據(jù)中大部分的耕地質(zhì)量信息集中表現(xiàn)在了相關(guān)性大的典型變量對(duì)之間,相關(guān)性較小的典型變量包含較小的原始屬性信息。本研究得到,12組原始變量的線性組合對(duì)中,第三組和第九組(MAD3和MAD9)的耕地質(zhì)量指數(shù)差值變量與原始耕地質(zhì)量屬性變量間的相關(guān)性較高(表2),其他MAD變量與原始耕地質(zhì)量屬性變量的相關(guān)性較低。因此在研究中選擇與原始耕地質(zhì)量屬性變量的相關(guān)性較大的MAD3和MAD9進(jìn)行分析,其他MAD變量未錄入表格。
表2 耕地利用方式變化下MAD和耕地質(zhì)量評(píng)價(jià)指標(biāo)相關(guān)性分析
2)耕地質(zhì)量多特征變化向量(MAD3,MAD9)的正態(tài)分布檢驗(yàn)
MAD3樣本值的-正態(tài)分布檢驗(yàn)得到均值0.000 001 2,標(biāo)準(zhǔn)差1.055 5,最大絕對(duì)差值為0.083,最大正值0.083,最小負(fù)值為-0.057,值為0.827>0.05,接受原假設(shè),即MAD3服從正態(tài)分布。MAD9樣本值的-正態(tài)分布檢驗(yàn)得到均值0.000 000 2,標(biāo)準(zhǔn)差0.225 72,最大絕對(duì)差值為0.141,最大正值0.141,最小負(fù)值為-0.093,值為0.205>0.05,顯著性水平0.05下,MAD9服從正態(tài)分布。
3)耕地質(zhì)量變化與否的閾值分析
包含更多原始信息的MAD3和MAD9變量對(duì)應(yīng)的EM-GMM分析得到,MAD9的正態(tài)分布檢驗(yàn)有異常值出現(xiàn),最終選擇MAD3變量分析水稻變茶葉這一耕地種植利用方式變化對(duì)耕地質(zhì)量的影響(圖3)。通過(guò)EM-GMM閾值計(jì)算得到正態(tài)曲線下耕地利用方式由水稻改種茶葉后耕地質(zhì)量不變、耕地質(zhì)量提升、耕地質(zhì)量下降的3個(gè)類(lèi)別各自的面積,分別是44.02%,22.55%,33.43%。查詢(xún)正態(tài)曲線下面積附表,得到33個(gè)水稻變茶葉的樣本中耕地質(zhì)量不變的樣本20個(gè),占60.6%;耕地質(zhì)量水平提升的樣本6個(gè),占18.2%;耕地質(zhì)量水平下降的樣本7個(gè),占21.2%。
注:A1: MAD3;A2: MAD9 ;B: 耕地質(zhì)量不變;C: 耕地質(zhì)量提升;D: 耕地質(zhì)量下降。下同。
3.1.2 茶葉改種水稻
1)耕地質(zhì)量多特征變化向量的構(gòu)建
MAD1和MAD7這2個(gè)耕地質(zhì)量指數(shù)差值變量與原始耕地質(zhì)量屬性變量間的相關(guān)性較高(表2),而其他MAD變量與原始耕地質(zhì)量屬性變量的相關(guān)性比較低。表明典型變量(CV1、CV7)集中了大部分的原始耕地質(zhì)量屬性變量信息。選擇MAD1和MAD7構(gòu)建耕地質(zhì)量變化的多特征向量。
2)耕地質(zhì)量變化特征向量的正態(tài)分布檢驗(yàn)
MAD1樣本值的-正態(tài)分布檢驗(yàn)得到均值0.000 003 2,標(biāo)準(zhǔn)差1.392 85,最大絕對(duì)差值為0.068,最大正值0.068,最小負(fù)值為-0.064,值為0.954>0.05,接受原假設(shè),即MAD1服從正態(tài)分布。同時(shí),MAD7樣本值的-正態(tài)分布檢驗(yàn)得到均值0.000 000 3,標(biāo)準(zhǔn)差0.493 85,最大絕對(duì)差值為0.082,最大正值0.082,最小負(fù)值為-0.052,值為0.828>0.05,顯著性水平0.05下MAD7服從正態(tài)分布。
3)基于EM-GMM的差值MAD1和MAD7的閾值提取
MAD1和MAD7變量的EM-GMM分析結(jié)果得到,MAD1的混合高斯分布圖更為穩(wěn)定,選擇MAD1變量分析茶葉變水稻這一耕地種植利用方式的變化對(duì)耕地質(zhì)量的影響(圖4)。EM-GMM閾值計(jì)算得到正態(tài)曲線下耕地利用方式由茶葉改種水稻后耕地質(zhì)量不變、耕地質(zhì)量水平提升、耕地質(zhì)量水平下降3個(gè)區(qū)間的面積,其中耕地質(zhì)量水平不變的面積占71.21%,耕地質(zhì)量水平提升的占14.31%,耕地質(zhì)量水平下降的占14.48%。得到18個(gè)茶葉變水稻的樣本中,耕地質(zhì)量水平不變的樣本14個(gè),占77.8%;耕地質(zhì)量水平提升的2個(gè)樣點(diǎn),占11.1%;耕地質(zhì)量水平下降的2個(gè)樣點(diǎn),占11.1%。
圖4 耕地質(zhì)量多特征變化向量MAD的正態(tài)分布檢驗(yàn)(茶葉改種水稻)
通過(guò)構(gòu)建變化向量模型對(duì)耕地利用方式變化下松陽(yáng)縣耕地質(zhì)量的變化進(jìn)行預(yù)測(cè),得到茶葉改種水稻后耕地質(zhì)量水平下降的樣點(diǎn)集中在松古盆地的望松鄉(xiāng)?;谧兓蛄糠ǖ玫降母刭|(zhì)量變化指數(shù)和原始變量的相關(guān)性分析得到,作物種植結(jié)構(gòu)發(fā)生變化對(duì)耕地質(zhì)量影響最大的還是耕地的基礎(chǔ)地力,耕地的耕層厚度、pH值、有機(jī)質(zhì)含量的變化最為顯著(表2,表3)。在其他條件不變的情況下,與不種植經(jīng)濟(jì)作物的耕地地塊相比,種植經(jīng)濟(jì)作物的耕地地塊上土壤有機(jī)質(zhì)含量顯著降低[9],主要是因?yàn)檠芯繀^(qū)域基本上不施用費(fèi)時(shí)費(fèi)力的農(nóng)家肥,而是以化肥(尿素、二銨等)為主,勢(shì)必造成土壤有機(jī)質(zhì)下降,土壤板結(jié)。因此選擇農(nóng)用地分等的自然等成果用于比較驗(yàn)證基于變化向量法的耕地質(zhì)量變化評(píng)定結(jié)果。圖5a~5d得到,農(nóng)用地分等成果中國(guó)家自然等變化集中在松陽(yáng)縣的古市鎮(zhèn)、望松鄉(xiāng)和三都鄉(xiāng),圖5e~5f得到基于變化向量法得到的耕地質(zhì)量水平變化集中的樣點(diǎn)也集中分布在望松鄉(xiāng)和三都鄉(xiāng)。
通過(guò)對(duì)基于變化向量法預(yù)測(cè)的結(jié)果進(jìn)行耕地質(zhì)量變化水平的分級(jí)劃分,從數(shù)量角度對(duì)耕地質(zhì)量水平變化的數(shù)量占比進(jìn)行了對(duì)比分析。兩者在監(jiān)測(cè)耕地質(zhì)量水平不變的吻合度在80%~100%,耕地質(zhì)量水平提高的吻合度在16.6%~50%,耕地質(zhì)量水平下降的吻合度在66.7%~100%(表4)。說(shuō)明提出的基于變化向量法的耕地質(zhì)量變化評(píng)價(jià)模型能對(duì)耕地利用方式發(fā)生變化下耕地的質(zhì)量變化做出正確的評(píng)價(jià)。基于變化向量法的耕地質(zhì)量變化評(píng)價(jià)方法相比較傳統(tǒng)的因素法結(jié)果雖然存在一定的差異,但其各項(xiàng)指標(biāo)精度以及檢驗(yàn)數(shù)據(jù)的相對(duì)誤差都在可接受的范圍,表明基于變化向量法的耕地質(zhì)量變化評(píng)價(jià)具有一定的可行性和準(zhǔn)確性,適于耕地質(zhì)量變化的評(píng)價(jià)工作。這主要因?yàn)橐缘湫拖嚓P(guān)分析CCA(canonical correlation analysis)為基礎(chǔ)構(gòu)建的變化向量,充分考慮各特征向量之間的聯(lián)系,通過(guò)協(xié)方差矩陣的形式做了一個(gè)標(biāo)準(zhǔn)化,從理論上很好的解決不同意義不同量綱元素間的共同作用問(wèn)題。實(shí)現(xiàn)耕地質(zhì)量變化的評(píng)價(jià)與原始屬性指標(biāo)的尺度無(wú)關(guān),對(duì)參與變換的向量各組成屬性元素的量綱、尺度等均沒(méi)有要求[37]。同時(shí),以CCA為基礎(chǔ)的多元變化檢測(cè)MAD(Multivariate Alteration Detection)能最大限度的消除相關(guān)性影響,將兩時(shí)期的耕地質(zhì)量變化信息集中于一個(gè)向量,以方差最大的形式表現(xiàn),得到多特征空間的變化向量,實(shí)現(xiàn)耕地質(zhì)量變化向量構(gòu)建。
表4 變化向量法與傳統(tǒng)農(nóng)用地分等后比較的對(duì)比結(jié)果
1)搞好“藏糧于土”戰(zhàn)略的規(guī)劃設(shè)計(jì)。在不影響耕地質(zhì)量、或已影響耕地質(zhì)量但容易恢復(fù)的前提下,允許農(nóng)民根據(jù)市場(chǎng)需求在耕地上種植經(jīng)濟(jì)作物。這不僅有利于農(nóng)民增收,也有利于農(nóng)民保護(hù)耕地積極性的提高。同時(shí),在積極開(kāi)展耕地質(zhì)量監(jiān)測(cè)與評(píng)價(jià)、耕地質(zhì)量變化的影響因素分析等工作基礎(chǔ)上,以耕地質(zhì)量保護(hù)的提升、耕地單位面積收入的增加、農(nóng)民增收為目標(biāo),切實(shí)做好“藏糧于土”戰(zhàn)略實(shí)施的規(guī)劃設(shè)計(jì),為農(nóng)民提供更多的適宜耕地質(zhì)量保護(hù)的經(jīng)濟(jì)作物類(lèi)型和品種,并根據(jù)市場(chǎng)需求為農(nóng)民提供種植計(jì)劃建議。
2)制定調(diào)控政策,引導(dǎo)農(nóng)民合理輪作與間作。建立耕地保護(hù)資金、農(nóng)業(yè)補(bǔ)貼資金的制度,積極支持農(nóng)民在耕地上種植糧食或其他不對(duì)耕地質(zhì)量造成破壞的經(jīng)濟(jì)植物。對(duì)于農(nóng)民種植對(duì)耕地質(zhì)量有一定程度破壞、但可以修復(fù)的經(jīng)濟(jì)植物,要交納耕地質(zhì)量修復(fù)保證資金,確保在農(nóng)民增收的同時(shí)耕地質(zhì)量不僅不降低而且有提高。制定調(diào)控政策,引導(dǎo)農(nóng)民合理輪作與間作。
3)制定“藏糧于土”和耕地質(zhì)量保護(hù)的實(shí)施辦法。應(yīng)根據(jù)區(qū)域?qū)嶋H,在開(kāi)展耕地質(zhì)量監(jiān)測(cè)與評(píng)價(jià)、作物種植適宜性評(píng)價(jià)等工作基礎(chǔ)上,從經(jīng)濟(jì)種類(lèi)與品種選擇、耕種方式、土壤保護(hù)與破壞后的修復(fù)等方面制定“藏糧于土”和耕地質(zhì)量保護(hù)的實(shí)施辦法,促進(jìn)農(nóng)民增收和耕地質(zhì)量保護(hù)建設(shè)。應(yīng)研究制定不同耕地利用方式對(duì)耕地質(zhì)量影響的定期評(píng)價(jià)制度和獎(jiǎng)懲制度,使耕地質(zhì)量保護(hù)與農(nóng)民增收實(shí)現(xiàn)雙贏。
通過(guò)集成多學(xué)科理論以及遙感與地理信息技術(shù)等信息獲取、分析技術(shù),以綜合耕地質(zhì)量?jī)?nèi)涵為基礎(chǔ),提出基于多特征變化向量的耕地質(zhì)量變化的評(píng)定方法。通過(guò)監(jiān)測(cè)對(duì)浙江省耕地質(zhì)量監(jiān)測(cè)試點(diǎn)縣——松陽(yáng)縣耕地利用方式變化引起的土壤、農(nóng)業(yè)生產(chǎn)條件的變化,選擇多變量變化檢測(cè)方法MAD構(gòu)建多特征變化向量,基于高斯混合模型選擇合理的閾值快速評(píng)價(jià)耕地質(zhì)量的變化。并在此基礎(chǔ)上對(duì)比分析基于變化向量法和傳統(tǒng)因素法的耕地質(zhì)量變化評(píng)定結(jié)果,兩者在監(jiān)測(cè)耕地質(zhì)量水平不變的吻合度在66.7%以上,耕地質(zhì)量水平提高的吻合度在16.6%~50%,耕地質(zhì)量水平下降的吻合度在66.7%~100%。提出的基于變化向量法的耕地質(zhì)量變化評(píng)價(jià)模型能對(duì)耕地利用方式變化下耕地的質(zhì)量變化做出正確的評(píng)價(jià),提高耕地質(zhì)量變化評(píng)價(jià)的精度和效率,為合理優(yōu)化配置耕地利用方式的選擇提供定量數(shù)據(jù)支撐,對(duì)維持耕地質(zhì)量穩(wěn)定和耕地的可持續(xù)發(fā)展具有重要意義。
[1] 楊瑞珍,陳印軍,易小燕,等. 耕地流轉(zhuǎn)中過(guò)度“非糧化”傾向產(chǎn)生的原因與對(duì)策[J]. 中國(guó)農(nóng)業(yè)資源與區(qū)劃,2012,33(3):14-17. Yang Ruizhen, Chen Yinjun, Yi Xiaoyan, The causes and countermeasures on the excessive non-food tendency in the process of land transfer[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2012, 33(3): 14-17. (in Chinese with English abstract)
[2] 張超,喬敏,鄖文聚,等. 耕地?cái)?shù)量、質(zhì)量、生態(tài)三位一體綜合監(jiān)管體系研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(1):1-6. Zhang Chao, Qiao Min, Yun Wenju, et al. Trinity comprehensive regulatory system about quantity, quality and ecology of cultivated land[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 1-6. (in Chinese with English abstract)
[3] 溫良友,孔祥斌,張蚌蚌,等. 基于可持續(xù)發(fā)展需求的耕地質(zhì)量評(píng)價(jià)體系構(gòu)建與應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(10):234-242. Wen Liangyou, Kong Xiangbin, Zhang Bangbang, et al. Construction and application of arable land quality evaluation system based on sustainable development demand[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 234-242. (in Chinese with English abstract)
[4] 杜國(guó)明,劉彥隨,于鳳榮,等. 耕地質(zhì)量觀的演變與再認(rèn)識(shí)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(14):243-249. Du Guoming, Liu Yansui, Yu Fengrong, et al. Evolution of concepts of cultivated land quality and recognition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 243-249. (in Chinese with English abstract)
[5] 秦靜,朱德舉,姜廣輝,等. 農(nóng)用地定級(jí)兩種因素法比較研究:以重慶市九龍坡區(qū)為例[J]. 土壤通報(bào),2007,38(1):11-14. Qin Jing, Zhu Deju, Jiang Guanghui, et al. Comparison of two factor methods for agricultural land gradation: A case study of Jiulongpo district in Chongqing city[J]. Chinese Journal of Soil Science, 2007, 38(1): 11-14. (in Chinese with English abstract)
[6] 金東海,許皞,秦文利. 基于分等成果的農(nóng)用地定級(jí)新方法:兩層七參數(shù)法[J]. 中國(guó)土地科學(xué),2004,18(6):34-39. Jin Donghai, Xu Hao, Qin Wenli. A new classification method of agricultural land based on gradation results: Two levels and seven parameters[J]. China Land Science, 2004, 18(6): 34-39. (in Chinese with English abstract)
[7] 吳賽男,張璐,王秀茹,等. 修正法農(nóng)用地定級(jí)技術(shù)研究:以北京市密云縣為例[J]. 水土保持研究,2007,14(4):332-334. Wu Sainan, Zhang Lu, Wang Xiuru, et al. Modification method for agricultural land gradation: A case study of Miyun county, Beijing[J]. Research of Soil and Water Conservation, 2007, 14(4): 332-334. (in Chinese with English abstract)
[8] 孔祥斌. 區(qū)域農(nóng)戶(hù)土地利用轉(zhuǎn)型對(duì)耕地質(zhì)量的影響[M]. 北京:科學(xué)出版社, 2012.
[9] 劉洪彬,王秋兵,孫福軍,等. 農(nóng)戶(hù)土地利用行為對(duì)耕地質(zhì)量作用機(jī)制及傳到路徑:以沈陽(yáng)市蘇家屯區(qū)為例[J]. 土壤通報(bào),2018,49(6):1294-1299. Liu Hongbin, Wang Qiubing, Sun Fujun, et al. Mechanism and transmission path of households' land use behavior to the quality of cultivated land in the process of rapid urbanization-taking Sujiatun district, Shenyang as an example[J].Chinese Journal of Soil Science, 2018, 49(6): 1294-1299. (in Chinese with English abstract)
[10] 徐梓津,趙翠薇,羅明飛,等. 農(nóng)戶(hù)投入行為對(duì)更低質(zhì)量的影響研究:以貴州省關(guān)嶺前進(jìn)、法那村為例[J]. 貴州師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,31(4):1-3. Xu Zijin, Zhao Cuiwei, Luo Mingfei, et al. Farmers behavior to the study on the impact of the quality of cultivated land in karst mountain flat area[J]. Journal of Guizhou Nornal University (Natural Science), 2013, 31(4): 1-3. (in Chinese with English abstract)
[11] 張貞,魏朝富,李萍,等. 四川盆地丘陵區(qū)農(nóng)戶(hù)行為對(duì)耕地質(zhì)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(4):230-236. Zhang Zhen, Wei Chaofu, Li Ping, et al. Effect of household behaviors on cultivated land quality in hilly areas of Sichuan basin, China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(4): 230-236. (in Chinese with English abstract)
[12] 石淑芹,陳佑啟,姚艷敏,等. 東北地區(qū)耕地自然質(zhì)量和利用質(zhì)量評(píng)價(jià)[J]. 資源科學(xué),2008,30(3):378-384. Shi Shuqin, Chen Youqi, Yao Yanmin, et al. Assessing natural quality and use quality of cultivated land in Northeast Chin[J]. Resources Science, 2008, 30(3), 378-384. (in Chinese with English abstract)
[13] 張蚌蚌,孔祥斌,鄖文聚,等. 我國(guó)耕地質(zhì)量與監(jiān)控研究綜述[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,20(2):216-222. Zhang Bangbang, Kong Xiangbin, Yun Wenju, et al. A review on quality and monitoring of arable land in China[J]. Journal of China Agricultural University, 2015, 20(2): 216-222. (in Chinese with English abstract)
[14] 孔祥斌. 耕地質(zhì)量系統(tǒng)及生產(chǎn)潛力監(jiān)測(cè)預(yù)警的理論與實(shí)踐[M]. 北京:中國(guó)農(nóng)業(yè)大學(xué)出版社,2016.
[15] 奉婷,張鳳榮,李燦,等. 基于耕地質(zhì)量綜合評(píng)價(jià)的縣域基本農(nóng)田空間布局. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(1):200-210. Feng Ting, Zhang Fengrong, Li Can, et al. Spatial distribution of prime farmland based on cultivated land quality comprehensive evaluation at county scale[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(1): 200-210. (in Chinese with English abstract)
[16] 溫良友,孔祥斌,張蚌蚌,等. 基于“過(guò)程-功能-質(zhì)量-特性-指標(biāo)”的耕地質(zhì)量評(píng)價(jià)指標(biāo)體系研究[J]. 土壤通報(bào),2017,48(6):1296-1303. Wen Liangyou, Kong Xiangbin, Zhang Bangbang, et al. Study on cultivated land quality evaluation index system based on process-function-quality-characteristic-index[J]. Chinese Journal of Soil Science, 2017, 48(6): 1296-1303. (in Chinese with English abstract)
[17] 馬瑞明,馬仁會(huì),韓冬梅,等. 基于多層級(jí)指標(biāo)的省域耕地質(zhì)量評(píng)價(jià)體系構(gòu)建[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(16):249-257. Ma Ruiming, Ma Renhui, Han Dongmei, et al. Construction of cultivated land quality evaluation system in provincial level based on hierarchical control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(16): 249-257. (in Chinese with English abstract)
[18] 辛蕓娜,范樹(shù)印,孔祥斌,等. 四重質(zhì)量維度下的縣域耕地質(zhì)量評(píng)價(jià)方法研究[J]. 資源科學(xué),2018,40(4):737-747. Xin Yunna, Fan Shuyin, Kong Xiangbin, et al. Evaluation of cultivated land quality based on four quality dimension[J]. Resources Science, 2018, 40(4): 737-747. (in Chinese with English abstract)
[19] 馬仁會(huì),李小波,李強(qiáng),等. 農(nóng)用地定級(jí)因素法與修正法比較分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2004,20(6):277-281. Ma Renhui, Li Xiaobo, Li Qiang, et al. Comparison and analysis of factor method and modifying method for agricultural land gradation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20 (6): 277-281. (in Chinese with English abstract)
[20] 陳麗,郝晉珉,艾東,等. 基于改進(jìn)農(nóng)業(yè)生態(tài)區(qū)劃法的耕地綜合量能指數(shù)模型構(gòu)建[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(20):268-276. Chen Li, Hao Jinmin, Ai Dong, et al. Comprehensive index model building of cultivated land yield and productivity based on improved agro-ecological zoning method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(20): 268-276. (in Chinese with English abstract)
[21] 劉瑞平,王洪波,全芳悅. 自然因素與社會(huì)經(jīng)濟(jì)因素對(duì)耕地質(zhì)量貢獻(xiàn)率研究[J]. 土壤通報(bào),2005,36(3):289-294. Liu Ruiping, Wang Hongbo, Quan Fangyue. The contributing ratio of natural and social-economic factors to the quality of cultivated land[J]. Chinese Journal of Soil Science, 2005, 36(3): 289-294. (in Chinese with English abstract)
[22] 劉瑞平. 自然因素與社會(huì)經(jīng)濟(jì)因素對(duì)耕地質(zhì)量的貢獻(xiàn)率研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2004. Liu Ruiping. The Contributing Ratio of Natural Social-economic Factors to the Quality of and Cultivated Land[D]. Beijing: China Agricultural University, 2004. (in Chinese with English abstract)
[23] 全國(guó)農(nóng)業(yè)技術(shù)推廣服務(wù)中心. 耕地質(zhì)量演變趨勢(shì)研究[M]. 北京:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社,2008.
[24] 李丹. 耕地質(zhì)量動(dòng)態(tài)變化研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2003. Li Dan. Study on the Dynamics of Cultivated Land Quality[D]. Nanjing: Nanjing Agricultural University, 2003. (in Chinese with English abstract)
[25] 許艷,濮勵(lì)杰,張潤(rùn)森,等. 江蘇沿海灘涂圍墾耕地質(zhì)量演變趨勢(shì)分析[J]. 地理學(xué)報(bào),2017,72(11):2032-2046. Xu Yan, Pu Lijie, Zhang Runsen, et al. Cropland quality evolution following coastal reclamation at theprograding tidal flats of Jiangsu Province, China[J]. Acta Geographica Sinica, 2017, 72(11): 2032-2046. (in Chinese with English abstract)
[26] 唐秀美,潘瑜春,秦元偉,等. 濱海集約農(nóng)區(qū)耕地質(zhì)量演變趨勢(shì)研究:以山東省廣饒縣為例[J]. 自然資源學(xué)報(bào),2013,28(2):277-286. Tang Xiumei, Pan Yuchun, Qin Yuanwei, et al. Changing situation of cultivated land quality based on GIS in Guangrao County in Shandong Province[J]. Journal of Natural Resources, 2013, 28(2): 227-286. (in Chinese with English abstract)
[27] 溫良友,孔祥斌,辛蕓娜,等. 對(duì)耕地質(zhì)量?jī)?nèi)涵的再認(rèn)識(shí)[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,24(3):156-164. Wen Liangyou, Kong Xiangbin, Xin Yunna, et al. Evolution of cultivated land quality conotation and its recognition[J]. Journal of China Agricultural University, 2019, 24(3): 156-164. (in Chinese with English abstract)
[28] 周峰,周穎. 江蘇省錫山市耕地?cái)?shù)量、質(zhì)量變化影響因素分析[J]. 中國(guó)土地科學(xué),2001,15(4):7-10. Zhou Feng, Zhou Ying. Analysis of factors that influence quantities and qualities of cultivated land in Xishan, Zhejiang Province[J]. China Land Science, 2001, 15(4): 7-10. (in Chinese with English abstract)
[29] 孔祥斌,張蚌蚌,溫良友,等. 基于要素-過(guò)程-功能的耕地質(zhì)量理論認(rèn)識(shí)及其研究趨勢(shì)[J]. 中國(guó)土地科學(xué),2018,32(9):14-20. Kong Xiangbin, Zhang Bangbang, Wen Liangyou, et al. Theoretical framework and research trends of cultivated land quality based on elements-process-function[J]. China Land Science, 2018, 32(9): 14-20. (in Chinese with English abstract)
[30] 王洪波,程鋒,張中帆,等. 中國(guó)耕地等別分異特性及其對(duì)耕地保護(hù)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(11):1-8. Wang Hongbo, Cheng Feng, Zhang Zhongfan, et al. Differential characteristics of cultivated land grade and its effect on cultivated land protection in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(11): 1-8. (in Chinese with English abstract)
[31] 王淇韜,孔祥斌,辛蕓娜,等. 基于利用效率限制的縣域耕地質(zhì)量定級(jí)方法研究:以河北省平山縣為例[J]. 北京師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,54(3):292-299. Wang Qitao, Kong Xiangbin, Xin Yunna, et al. Grading cultivated land based on limitation of utilization efficiency: A case study in Pingshan county, Hebei province[J]. Journal of Beijing Normal University (Natural Science), 2018, 54(3): 292-299. (in Chinese with English abstract)
[32] 張朝暉,聶艷,馬澤玥. 基于BP神經(jīng)網(wǎng)絡(luò)法的耕地質(zhì)量定級(jí)評(píng)價(jià):以襄陽(yáng)市城區(qū)為例[J]. 中國(guó)農(nóng)業(yè)信息,2019,31(2):72-83. Zhang Chaohui, Nie Yan, Ma Zeyue. Evaluation of cultivated land quality based on BP neural network method: A case study at Xiangyang urban area[J]. China Agricultural Information, 2019, 31(2): 72-83. (in Chinese with English abstract)
[33] 高向軍,馬仁會(huì). 中國(guó)農(nóng)用土地等級(jí)評(píng)價(jià)研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2002,18(1):165-168. Gao Xiangjun, Ma Renhui. Research advances of gradation and evaluation of agricultural land in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(1): 165-168. (in Chinese with English abstract)
[34] 王瑞燕,趙庚星,李濤,等. GIS 支持下的耕地地力等級(jí)評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2004,20(1):307-310. Wang Ruiyan, Zhao Gengxing, Li Tao, et al. GIS supported quantitative evaluation of cultivated land fertility[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(1): 307-310. (in Chinese with English abstract)
[35] Landgrebe D. Information Extraction Principles and Methods for Multispectral and Hyperspectral Image Data[M]//Chen C H. Information Processing for Remote Sensing. New Jersey: World Scientific Publishing Co., 2000.
[36] 余鵬,封舉富,童行偉. 一種新的基于高斯混合模型的紋理圖像分割方法[J]. 武漢大學(xué)學(xué)報(bào):信息科學(xué)版,2005,30(6):514-517. Yu Peng, Feng Jufu, Tong Xingwei. A new textured image segmentation algorithm based on Gaussian mixture models[J]. Geomatics and Information Science of Wuhan University, 2005, 30(6): 514-517. (in Chinese with English abstract)
[37] 祝錦霞,徐保根,鮑海君. 縣級(jí)耕地質(zhì)量等級(jí)評(píng)定方法研究[J]. 上海國(guó)土資源,2015,36(1):31-36. Zhu Jinxia, Xu Baogen, Bao Haijun. Methods for assessing cultivated land quality at the county-level: A case study of Songyang county, Zhejiang province[J]. Shanghai Land and Resource, 2015, 36(1): 31-36. (in Chinese with English abstract)
[38] 祝錦霞,王珂. 面向?qū)ο蟮母叻直媛视跋褡兓瘷z測(cè)方法研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(4):184-189. Zhu Jinxia, Wang Ke. Object-oriented Change Detection method using very high spatial resolution imagery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(4): 184-189. (in Chinese with English abstract)
Evaluation of cultivated land quality under changed cultivated land use pattern based on change vector analysis
Zhu Jinxia, Xu Baogen
(-,,310018,)
The quantity and quality of cultivated land plays an important role in our country's food security and the long-term stability of the community. It is important to assess the change of cultivated land quality under the changed cultivated land use pattern. This study aims to explore an effective method for detecting the changed information of cultivated land quality at county-level. Songyang County, Zhejiang province was selected as the study area to evaluate the cultivated land quality based on change vector analysis. The evaluation method was supported by Remote Sensing data and spatial analysis of GIS. There are obvious differentiation in space of cultivated land use patterns of Songyang County between 2006 and 2013. Among them, the Songgu Basin mainly planted economic crop tea, while the rice planting was scattered around the whole county. The areas where the cultivated land use pattern changed significantly were mainly concentrated in the Songgu Basin. 18 pairs of “tea-to-rice” types and 33 pairs of “rice-to-tea” were selected to analyze the changes of cultivated land quality. Combined with the characteristics of Songyang county cultivated land, the object evaluation index system was constructed from the aspects of natural factors, human factors and location factors with the principles of productivity, feasibility, typicality and dominance. In this study, the change vector was used to highlight the change information of cultivated land quality. At the same time, the proposed canonical correlation analysis (CCA)based multivariate alteration detection (MAD) method was applied to minimize the correlation effect to the greatest extent, and highlight the changing of cultivated land quality under the changed cultivated land use pattern in the form of maximizing variance. It was a feasible way for monitoring the change of cultivated land quality. In addition, expectation maximization algorithm based on Gaussian mixture model (EM-GMM) was used to label the change of cultivated land quality. The results of MAD demonstrated the change information of cultivated land quality. The closer the value of the MAD result is to 0, the smaller the difference between the cultivated land quality between 2006 and 2013. The greater the difference of the index of cultivated land quality between different phases, the more likely the quality of cultivated land changes. The variables of MAD3 and MAD1 were used to analyze the effects of changed cultivated land use pattern on the quality of cultivated land, such as rice-to-tea and tea-to-rice. The quantitative proportion of the changed cultivated land quality level was compared by using two different methods, change vector analysis (CVA) and agricultural land classification method (national grade). The agreement between two methods in monitoring the quality of cultivated land was more than 80%-100%, the matching degree of increased cultivated land quality was 16.6%-50%, and the matching degree of declined cultivated land quality was66.7%-100%. Results demonstrated that the proposed change vector based change detection of cultivated land quality provide a quantitative data support for the rational optimization and allocation of cultivated land use pattern, which is significantly maintaining the stable quality and the sustainable development of cultivated land. Further research is needed on other scales, such as city, province. The proposed method should be further tested in other regions containing more complex conditions.
land use; grade; change vector; quality of cultivated land
祝錦霞,徐保根. 基于變化向量的耕地利用方式變化下耕地質(zhì)量評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(2):292-300. doi:10.11975/j.issn.1002-6819.2020.2.034 http://www.tcsae.org
Zhu Jinxia, Xu Baogen. Evaluation of cultivated land quality under changed cultivated land use pattern based on change vector analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(2): 292-300. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.2.034 http://www.tcsae.org
2019-05-19
2019-12-20
浙江省哲學(xué)社會(huì)科學(xué)一般項(xiàng)目(20NDJC139YB);浙江省自然科學(xué)基金(LY20D010007);國(guó)家自然科學(xué)基金(41501190);浙江省軟科學(xué)重點(diǎn)項(xiàng)目(2017C25010);全國(guó)統(tǒng)計(jì)科學(xué)研究重點(diǎn)項(xiàng)目(2017LZ33);教育部人文社會(huì)科學(xué)研究規(guī)劃基金項(xiàng)目(12YJA630159)
祝錦霞,博士,副研究員。主要研究方向?yàn)榄h(huán)境遙感與土地資源管理。
10.11975/j.issn.1002-6819.2020.2.034
F301.21
A
1002-6819(2020)-2-0292-09