徐保利,代俊峰,2,俞陳文炅,謝曉琳,蘇毅捷,張麗華,潘林艷
漓江流域氮磷排放對水肥管理和下墊面屬性變化的響應(yīng)
徐保利1,代俊峰1,2※,俞陳文炅1,謝曉琳1,蘇毅捷1,張麗華1,潘林艷1
(1. 桂林理工大學(xué)環(huán)境科學(xué)與工程學(xué)院,桂林 541004;2. 廣西環(huán)境污染控制理論與技術(shù)重點實驗室,桂林 541004)
為分析漓江流域農(nóng)業(yè)面源污染氮磷排放及其主要影響因素,該研究在多年野外監(jiān)測試驗的基礎(chǔ)上,運用SWAT(soil and water assessment tool)模型模擬水肥管理和下墊面屬性對青獅潭灌區(qū)會仙試區(qū)氮磷排放的影響。研究中根據(jù)會仙試區(qū)徑流量、總氮及總磷月排放監(jiān)測數(shù)據(jù)校準(zhǔn)和驗證模型,進(jìn)而采用情景模擬方法,分析稻田化肥施用量(氮肥和磷肥)、灌溉水量、濕地面積和蓄水容積以及巖溶發(fā)育程度等變化對試區(qū)徑流及氮磷排放的影響。結(jié)果表明:1)校準(zhǔn)期和驗證期徑流、總氮和總磷排放模擬值與實測值的決定系數(shù)和納什系數(shù)分別在0.70和0.63以上,說明SWAT模型在會仙試區(qū)徑流、總氮和總磷排放模擬上具有較好的適用性。2)針對不同水肥管理水平,化肥施入量和灌溉水量減少30%時,試區(qū)出水口多年平均總氮、總磷排放量分別下降11.45%和8.98%、7.79%和5.81%,化肥施用量減少對總氮、總磷排放的削減效果優(yōu)于降低灌溉水量的削減效果。3)濕地面積或蓄水容量的增加和減少會相應(yīng)降低和增大試區(qū)總氮、總磷排放量,若將濕地面積和蓄水容量均擴(kuò)大50%,出水口總氮、總磷排放量可削減12.40%和10.44%;同時改變濕地面積和蓄水容量對試區(qū)總氮、總磷排放量的影響,超過單獨改變其中一個屬性影響的疊加。4)巖溶發(fā)育程度參數(shù)對子流域出水口氮磷排放影響各異,土壤厚度和土壤容重降低可減少試區(qū)徑流量和氮磷排放量,而土壤有效含水量和飽和滲透系數(shù)則表現(xiàn)出相反的作用。該研究顯示合理控制化肥施用量,防止?jié)竦孛娣e萎縮和蓄水能力退化,改善和保持巖溶區(qū)土壤結(jié)構(gòu),有助于削減漓江流域巖溶灌區(qū)氮磷污染的排放,為當(dāng)?shù)剞r(nóng)業(yè)措施優(yōu)化和水土管理方法提供指導(dǎo)。
氮;磷;土壤;漓江流域;水肥施用;巖溶發(fā)育;SWAT模型
隨著中國農(nóng)業(yè)的發(fā)展,曾經(jīng)自給自足的傳統(tǒng)農(nóng)業(yè)轉(zhuǎn)變?yōu)橐浴案咄度?、高產(chǎn)出、高排放”的現(xiàn)代農(nóng)業(yè)。這一轉(zhuǎn)變在帶來巨大經(jīng)濟(jì)效益的同時,也使單位面積化肥施用量從1978年的88.4 kg/hm2增加至2017年352.27 kg/hm2,遠(yuǎn)超安全施肥標(biāo)準(zhǔn)(225 kg/hm2)[1]?;蔬^量使用現(xiàn)象比較普遍,但是化肥利用率較低,其中氮磷化肥利用率分別只有10.8%~40.5%和15.0%~20.0%[2-3],未被利用的氮磷等農(nóng)業(yè)面源污染源是導(dǎo)致水體環(huán)境富營養(yǎng)化的主要原因。
氮、磷等農(nóng)業(yè)面源污染物主要來源于土壤圈中的化肥殘留物,其遷移轉(zhuǎn)化受流域下墊面屬性和農(nóng)業(yè)水肥管理等多種因素的共同影響[4-7]。早期農(nóng)業(yè)面源污染研究多是根據(jù)歷史資料和典型試區(qū)實地監(jiān)測獲取數(shù)據(jù)[8-9],該種方法能夠在試區(qū)尺度上獲取較為精確的面源污染排放量,但人力物力投入大、區(qū)域特征強(qiáng)和可移植性差[10],而且難以對面源污染物遷移轉(zhuǎn)化過程進(jìn)行監(jiān)測,不能反映各種環(huán)境因素對流域氮磷排放的影響。隨著地理信息技術(shù)、遙感技術(shù)和水文模型的發(fā)展,模擬流域污染物的產(chǎn)生、運移、轉(zhuǎn)化過程成為可能,實現(xiàn)了面源污染排放的預(yù)測和估算。目前水文模型種類繁多,其中SWAT(soil and water assessment tool)模型由于具有較強(qiáng)的物理機(jī)制,通過水量平衡和匯流演算等方式模擬流域產(chǎn)匯流、產(chǎn)沙和污染物的運移過程。SWAT模型在處理流域空間異質(zhì)性和考慮人類活動影響上具有優(yōu)勢,能夠很好的模擬環(huán)境變化對流域氮磷污染排放的影響[11-14]。
漓江是桂林市主要水源地,也是流域內(nèi)污染物的最終受納水體。在強(qiáng)烈的農(nóng)業(yè)生產(chǎn)活動和不合理水肥管理的作用下,漓江流域氮磷面源污染問題較為突出,水環(huán)境狀況不容樂觀[15]。一些學(xué)者從污染物來源、土地利用影響、水質(zhì)現(xiàn)狀分析以及削減策略等角度,對漓江流域農(nóng)業(yè)面源污染進(jìn)行了研究[16-17]?,F(xiàn)有研究分析了某一特定環(huán)境下農(nóng)業(yè)氮磷排放規(guī)律,但不同變化環(huán)境如何影響漓江流域氮磷排放尚不清晰。雖然SWAT模型已廣泛應(yīng)用于灌區(qū)水土資源管理和流域面源污染的研究,但在漓江流域巖溶地區(qū)的應(yīng)用較少。
本研究在漓江流域青獅潭灌區(qū)會仙試區(qū)進(jìn)行多年水文、水質(zhì)野外監(jiān)測試驗的基礎(chǔ)上,采用監(jiān)測的徑流和氮磷排放數(shù)據(jù)驗證SWAT模型的適用性。然后,應(yīng)用SWAT模型模擬分析水肥管理和下墊面屬性(濕地、巖溶發(fā)育)等環(huán)境變化對會仙試區(qū)氮磷排放的影響,為漓江流域面源污染防控和水土管理提供科學(xué)依據(jù)。
青獅潭灌區(qū)位于廣西壯族自治區(qū)桂林市,屬漓江流域,總灌溉面積約984 km2。本研究選定的會仙試區(qū)屬青獅潭灌區(qū)西干渠灌域,位于會仙巖溶濕地中南部。試區(qū)內(nèi)河流以會仙河、睦洞河、相思江為主,總面積為377.83 km2,經(jīng)西干渠馬面支渠與青獅潭水庫相連[18],位置如圖1所示。會仙試區(qū)地勢總體上南高北低,四周中低山和丘陵環(huán)繞,中部以平坦、低洼的巖溶孤峰平原為主。試區(qū)屬于亞熱帶季風(fēng)氣候,氣候溫和濕潤,年均氣溫18.8 ℃,年均日照時數(shù)1 600 h,無霜期320d,年均降雨量達(dá)1 890 mm,降雨主要集中在3—8月。
圖1 會仙試區(qū)位置圖
會仙試區(qū)土地利用類型包括水田、旱地、草地、林地和居民用地等,其中水田、草地和林地分別占總面積的41.98%、14.15%和14.15%。試區(qū)農(nóng)作物有水稻、玉米、南瓜等,其中以雙季稻為主,分為早稻(4—7月)和晚稻(7—9月)。試區(qū)水稻主要施用氮肥(含氮量46%)和復(fù)合肥(氮磷鉀含量均為15%)。氮肥和磷肥施用總量分別為411.01和59.41 kg/hm2,分3次施肥,其中基肥氮磷總量分別為102.75和14.85 kg/hm2,2次追肥(分蘗肥和抽穗肥)氮磷總量分別均為154.13和22.28 kg/hm2。除施肥時段,試區(qū)稻田采用淹水漫灌和“淺、薄、濕、曬”的灌溉方式,水稻育秧期田間水層30 mm,拔節(jié)孕穗期水層20~30 mm,其余生育期田間水層10~20 mm。會仙試區(qū)當(dāng)前溝塘濕地面積28.31 km2,平均水深1 m;試區(qū)內(nèi)巖溶石山共50.67 km2,占總面積的13.41%。
SWAT是基于GIS(geographic information system)平臺的具有較強(qiáng)物理機(jī)制的分布式水文模型,實現(xiàn)空間離散化是其流域模擬的重要環(huán)節(jié)。會仙試區(qū)是典型的巖溶區(qū),分布著較多峰林平原和峰從洼地,一些區(qū)域坡度較小,僅通過有限精度的數(shù)字高程模型(DEM)難以生成符合實際情況的河網(wǎng)。本研究在DEM數(shù)據(jù)(30 m×30 m)的基礎(chǔ)上,通過實地調(diào)查和Google Earth高分辨率影像分析獲取試區(qū)主要水系分布,將研究區(qū)矢量化的水系數(shù)據(jù)“burn in”模型中生成河網(wǎng)。集水面積閾值設(shè)為500 hm2時,生成河網(wǎng)最符合實際;同時,手動刪除模型生成的但實際河網(wǎng)中不存在的出水口,最終將會仙試區(qū)劃分為11個子流域(圖2);進(jìn)而考慮土地利用類型、土壤類型及管理措施等劃分水文響應(yīng)單元,劃分的閾值均設(shè)定為5%,以保證模型的運行速度和模擬精度,從而將會仙試區(qū)劃分為165個水文響應(yīng)單元。會仙試區(qū)各子流域溝塘濕地和巖溶石山分布情況和具體信息分別如圖2和表1所示。根據(jù)會仙試區(qū)子流域劃分結(jié)果,在試區(qū)和子流域出口布設(shè)徑流監(jiān)測點(圖2),并定期采集水樣,測定總氮和總磷含量。
圖2 會仙試區(qū)各子流域溝塘濕地和巖溶石山分布
表1 會仙試區(qū)各子流域溝塘濕地和巖溶石山統(tǒng)計
會仙試區(qū)的面源污染模擬采用基于Arcgis 10.2平臺的ArcSWAT 2012模型,依據(jù)試區(qū)的數(shù)字高程模型、土地利用類型、土壤類型分布、氣象數(shù)據(jù)、農(nóng)業(yè)管理參數(shù)等,建立本研究的模型輸入數(shù)據(jù)庫,進(jìn)而模擬預(yù)測試區(qū)的水文過程和污染物運移情況,模型所需數(shù)據(jù)及其來源如表2所示。會仙試區(qū)存在巖溶發(fā)育,土層淺薄、巖溶裂隙多、土壤滲透系數(shù)高、土壤含水率低和持水能力差是巖溶區(qū)最突出的特點。因此,本研究以SWAT模型參數(shù)庫中與土壤屬性相關(guān)的參數(shù)(土壤厚度、容重、飽和滲透系數(shù)和土壤可用含水量),來表征和概括巖溶發(fā)育特點。
研究期間會仙試區(qū)沒有固定的水文站,而且研究區(qū)面積相對較大,野外農(nóng)業(yè)區(qū)域的日徑流量監(jiān)測實施難度較大。張展羽等[4]、耿潤哲等[10]和崔遠(yuǎn)來等[14]等很多研究表明,SWAT模型的校準(zhǔn)和驗證采用逐月徑流量和水質(zhì)指標(biāo)也能取得有效、可信的模擬效果。因此,采用試區(qū)2012—2016年月徑流數(shù)據(jù)和2017年總氮和總磷排放數(shù)據(jù)校準(zhǔn)模型,2017—2018年月徑流數(shù)據(jù)和2018年總氮和總磷排放數(shù)據(jù)驗證模型。采用SWAT模型自帶的SWAT-CUP軟件對模型參數(shù)進(jìn)行敏感性分析,選擇54個與徑流和氮磷循環(huán)模擬有關(guān)的參數(shù),通過全局分析法和局部分析法對參數(shù)進(jìn)行迭代模擬,確定對徑流和氮磷模擬影響較大的參數(shù),然后采用先徑流后污染物指標(biāo)的原則進(jìn)行校準(zhǔn)和驗證。選取決定系數(shù)(coefficient of determination,R)和納什系數(shù)(Nash-Sutcliffe efficiency,NSE)評估模型模擬結(jié)果。
表2 SWAT模型所需數(shù)據(jù)及其來源
為研究不同變化條件對會仙試區(qū)氮磷排放的影響,研究中設(shè)置水肥管理水平、溝塘濕地屬性變化和巖溶地貌屬性變化3種情景,并采用校準(zhǔn)和驗證后的模型進(jìn)行情景分析。其他參數(shù)采用2017—2018年的監(jiān)測值或模型率定值,以情景模擬結(jié)果相對于現(xiàn)狀值的變化率,表征不同情景對徑流和氮磷排放的影響。
1.6.1 不同水肥管理水平設(shè)置
為了探究稻田水肥管理對試區(qū)氮磷排放的影響,基于試區(qū)施肥和灌溉現(xiàn)狀,參考水肥管理對氮磷流失的影響[19-20]和今后可能實施的水肥管理措施,設(shè)置情景模式如表3所示。
表3 會仙試區(qū)不同施肥和灌溉管理情景設(shè)置
1.6.2 溝塘濕地屬性變化情景設(shè)置
濕地能夠涵養(yǎng)水源、調(diào)蓄洪水,通過吸附或沉降等方式截留污染物、凈化水質(zhì)。會仙試區(qū)分布著中國面積最大的巖溶濕地,但隨著研究區(qū)濕地的開發(fā)利用,濕地面積和蓄水量嚴(yán)重降低[18]。采用SWAT模型中濕地模塊計算濕地水文過程,研究濕地對會仙試區(qū)徑流及氮磷排放的影響。根據(jù)試區(qū)濕地現(xiàn)狀變化與保護(hù)規(guī)劃,設(shè)置濕地面積和蓄水容量的0.5、0.8、1.2和1.5倍進(jìn)行情景模擬,即W0.5、W0.8、W1.2、W1.5(同時改變濕地面積和蓄水容量);V0.5、V0.8、V1.2、V1.5(只改變濕地蓄水容量);A0.5、A0.8、A1.2、A1.5(只改變濕地面積),其他因子不變,以探究濕地面積和蓄水容量變化對會仙試區(qū)氮磷排放的影響。
1.6.3 巖溶地貌屬性變化情景設(shè)置
會仙試區(qū)屬于峰林平原、峰叢洼地巖溶發(fā)育地區(qū),根據(jù)會仙試區(qū)地形地貌資料和巖溶石山面積統(tǒng)計結(jié)果(見表1和圖2),選擇巖溶石山占比較高,且具有水力聯(lián)系的子流域2、4、5作為典型巖溶區(qū),模擬巖溶屬性變化對氮磷排放的影響。子流域2、4、5巖溶地貌種類豐富,并且能夠反映試區(qū)農(nóng)業(yè)活動類型和方式,代表性較好??紤]巖溶區(qū)土壤特點,以土層厚度(soil thickness,,mm)、飽和滲透系數(shù)(saturated hydraulic conductivity,,mm/h)、土壤有效含水量(available water content,AWC,mm/mm)、土壤容重(bulk density,BD,g/cm3)4個參數(shù)表征巖溶發(fā)育[21-22],通過調(diào)整模型相應(yīng)土壤參數(shù)以反映模型中不同巖溶發(fā)育程度。根據(jù)中國第二次土壤普查結(jié)果,子流域2、4和5包括潮泥肉田土(屬潴育水稻土亞類潮泥田土屬)和砂泥紅土(屬紅壤亞類泥砂紅土土屬)2種土壤類型,查得土層厚度及容重值。結(jié)合普查資料,采用SPAW軟件計算2類土壤的土壤有效含水量和飽和滲透系數(shù)的初始值。將上述4個參數(shù)輸入模型,經(jīng)過調(diào)參和驗證后,得到適用于會仙試區(qū)SWAT模擬的參數(shù)值(表4),并作為情景模擬的初始值。根據(jù)研究區(qū)調(diào)查結(jié)果和相關(guān)研究確定巖溶區(qū)土壤參數(shù)變化情況[22],分別設(shè)置4個參數(shù)的0.8倍和1.2倍以反映巖溶發(fā)育程度,即設(shè)置0.8、1.2、BD0.8、BD1.2、AWC0.8、AWC1.2、0.8、1.2共8種情景進(jìn)行模擬,其他因子不變。
表4 模型率定的子流域2、4、5土壤參數(shù)
注:土層厚度(,mm),飽和滲透系數(shù)(,mm·h-1),土壤有效含水量(AWC,mm·mm-1),土壤容重(BD,g·cm-3)。
Note: Soil thickness (, mm), saturated hydraulic conductivity (, mm·h-1), available water content (AWC, mm·mm-1), bulk density (BD, g·cm-3).
通過SWAT-CUP對模型參數(shù)進(jìn)行校準(zhǔn)和驗證,會仙試區(qū)徑流量、總氮和總磷排放量校準(zhǔn)期和驗證期模擬結(jié)果如圖3所示,SWAT模型模擬結(jié)果基本反映了監(jiān)測期間徑流及氮磷排放的變化過程。模型校準(zhǔn)期和驗證期決定系數(shù)(R)均在0.7以上,納什系數(shù)(NSE)均在0.63以上(表5)。雖然研究中驗證期較短,但研究期內(nèi)SWAT模型模擬結(jié)果基本能夠反映會仙試區(qū)多年的徑流量、總氮和總磷排放量的變化特征。因此,SWAT模型在會仙試區(qū)徑流及總氮(total nitrogen,TN)、總磷(total phosphorus,TP)模擬中有較好的適用性。
圖3 研究區(qū)徑流量、總氮排放量、總磷排放量模擬值與實測值對比曲線
表5 校準(zhǔn)期與驗證期模型模擬值與實測值參數(shù)統(tǒng)計
根據(jù)《國家地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)》(GB3838—2002)和桂林市水功能區(qū)劃,試區(qū)出水口水質(zhì)必須達(dá)到Ⅲ類水標(biāo)準(zhǔn)(總氮≤1.0 mg/L,總磷≤0.2 mg/L)。2016年9月至2018年12月試區(qū)出水口水質(zhì)的監(jiān)測數(shù)據(jù)表明,試區(qū)出水口總氮月均濃度全部超過1.0 mg/L,最高達(dá)到11.27 mg/L;總磷月均濃度僅在2月、9月和10月滿足III類水標(biāo)準(zhǔn)(表6),說明會仙試區(qū)排水會對漓江流域水環(huán)境造成不利影響,需要改變試區(qū)的水土管理現(xiàn)狀,減少氮磷的排放。
表6 試區(qū)出水口總氮、總磷多年月平均濃度
根據(jù)表3設(shè)置的施肥和灌溉水量情景,改變SWAT模型中相應(yīng)的農(nóng)業(yè)管理措施設(shè)置,模擬試區(qū)氮磷排放過程,結(jié)果如表7所示。相對于現(xiàn)狀水平,減少化肥施入量和灌溉水量可以降低氮磷流失的源頭供給和灌溉退水的影響,從而降低試區(qū)氮磷排放量,而且兩者減少量越大,試區(qū)氮磷排放量下降越明顯(表7)。情景N4P1和N1P-4(化肥施入量減少50%)下試區(qū)總氮、總磷平均排放量分別下降19.18%和14.21%,情景G4(灌溉水量減少30%)下試區(qū)氮磷排放量分別下降7.79%和5.81%,總氮和總磷的削減效果與張平等[19]和Zhang等[23]的研究結(jié)果一致?;适┯昧亢凸喔人繙p少對總氮排放量的影響略強(qiáng)于總磷,這是因為未被利用磷素常以顆粒態(tài)或磷酸根離子的形式存在,相對于氮素更易被中上層土壤顆?;蚰z體吸附,富集在土壤表層[24-26]。雖然磷肥施入量減少,但巖溶區(qū)土壤持水能力差,對降雨、灌水量的承納能力有限,而且土壤結(jié)構(gòu)較差,抗侵蝕能力弱[27],土壤顆粒吸附的磷素易在徑流沖刷下隨土壤流失逐漸釋放,進(jìn)入水體,從而部分抵消了對總磷排放的削減效果。
表7 會仙試區(qū)不同水肥管理情景下的氮磷排放量
為使試區(qū)出水口氮磷濃度均符合Ⅲ類水標(biāo)準(zhǔn),相對于現(xiàn)狀值,總氮和總磷排放量分別至少需減少73%和26%。不施用化肥且灌水量降低30%時,試區(qū)出水口總氮、總磷濃度下降48.13%和28.64%,總氮仍然無法達(dá)到Ⅲ類水標(biāo)準(zhǔn)。以上結(jié)果說明僅靠減少稻田施肥量和灌溉水量不能滿足當(dāng)?shù)氐诐舛瓤刂埔?,還需要進(jìn)一步挖掘研究區(qū)內(nèi)部溝塘濕地的生態(tài)減污潛力[19]。
不同濕地面積和蓄水容量情景下,SWAT模型模擬的試區(qū)年均徑流量、總氮和總磷排放量及其變化率如表8所示。
表8 會仙試區(qū)內(nèi)不同濕地屬性情景下的年均徑流量和氮磷排放量
模擬結(jié)果表明,試區(qū)年均徑流量和總氮、總磷排放量均隨著濕地面積/蓄水容量的增減而相應(yīng)地降低和升高(表8),這是因為濕地面積和蓄水容量的增加,延長了污染物在濕地中的停留時間,增大了濕地蓄積徑流及吸附、吸收、轉(zhuǎn)化徑流攜帶污染物的能力,提高了濕地處理污染物的效率[28-29],從而減少氮磷的排放。濕地面積A0.5情景下的氮磷排放量分別比A1.5情景升高14.67%和8.48%,而濕地蓄水容量V0.5和V1.5情景之間,氮磷排放量變幅分別為6.37%和3.75%,說明濕地面積對試區(qū)氮磷排放的削減效果強(qiáng)于蓄水容量。這主要是因為濕地面積變化不僅直接改變了試區(qū)各子流域土地利用組成,而且濕地面積的改變對年均徑流量的影響更大(表8),從而影響面源污染物產(chǎn)生和消納過程。蓄水容量主要改變濕地容納面源污染徑流的能力,對年均流量的影響很?。ū?8),因此,蓄水容量削減氮磷排放的效果低于濕地面積。
相對于改變濕地單一屬性,同時改變濕地面積和蓄水容量對試區(qū)氮磷排放的影響更為明顯(表8)。若濕地面積和蓄水容量同時縮小或擴(kuò)大50%(W0.5和W1.5),試區(qū)氮磷排放量變幅分別為24.15%和21.41%,與Yang等[30]研究中濕地對總氮和總磷的削減效果23.4%接近,且大于單獨改變濕地面積或蓄水容量的削減效果疊加,說明兩項措施對氮磷排放的影響存在相互促進(jìn)的作用。
子流域5、2、4(按睦洞河流向排列)情景模擬的氮磷排放量如圖4所示。結(jié)果顯示,同一巖溶發(fā)育參數(shù)變化對3個子流域徑流量和氮磷排放的影響一致,而不同參數(shù)的影響程度有所差異。巖溶區(qū)土層和巖層之間沒有過渡層,粘著力低、親和力差,在暴雨沖刷和地表徑流影響下,水土極易流失,土壤養(yǎng)分隨之排出[31-32]。不同土壤性質(zhì)參數(shù)情景下,反映了不同程度的巖溶發(fā)育,從而改變巖溶區(qū)氮磷的排放規(guī)律。
注:Z為土層厚度,mm;K為飽和滲透系數(shù),mm?h-1;AWC為土壤有效含水量,mm?mm-1;BD為土壤容重,g?cm-3。每個參數(shù)下標(biāo)數(shù)字是相對于初始值的倍數(shù)。不同灰度表示模型中4個參數(shù)不同初始值倍數(shù)下總氮和總磷排放模擬值。
由圖5a可知,子流域徑流量與土壤厚度()和土壤容重(BD)正相關(guān),與有效含水量(AWC)和飽和滲透系數(shù)()負(fù)相關(guān)。這是因為土層變薄,降雨徑流下滲路徑縮短,向地下水補(bǔ)給增加,導(dǎo)致地表徑流量變小。土壤容重降低,土壤孔隙度變大,增大了土壤滲透性,相同降雨條件下,壤中流發(fā)生時間提前且強(qiáng)度增加,減少地表產(chǎn)流量;反之,增加地表徑流量。土壤有效含水量降低,減弱了土壤蓄水能力,從而增加地表徑流量;飽和滲透系數(shù)降低,土壤滲透性變小,土壤入滲量降低從而增大地表徑流量。反之,減小地表徑流量。土壤厚度(Z)、土壤容重(BD)、有效含水量(AWC)和飽和滲透系數(shù)()不同變化倍數(shù)下,子流域年均徑流量變化曲線斜率分別為0.092、0.028、-0.082和-0.010 m3/s,年均流量對土壤厚度和有效含水量的敏感性顯著高于土壤容重和飽和滲透系數(shù)。土壤厚度和有效含水量的變化直接影響土壤涵養(yǎng)降雨的能力,能夠顯著改變流域水量分布,從而對地表徑流量的作用更大。
圖5 子流域2、4、5不同巖溶發(fā)育屬性情景下的流量、總氮和總磷排放量變化
典型子流域總氮和總磷排放量情景模擬結(jié)果表明,子流域氮磷排放對巖溶發(fā)育參數(shù)變化的響應(yīng)趨勢與徑流量一致(圖5b和圖5c)。相同變化倍數(shù)下,土壤厚度()和土壤容重(BD)對氮磷排放的影響最大。不同土壤厚度()和土壤容重(BD)變化倍數(shù)下,子流域總氮排放量變化平均變化梯度分別為89.71和115.34 t/a,總磷排放量變化平均變化梯度分別為2.27和1.42 t/a。這是因為土層厚度()和土壤容重(BD)直接影響土壤的持水能力和吸附、過濾氮磷物質(zhì)的能力。當(dāng)兩者較小時,地表產(chǎn)流降低,氮磷易在淋溶作用下進(jìn)入地下水,從而削減地表氮磷排放;反之,土壤貯存的氮磷含量增多,在更大的地表徑流量沖刷下,更多氮磷進(jìn)入地表水[33]。飽和滲透系數(shù)()的變化對各子流域總氮排放影響顯著高于土壤有效含水量(AWC),平均變化梯度分別為-74.01和-7.81 t/a,而兩者對總磷排放影響差別不大,平均變化梯度分別為-1.06和-0.92 t/a。土壤中氮素主要以溶解態(tài)形式存在,易隨著水分遷移[34],因此飽和滲透系數(shù)變化影響較大;土壤中磷的擴(kuò)散系數(shù)隨土壤含水量增多而變大[35],從而增強(qiáng)了土壤有效含水量的改變對磷排放的影響。
本研究采用多年徑流和氮磷監(jiān)測數(shù)據(jù),校準(zhǔn)和驗證了SWAT模型在漓江流域青獅潭灌區(qū)會仙試區(qū)的應(yīng)用,模擬分析了不同水肥施用水平、下墊面屬性(濕地和巖溶發(fā)育)等變化情景對會仙試區(qū)氮磷排放的影響規(guī)律。結(jié)果表明:
1)在校準(zhǔn)期和驗證期SWAT模型模擬的月徑流量、總氮和總磷排放量與試區(qū)實測值的決定系數(shù)(R)和納什效率系數(shù)(NSE)分別在0.70~0.79和0.63~0.78之間,說明SWAT模型在漓江流域會仙試區(qū)氮磷排放過程的模擬上具有較好的適用性。
2)基于SWAT模型的情景模擬結(jié)果顯示,減少稻田化肥施用量對試區(qū)氮磷排放的削減效果優(yōu)于減少灌溉水量的效果。單純依靠減少稻田氮磷排放,對改善會仙試區(qū)水質(zhì)的作用有限,需發(fā)揮試區(qū)濕地的消污作用。模擬結(jié)果顯示增加和減少濕地面積或者蓄水容量都能相應(yīng)減少和增加試區(qū)氮磷排放;相對于改變一個屬性,同時改變濕地的面積和蓄水容量對試區(qū)氮磷排放的影響更顯著。
3)巖溶發(fā)育對子流域氮磷排放的影響程度各異。子流域徑流量隨著土壤厚度和土壤容重的減小而降低,隨著有效含水量和飽和滲透系數(shù)參數(shù)減小而升高。上述4個參數(shù)不同倍數(shù)變化下,年均流量變化曲線的平均斜率分別為0.092、0.028、-0.082和-0.010 m3/s。子流域出水口氮磷排放對巖溶發(fā)育參數(shù)的響應(yīng)與徑流量的響應(yīng)趨勢一致??偟欧帕繉Ω鲄?shù)的敏感性由大到小分別為土壤容重、土壤厚度、飽和滲透系數(shù)和土壤有效含水量;總磷排放量對各參數(shù)的敏感性由大到小分別為土壤厚度、土壤容重、飽和滲透系數(shù)和土壤有效含水量。
雖然SWAT模型在會仙試區(qū)的徑流和氮磷排放模擬得到了較好的驗證,但模型對巖溶區(qū)土壤屬性、徑流及溶質(zhì)運移和匯聚等過程的處理比較簡單,難以精確刻畫巖溶區(qū)復(fù)雜的地形地貌條件對流域氮磷運移的影響,需要進(jìn)一步研究。
致謝:本研究實施過程中,“廣西環(huán)境污染控制理論與技術(shù)重點實驗室科教結(jié)合科技創(chuàng)新基地”、“廣西巖溶地區(qū)水污染控制與用水安全保障協(xié)同創(chuàng)新中心”提供了實驗條件,并支持了野外采樣。
[1] 毛盛勇,葉植材總編. 中國統(tǒng)計年鑒[M]. 北京:中國統(tǒng)計出版社,2018:394-398.
[2] 何悅,漆雁斌,湯建強(qiáng),等. 中國糧食生產(chǎn)化肥利用效率的區(qū)域差異與收斂性分析[J]. 江蘇農(nóng)業(yè)學(xué)報,2019,35(3):729-735. He Yue, Qi Yanbin, Tang Jianqiang. Regional difference and convergence analysis on fertilizer application efficiency of grain production in China[J]. Jiangsu Journal of Agricultural Sciences, 2019, 35(3): 729-735. (in Chinese with English abstract)
[3] 張福鎖,王激清,張衛(wèi)峰,等. 中國主要糧食作物肥料利用率現(xiàn)狀與提高途徑[J]. 土壤學(xué)報,2008,45(5):915-924. Zhang Fusuo, Wang Jiqing, Zhang Weifeng, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915-924. (in Chinese with English abstract)
[4] 張展羽,司涵,孔莉莉. 基于SWAT模型的小流域非點源氮磷遷移規(guī)律研究[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(2):93-100. Zhang Zhanyu, Si Han, Kong Lili. Migration of non-point source nitrogen and phosphorus in small watershed based on SWAT model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(2): 93-100. (in Chinese with English abstract)
[5] 梁濤,張秀梅,章申,等. 西苕溪流域不同土地類型下氮元素輸移過程[J]. 地理學(xué)報,2002,57(4):389-396. Liang Tao, Zhang Xiumei, Zhang Shen, et al. Nitrogen elements transferring processes and fluxes under different land use in West Tiaoxi Catchment[J]. Acta Geographica Sinica-Chinese Edition, 2002, 57(4): 389-396. (in Chinese with English abstract)
[6] Liu Ruimin, Xu Fei, Zhang Peipei, et al. Identifying non-point source critical source areas based on multi-factors at a basin scale with SWAT[J]. Journal of Hydrology, 2016, 533(1): 379-388.
[7] 陳克亮,朱曉東,朱波,等. 川中紫色土區(qū)旱坡地非點源氮輸出特征與污染負(fù)荷[J]. 水土保持學(xué)報,2006,20(2):54-58. Chen Keliang, Zhu Xiaodong, Zhu Bo, et al. Load and output character on non-point nitrogen from purple soil farmlands in hilly area of central Sichuan basin[J]. Journal of Soil Water Conservation, 2006, 20(2): 54-58. (in Chinese with English abstract)
[8] Lenat D R, Crawford J K. Effects of land use on water quality and aquatic biota of three North Carolina Piedmont streams[J]. Hydrobiologia, 1994, 294(3): 185-199.
[9] Hall K J, Schreier H. Urbanization and agricultural intensification in the Lower Fraser River valley: Impacts on water use and quality[J]. Geojournal, 1996, 40(1/2): 135-146.
[10] 耿潤哲,李明濤,王曉燕,等. 基于SWAT模型的流域土地利用格局變化對面源污染的影響[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(16):241-250. Geng Runzhe, Li Mingtao, Wang Xiaoyan, et al. Effect of land use/landscape changes on diffuse pollution load from watershed based on SWAT model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 241-250. (in Chinese with English abstract)
[11] 袁宇志,張正棟,蒙金華. 基于SWAT模型的流溪河流域土地利用與氣候變化對徑流的影響[J]. 應(yīng)用生態(tài)學(xué)報,2016,26(4):899-998. Yuan Yuzhi, Zhang Zhengdong, Meng Jinhua. Impact of changes in land use and climate on the runoff in Liuxihe watershed based on SWAT model[J]. The Journal of Applied Ecology, 2015, 26(4): 899-998. (in Chinese with English abstract)
[12] 郭軍庭,張志強(qiáng),王盛萍,等. 應(yīng)用 SWAT 模型研究潮河流域土地利用和氣候變化對徑流的影響. 生態(tài)學(xué)報,2014,34(6): 1559-1567. Guo Junting, Zhang Zhiqiang, Wang Shengping, et al. Appling SWAT model to explore the impact of changes in land use and climate on the streamflow in a Watershed of Northern China[J]. Acta Ecologica Sinica, 2014, 34(6): 1559-1567. (in Chinese with English abstract)
[13] 李穎,王康,周祖昊. 基于SWAT 模型的東北水稻灌區(qū)水文及面源污染過程模擬[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(7):42-53. Li Ying, Wang Kang, Zhou Zuhao. Simulation of drainage and agricultural non-point source pollutions transport processes in paddy irrigation district in North-East China using SWAT[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(7): 42-53. (in Chinese with English abstract)
[14] 崔遠(yuǎn)來,吳迪,王士武,等. 基于改進(jìn)SWAT模型的南方多水源灌區(qū)灌溉用水量模擬分析[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(14):94-100. Cui Yuanlai, Wu Di, Wang Shiwu, et al. Simulation and analysis of irrigation water consumption in multi-source water irrigation districts in Southern China based on modified SWAT model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 94-100. (in Chinese with English abstract)
[15] 代俊峰,全秋慧,方榮杰,等. 漓江流域上游非點源污染負(fù)荷估算[J]. 水利水電科技進(jìn)展,2017,37(5):57-63. Dai Junfeng, Quan Qiuhui, Fang Rongjie, et al. Estimation of non-point source pollution load in upstream of Lijiang River[J]. Advances in Science and Technology of Water Resources, 2017, 37(5): 57-63. (in Chinese with English abstract)
[16] 林鵬,陳余道,夏源. 漓江流域不同土地利用類型下水體污染類型與成因[J]. 桂林理工大學(xué)學(xué)報,2016,36(3):539-544. Lin Peng, Chen Yudao, Xia Yuan. Types and causes of water pollution under different land use types in Lijiang River Basin[J]. Journal of Guilin University of Technology, 2016, 36(3): 539-544. (in Chinese with English abstract)
[17] 郭攀,李新建. 漓江典型小流域農(nóng)田面源污染治理技術(shù)及應(yīng)用[J]. 水電能源科學(xué),2017(9):55-58,95. Guo Pan, Li Xinjiang. Techniques and application of farmland non-point source pollution control in typical small watershed of Lijiang River[J]. Water Resources and Power, 2017(9):55-58, 95. (in Chinese with English abstract)
[18] 蔡德所,馬祖陸,趙湘桂,等. 桂林會仙巖溶濕地近40年演變的遙感監(jiān)測[J]. 廣西師范大學(xué)學(xué)報:自然科學(xué)版,2009,27(2):111-117. Cai Desuo, Ma Zulu, Zhao Xianggui, et al. Remote sensing supervision on spatio-temporal evolution of Karst wetland in recent 40 years in Huixian district of Guilin, China[J]. Journal of Guangxi Normal University: Natural Science Edition, 2009, 27(2): 111-117. (in Chinese with English abstract)
[19] 張平,劉云慧,宇振榮,等. 基于SWAT模型的密云水庫沿湖區(qū)氮磷流失養(yǎng)分控制策略研究[J]. 陜西師范大學(xué)學(xué)報:自然科學(xué)版,2010(6):82-88. Zhang Ping, Liu Yunhui, Yu Zhenrong, et al. Study on the fertilizing strategies for controlling the nitrogen and phosphorus losses at lakeshore region of Miyun Reservoir by using a SWAT model[J]. Journal of Shaanxi Normal University: Natural Science Edition, 2010(6): 82—88. (in Chinese with English abstract)
[20] Pan Junfeng, Liu Yanzhuo, Zhong Xuhua, et al. Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China[J]. Agricultural Water Management, 2017, 184(1): 191-200.
[21] 彭佩欽,張文菊,童成立,等. 洞庭湖濕地土壤碳、氮、磷及其與土壤物理性狀的關(guān)系[J]. 應(yīng)用生態(tài)學(xué)報,2005,16(10):1872-1878. Peng Peiqin, Zhang Wenju, Tong Chengli, et al. Soil C, N and P contents and their relationships with soil physical properties in wetlands of Dongting Lake floodplain[J]. The Journal of Applied Ecology, 2005, 16(10): 1872-1878. (in Chinese with English abstract)
[22] 張川,陳洪松,張偉,等. 喀斯特坡面表層土壤含水量、容重和飽和導(dǎo)水率的空間變異特征[J]. 應(yīng)用生態(tài)學(xué)報,2014,25(6):1585-1591. Zhang Chuan, Chen Hongsong, Zhang Wei, et al. Spatial variation characteristics of surface soil water content, bulk density and saturated hydraulic conductivity on Karst slopes[J]. The Journal of Applied Ecology, 2014, 25(6): 1585-1591. (in Chinese with English abstract)
[23] Zhang Zhijian, Yao Juxiang, Wang Zhaode, et al. Improving water management practices to reduce nutrient export from rice paddy fields[J]. Environmental Technology, 2011, 32(2): 197-209.
[24] Sharpley A N. Dependence of runoff phosphorus on extractable soil phosphorus[J]. Journal of Environmental Quality, 1995, 24(5): 920-926.
[25] Cox F R, Hendricks S E. Soil test phosphorus and clay content effects on runoff water quality[J]. Journal of Environmental Quality, 2000, 29(5): 1582-1586.
[26] Soinne H, Hovi J, Tammeorg P, et al. Effect of biochar on phosphorus sorption and clay soil aggregate stability[J]. Geoderma, 2014, 219-210(1): 162-167.
[27] 徐燕,龍健. 貴州喀斯特山區(qū)土壤物理性質(zhì)對土壤侵蝕的影響[J]. 水土保持學(xué)報,2005,19(1):157-159,175. Xu Yan, Long Jian. Effect of soil physical properties on soil erosion in Guizhou karst mountainous region[J]. Journal of Soil Water Conservation, 2005, 19(1): 157-159, 175. (in Chinese with English abstract)
[28] 盧少勇,張彭義,余剛,等. 人工濕地處理農(nóng)業(yè)徑流的研究進(jìn)展[J]. 生態(tài)學(xué)報,2007,27(6):2627-2635. Lu Shaoyong, Zhang Pengyi, and Yu Gang. Research progress of constructed wetland treating agricultural runoff[J]. Acta Ecologica Sinica, 2007, 27(6): 2627-2635. (in Chinese with English abstract)
[29] 萬玉文,郭長強(qiáng),茆智,等. 多級串聯(lián)表面流人工濕地凈化生活污水效果[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(3):220-227. Wan Yuwen, Guo Changqiang, Mao Zhi, et al. Sewage purification effect of multi-series surface flow constructed wetland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 220-227. (in Chinese with English abstract)
[30] Yang Wanhong, Wang Xixi, Liu Yongbo, et al. Simulated environmental effects of wetland restoration scenarios in a typical Canadian prairie watershed[J]. Wetlands Ecology and Management, 2010, 18(3): 269-279.
[31] 曹建華,袁道先,潘根興. 巖溶生態(tài)系統(tǒng)中的土壤[J]. 地球科學(xué)進(jìn)展,2003,18(1):37-44. Cao Jianhua, Yuan Daoxian, Pan Genxing. Some soil features in karst ecosystem[J]. Advances in Earth Science, 2003, 18(1): 37-44. (in Chinese with English abstract)
[32] 王巨,謝世友,戴國富. 西南巖溶區(qū)土壤生態(tài)系統(tǒng)退化研究[J]. 中國農(nóng)學(xué)通報,2011,27(32):181-185. Wang Ju, Xie Shiyou, Dai Guofu. The study of soil ecosystem degradation in Southwestern karst region[J]. Chinese Agricultural Science Bulletin, 2011, 27(32): 181-185. (in Chinese with English abstract)
[33] Tang Jialiang, Zhang Bin, Gao Chao, et al. Hydrological pathway and source area of nutrient losses identified by a multi-scale monitoring in an agricultural catchment[J]. Catena, 2008, 72(3): 374-385.
[34] 鮮青松,唐翔宇,朱波. 坡耕地薄層紫色土-巖石系統(tǒng)中氮磷的遷移特征[J]. 環(huán)境科學(xué),2017,38(7):2843-2849. Xian Qingsong, Tang Xiangyu, Zhu Bo. Transport of nitrogen and phosphorus from sloping farmland with thin purple soil overlying rocks[J]. Environmental Science, 2017, 38(7): 2843-2849. (in Chinese with English abstract)
[35] 王輝,王全九,邵明安. 前期土壤含水量對黃土坡面氮磷流失的影響及最優(yōu)含水量的確定[J]. 環(huán)境科學(xué)學(xué)報,2008,28(8):1571-1578. Wang Hui, Wang Quanjiu, Shao Ming'an. Effect of antecedent soil moisture on nitrate-N and phosphorus loss from loess slope-land and determination of optimal moisture values[J]. Acta Scientiae Circumstantiae, 2008, 28(8): 1571-1578. (in Chinese with English abstract)
Responses of nitrogen and phosphorus emissions to water and fertilizer management and underlying surface property changes in Lijiang River Basin
Xu Baoli1, Dai Junfeng1,2※, Yu Chenwenjiong1, Xie Xiaolin1, Su Yijie1, Zhang Lihua1, Pan Linyan1
(1.,,541004,; 2.,541004,)
This study aimed to simulate the processes of non-point source pollution transport and to identify the corresponding influencing factors using the SWAT model (soil and water assessment tool) in the Qingshitan Irrigation District (QID) of Lijiang River Basin. Field measurements were conducted in Huixian experiment area (HEA) of QID to monitor runoff and the concentration of total nitrogen (TN) and total phosphorus (TP) at the outlet of HEA. In the study measured monthly data were used to calibrate and validate the SWAT model, in which the thickness, bulk density, saturated hydraulic conductivity and available water content of soil were selected to quantify the karst development in HEA. Then scenario analysis was carried out to study the impacts of the irrigation and fertilization in paddy fields, the attributes (area and water storage capacity) of wetlands, and karst development degree on runoff, TN and TP emissions from HEA. The results showed that the SWAT model performed well in simulating runoff, TN and TP emission in the study area with all the relationship coefficient (R) and Nash-Suttcliffe efficiency () between the simulated and measured data higher than 0.70 and 0.63, respectively. The scenario simulation showed that lower fertilization and irrigation could reduce TN and TP emissions by 2.46%-19.18% and 1.86%-14.21%, respectively. When fertilization was decreased by 30%, TN and TP emissions from HEA declined by 11.45% and 8.98%, respectively; and the reductions were 7.79% and 5.81%, respectively, when irrigation water was reduced by 30%, indicating that it was more efficient to decrease TN and TP emissions by reducing fertilization than irrigation and that TN emission was more prone to be reduced by optimized fertilization and irrigation than TP emission. However, the effects of reducing fertilization and irrigation in paddy fields on improving the water quality of outflow were relatively limited. It was needed to excavate the potential of pollutant purification of wetlands in HEA to meet the water quality standard of water function division in Guilin. The scenario simulation showed that variations of area and/or water storage capacity of wetland also affected TN and TP emissions from HEA. Runoff was hardly affected by changing area and water storage capacity of wetlands, however, 12.40% of TN and 10.44% of TP emission were decreased with the area and water storage capacity of wetlands rising by 50%, while TN and TP emission increased by 11.75% and 10.97%, respectively, with decreasing 50% of area and water storage capacity of wetlands. And the efficiency of reducing TN and TP emission of wetland area was higher than water storage capacity. Moreover, it had synergistic effects on TN and TP emissions by simultaneously increasing the area and water storage of wetlands compared with only changing one attribute. Soil parameters describing karst development degree had diverse influences on runoff, TN and TP emissions from subbasins 2, 4, 5. Thinner soil thickness and smaller bulk density decreased runoff, TN and TP emissions, while available water content and saturated hydraulic conductivity demonstrated the opposite effects. The conclusion indicated that more developed karst landscape exacerbated runoff, TN and TP emission. Besides, the runoff was more sensitive to soil thickness and available water content than bulk density and saturated hydraulic conductivity, while TN and TP emissions were more sensitive to soil thickness and bulk density. This study showed that controlling fertilization reasonably, preventing wetland shrinking and water capacity degrading, and maintaining and improving soil structure in the karst area was helping to alleviate nitrogen and phosphorus emissions in the karst irrigation area of Lijiang River Basin, which guided optimizing local agricultural measures and soil and water management.
nitrogen; phosphorus; soil; Lijiang River Basin; irrigation and fertilization; karst development; SWAT model
徐保利,代俊峰,俞陳文炅,謝曉琳,蘇毅捷,張麗華,潘林艷. 漓江流域氮磷排放對水肥管理和下墊面屬性變化的響應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(2):245-254.doi:10.11975/j.issn.1002-6819.2020.02.029 http://www.tcsae.org
Xu Baoli, Dai Junfeng, Yu Chenwenjiong, Xie Xiaolin, Su Yijie, Zhang Lihua, Pan Linyan. Responses of nitrogen and phosphorus emissions to water and fertilizer management and underlying surface property changes in Lijiang River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(2): 245-254. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.02.029 http://www.tcsae.org
2019-08-25
2019-12-21
國家自然科學(xué)基金(51569007;51979046);廣西自然科學(xué)基金(2018GXNSFAA294087;2018GXNSFAA050022);桂林理工大學(xué)博士科研啟動基金(GUTQDJJ2019026)
徐保利,博士,講師,主要從事水文學(xué)及水資源研究。Email:blxu@glut.edu.cn
代俊峰,博士,教授,主要從事水資源高效利用與水環(huán)境研究。Email:whudjf@163.com
10.11975/j.issn.1002-6819.2020.02.029
S274
A
1002-6819(2020)-02-0245-10