張鵬應(yīng) 陳璐 陳海飛 李群益 施孝金
摘 要 布魯頓酪氨酸激酶(Brutons tyrosine kinase, BTK)是B細(xì)胞抗原受體信號(hào)通路的關(guān)鍵調(diào)節(jié)因子,在多種B細(xì)胞惡性腫瘤的發(fā)生、發(fā)展中起著重要作用。BTK抑制劑是一類新型抗腫瘤藥物,現(xiàn)已有3個(gè)BTK抑制劑獲得美國(guó)FDA批準(zhǔn)。多項(xiàng)大型臨床試驗(yàn)證實(shí),BTK抑制劑對(duì)慢性淋巴細(xì)胞白血病和套細(xì)胞淋巴瘤的療效良好。BTK抑制劑聯(lián)合其他化療藥物治療多種實(shí)體瘤的臨床研究亦已取得一定進(jìn)展。本文概要介紹BTK的結(jié)構(gòu)、功能及其抑制劑的臨床研究進(jìn)展。
關(guān)鍵詞 布魯頓酪氨酸激酶 依魯替尼 B細(xì)胞惡性腫瘤
中圖分類號(hào):R979.19; R730.53 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1006-1533(2020)15-0008-05
Advances in Brutons tyrosine kinase and its inhibitors*
ZHANG Pengying1**, CHEN Lu1, CHEN Haifei1, LI Qunyi1, 2, SHI Xiaojin1, 2***(1. Department of Pharmacy, Northern Division of Huashan Hospital, Fudan University, Shanghai 201907, China; 2. Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China)
ABSTRACT Brutons tyrosine kinase (BTK) is a key molecule involved in multiple functions of B cells, and also plays an important role in the occurrence and development of various B cell malignancies. In the development of BTK inhibitors targeting BTK, there are currently three BTK inhibitors approved by the FDA for marketing. Several large-scale clinical trials have found that BTK inhibitors have excellent effects on chronic lymphocytic leukemia and mantle lymphoma. More progress has been also made in the trials around BTK inhibitor combined with other chemotherapeutic drugs to treat multiple solid tumors. The structure, functions and inhibitors of BTK are reviewed in this article.
KEY WORDS Brutons tyrosine kinase; ibrutinib; B cell malignancies
布魯頓酪氨酸激酶(Brutons tyrosine kinase, BTK)在腫瘤發(fā)生、發(fā)展中起著關(guān)鍵作用,對(duì)白血病等各種B細(xì)胞惡性腫瘤細(xì)胞的生存至關(guān)重要。1952年,美國(guó)兒科醫(yī)生Ogdon Bruton首次發(fā)現(xiàn),BTK在一種遺傳性免疫缺陷疾病X連鎖無(wú)丙種球蛋白血癥患者中表達(dá)異常,與患者反復(fù)出現(xiàn)細(xì)菌感染有關(guān)[1-2]。BTK的小分子抑制劑在臨床試驗(yàn)中顯示有優(yōu)異的抗腫瘤活性[3-4],引起人們極大的關(guān)注。BTK抑制劑依魯替尼(ibrutinib)可口服給藥,其通過與BTK活性位點(diǎn)的半胱氨酸殘基形成共價(jià)鍵產(chǎn)生抑酶作用,2016年被美國(guó)FDA批準(zhǔn)用于慢性淋巴細(xì)胞白血?。╟hronic lymphocytic leukemia, CLL)和小淋巴細(xì)胞淋巴瘤(small lymphocytic lymphoma, SLL)的一線治療。2017年,第2個(gè)BTK抑制劑阿卡替尼(acalabrutinib)在美國(guó)獲得批準(zhǔn)。2019年,由中國(guó)藥企百濟(jì)神州醫(yī)藥公司研發(fā)的贊布替尼(zanubrutinib)獲得美國(guó)FDA批準(zhǔn),成為第3個(gè)上市的BTK抑制劑。2020年,小野制藥公司研發(fā)的BTK抑制劑tirabrutinib在日本獲得批準(zhǔn),用于治療原發(fā)性中樞神經(jīng)系統(tǒng)淋巴瘤。目前,BTK抑制劑不僅已用于B細(xì)胞惡性腫瘤治療,且也在進(jìn)行治療其他血液系統(tǒng)惡性腫瘤和實(shí)體瘤的臨床研究。
1 BTK的結(jié)構(gòu)及活化
BTK是Tec非受體酪氨酸激酶家族的5個(gè)成員之一[其余為肝細(xì)胞癌表達(dá)的酪氨酸激酶(tyrosine kinase expressed in hepatocellular carcinoma, TEC)、白細(xì)胞介素-2誘導(dǎo)性T細(xì)胞激酶(interleukin-2-inducible T-cell kinase, ITK)、靜息淋巴細(xì)胞激酶(resting lymphocyte kinase, RLK)和骨髓激酶X(bone marrow tyrosine kinase on chromosome X, BMX)]。Tec非受體酪氨酸激酶家族高度保守[5]。BTK的結(jié)構(gòu)與TEC和ITK相似,均包含5個(gè)不同的蛋白相互作用域。這些結(jié)構(gòu)域包括氨基末端的PH域,富含脯氨酸的TEC域、SRC域、SH2域和SH3域,以及具有酶促活性的激酶域[5-6]。BTK通常存在于細(xì)胞質(zhì)中,但在其PH域與磷脂酰肌醇-3激酶生成的3, 4, 5-三磷酸磷脂酰肌醇相互作用后會(huì)被短暫募集至細(xì)胞膜上。BTK的活化及被募集至細(xì)胞膜上分兩步完成:首先,BTK激酶域Y551位點(diǎn)被Syk或Src激酶磷酸化[7],此磷酸化會(huì)提高BTK的催化活性;隨后,BTK SH3域Y223位點(diǎn)發(fā)生自磷酸化,自磷酸化被認(rèn)為可穩(wěn)定BTK的活性構(gòu)象并充分激活BTK[8]。
2 BTK參與多種信號(hào)通路的激活
2.1 參與B細(xì)胞抗原受體(B-cell antigen receptor, BCR)信號(hào)通路的激活
BCR信號(hào)通路是眾多B細(xì)胞惡性腫瘤生長(zhǎng)和播散的關(guān)鍵驅(qū)動(dòng)者,而BTK是BCR信號(hào)通路激活不可或缺的參與者。BTK通過與BCR交聯(lián)激活4種非受體酪氨酸激酶,包括磷脂酶Cγ、絲裂原活化蛋白激酶、核因子κB和蛋白激酶B。在缺乏BTK的情況下,B細(xì)胞凋亡顯著增加,這與BCR介導(dǎo)的抗凋亡蛋白Bcl-xL的活性降低有關(guān)[9-10]。缺乏BTK的B細(xì)胞難以從細(xì)胞周期G1期轉(zhuǎn)變至S期,此與無(wú)法誘導(dǎo)細(xì)胞周期蛋白D2的表達(dá)有關(guān)[11]。除與B細(xì)胞的存活和增殖有關(guān)之外,BCR還能通過BTK調(diào)控血管細(xì)胞黏附分子-1和纖連蛋白的整合素α4β1介導(dǎo)的B細(xì)胞的黏附作用[12]。
2.2 參與其他信號(hào)通路的激活
BTK對(duì)B細(xì)胞在各種淋巴組織間的定位非常重要。缺乏BTK的B細(xì)胞表現(xiàn)出體內(nèi)遷移能力受損和細(xì)胞歸巢特性缺失[13]。BTK與Toll樣受體信號(hào)通路下游的4種不同蛋白相互作用,包括髓樣分化因子88(myeloid differentiation factor 88, MyD88)、白細(xì)胞介素-1受體相關(guān)激酶-1、Toll/白細(xì)胞介素-1受體及其域接頭蛋白[14]。 Toll樣受體信號(hào)會(huì)誘導(dǎo)細(xì)胞內(nèi)多種轉(zhuǎn)錄因子的激活,包括核因子кB、激活蛋白-1和干擾素調(diào)節(jié)因子-3,參與B細(xì)胞的活化、增殖以及促炎因子和抗體的分泌。BTK參與激活(含免疫受體酪氨酸激活基序)和抑制(含免疫受體酪氨酸抑制基序)免疫球蛋白可結(jié)晶片段C末端的受體的信號(hào)傳導(dǎo),平衡和調(diào)節(jié)多種髓細(xì)胞的激活、極化和吞噬過程[15-16]。
3 BTK與B細(xì)胞惡性腫瘤的關(guān)聯(lián)
BTK的活性對(duì)B細(xì)胞白血病細(xì)胞的存活、增殖以及腫瘤微環(huán)境有著至關(guān)重要的影響。
3.1 與CLL的關(guān)聯(lián)
CLL細(xì)胞表現(xiàn)出BCR信號(hào)通路相關(guān)激酶的持續(xù)性激活。對(duì)CLL患者細(xì)胞和小鼠模型的研究表明,BTK對(duì)CLL細(xì)胞的存活至關(guān)重要,可能與蛋白激酶B、胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases, ERK)和核因子кB等信號(hào)通路的激活有關(guān)[17-20]。BTK對(duì)由BCR和趨化因子調(diào)控的整合素α4β1介導(dǎo)的B細(xì)胞CLL細(xì)胞在腫瘤微環(huán)境中的存活和歸巢至關(guān)重要[21]。
3.2 與套細(xì)胞淋巴瘤(mantle cell lymphoma, MCL)的關(guān)聯(lián)
在原發(fā)性MCL細(xì)胞中,BTK高表達(dá)且其SH3域Y223位點(diǎn)被異常磷酸化,部分患者還伴有酪氨酸蛋白激酶Lyn、含SH2域的白細(xì)胞蛋白65 kD、Syk激酶和蛋白激酶Cβ的組成型磷酸化[22]。BTK的激活有利于MCL細(xì)胞在淋巴組織中的存活,因此可利用BTK抑制劑促使MCL細(xì)胞進(jìn)入外周血,再使用抗腫瘤藥物清除腫瘤細(xì)胞[23]。
3.3 與華氏巨球蛋白血癥(Waldenstr?ms macroglobulinaemia, WM)的關(guān)聯(lián)
大多數(shù)WM患者的MyD88 L265P位點(diǎn)存在替代性體細(xì)胞突變[24]。突變的MyD88 L265P可與磷酸化的BTK結(jié)合并進(jìn)而激活核因子кB信號(hào)通路[25]。此外,約30%的WM患者存在趨化因子受體CXCR4 S338X體細(xì)胞突變,致使趨化因子受體配體CXCL12介導(dǎo)的蛋白激酶B和ERK活化增加[26]。研究證實(shí),CXCR4和整合素α4β1的相互作用可調(diào)節(jié)WM細(xì)胞向骨髓的運(yùn)輸和黏附[27]。
4 BTK抑制劑的研究進(jìn)展
4.1 依魯替尼
依魯替尼是一個(gè)可口服的不可逆BTK抑制劑,其能與BTK激酶域481位點(diǎn)的半胱氨酸殘基共價(jià)結(jié)合,從而產(chǎn)生抑酶作用[28]。Honigberg等[29]首先在自身免疫性疾病小鼠模型和罹患自發(fā)性B細(xì)胞非霍奇金淋巴瘤的狗中證實(shí)了依魯替尼的BTK抑制作用。Advani等[30]在對(duì)多種復(fù)發(fā)或難治性B細(xì)胞惡性腫瘤患者的臨床研究中發(fā)現(xiàn),使用依魯替尼治療安全、有效,尤其是對(duì)CLL和MCL患者。治療有效患者表現(xiàn)為淋巴結(jié)病持續(xù)減少,同時(shí)絕對(duì)淋巴細(xì)胞計(jì)數(shù)短暫升高,這種現(xiàn)象被稱為淋巴細(xì)胞增多。依魯替尼治療(采用連續(xù)給藥方案)復(fù)發(fā)或難治性CLL患者的Ⅰb /Ⅱ期臨床試驗(yàn)也發(fā)現(xiàn),患者在開始接受治療的最初幾周出現(xiàn)淋巴細(xì)胞增多現(xiàn)象,但隨著繼續(xù)治療,患者的淋巴細(xì)胞計(jì)數(shù)會(huì)恢復(fù)如初或降至基線以下[3]。依魯替尼治療復(fù)發(fā)或難治性CLL患者的獨(dú)立于臨床和基因組危險(xiǎn)因素的總緩解率為71%(表1)。一項(xiàng)Ⅱ期臨床試驗(yàn)亦顯示,依魯替尼治療復(fù)發(fā)或難治性MCL患者的總緩解率為68%[31]。另有研究表明,對(duì)經(jīng)治WM患者,依魯替尼仍有很好的療效[32]。依魯替尼已于2013年11月起在美國(guó)先后獲準(zhǔn)治療復(fù)發(fā)或難治性MCL、CLL、SLL和WM。
依魯替尼治療患者存在較大的出血風(fēng)險(xiǎn),其中約3%的患者會(huì)發(fā)生嚴(yán)重出血事件[39],因此需同時(shí)使用抗凝藥物和抗血小板藥物。此外,多達(dá)16%的患者在接受依魯替尼治療后出現(xiàn)心房顫動(dòng)合并高出血風(fēng)險(xiǎn)[40],這使得腦卒中預(yù)防成為治療過程中必須要考慮的一個(gè)重要問題。依魯替尼治療的部分毒性和不良反應(yīng)可通過其作用靶點(diǎn)的非特異性來(lái)解釋:依魯替尼不是BTK的特異性抑制劑,其還可能抑制同樣在激酶域481位點(diǎn)含有半胱氨酸殘基的其他激酶,包括其他Tec激酶家族成員(TEC、ITK、BMX和RLK)、Janus激酶-3,以及表皮生長(zhǎng)因子受體(epidermal growth factor receptor, EGFR)[4, 29]。
為達(dá)到更好的治療效果,目前人們也在進(jìn)行依魯替尼聯(lián)合其他抗腫瘤藥物治療B細(xì)胞惡性腫瘤的各項(xiàng)研究,包括一些臨床探索。
4.2 阿卡替尼
阿卡替尼于2017年獲得美國(guó)FDA批準(zhǔn),其屬第二代不可逆BTK抑制劑,作用靶點(diǎn)具有高度選擇性。阿卡替尼能與BTK激酶域481位點(diǎn)的半胱氨酸殘基共價(jià)結(jié)合,但不會(huì)影響其他激酶(如ITK、RLK、Src激酶家族和Janus激酶-3)以及EGFR。一項(xiàng)在B細(xì)胞非霍奇金淋巴瘤犬模型中進(jìn)行的臨床前研究表明,與依魯替尼治療相比,阿卡替尼的抗腫瘤活性更強(qiáng)[41]。Ⅰ/Ⅱ期臨床試驗(yàn)顯示,阿卡替尼治療復(fù)發(fā)或難治性CLL患者的總緩解率為95%[4]。迄今為止,尚無(wú)阿卡替尼治療相關(guān)的劑量依賴性毒性、心房顫動(dòng)和出血事件的報(bào)告。國(guó)外還在進(jìn)行一項(xiàng)Ⅲ期臨床試驗(yàn),以直接比較依魯替尼和阿卡替尼治療復(fù)發(fā)或難治性CLL患者的作用。此外,一項(xiàng)Ⅱ期臨床試驗(yàn)顯示,阿卡替尼治療復(fù)發(fā)或難治性MCL患者的總緩解率為81%,其中完全緩解率達(dá)40%[42]。阿卡替尼已于2017年10月起在美國(guó)先后獲準(zhǔn)治療復(fù)發(fā)或難治性CLL、SLL和MCL。
4.3 贊布替尼
贊布替尼是又一個(gè)口服生物利用度和作用選擇性均高于依魯替尼的BTK抑制劑,其已被證實(shí)可抑制MCL和彌漫性大B細(xì)胞淋巴瘤(diffuse large B cell lymphoma, DLBCL)細(xì)胞株的增殖。Ⅰ/Ⅱ期臨床試驗(yàn)顯示,贊布替尼治療的患者耐受性良好,其治療45例CLL患者的總緩解率為90%,且在7.5個(gè)月的隨訪期內(nèi)無(wú)患者出現(xiàn)疾病進(jìn)展或Richter轉(zhuǎn)化[38]。贊布替尼已于2019年11月在美國(guó)獲準(zhǔn)治療經(jīng)治MCL。
4.4 tirabrutinib
體外實(shí)驗(yàn)表明,tirabrutinib對(duì)DLBCL、濾泡型淋巴瘤、MCL和CLL細(xì)胞株均具有抗增殖作用[37]。tirabrutinib已于2020年在日本獲準(zhǔn)治療原發(fā)性中樞神經(jīng)系統(tǒng)淋巴瘤。
5 BTK抑制劑治療實(shí)體瘤的臨床試驗(yàn)
已在多種實(shí)體瘤中發(fā)現(xiàn)了BTK的異位表達(dá),由此積累了BTK參與實(shí)體瘤發(fā)生、發(fā)展的證據(jù)[43-45]。這些發(fā)現(xiàn)也導(dǎo)致人們進(jìn)行或計(jì)劃進(jìn)行數(shù)項(xiàng)Ⅰ/Ⅱ臨床試驗(yàn),以探索BTK抑制劑對(duì)晚期卵巢癌、結(jié)直腸癌、前列腺癌和腦癌等患者的治療作用(表2)。
此外,在不表達(dá)BTK的BTK陰性實(shí)體瘤中,BTK抑制劑亦能通過調(diào)節(jié)腫瘤微環(huán)境中的多種類型細(xì)胞而產(chǎn)生一定的抗腫瘤作用。對(duì)胰腺癌、乳腺癌和BTK陰性結(jié)腸癌的動(dòng)物模型研究表明,使用BTK抑制劑單藥治療僅可略微提高動(dòng)物的生存率,但若聯(lián)用化療或免疫療法藥物,則動(dòng)物的生存率大大提高[46-47]。因此,人們正在進(jìn)行或計(jì)劃進(jìn)行依魯替尼、阿卡替尼聯(lián)用程序性細(xì)胞死亡受體-1/程序性細(xì)胞死亡受體配體-1抑制劑等治療多種實(shí)體瘤的臨床試驗(yàn)。
6 結(jié)語(yǔ)
臨床試驗(yàn)證實(shí),BTK抑制劑對(duì)CLL等多種B細(xì)胞惡性腫瘤具有良好的療效。相關(guān)研究也已表明,在B細(xì)胞惡性腫瘤以及實(shí)體瘤治療中,聯(lián)用BTK抑制劑和其他多類抗腫瘤藥物治療能夠提高療效,減輕不良反應(yīng)。未來(lái)需繼續(xù)探索BTK抑制劑的聯(lián)合治療方案,以提高抗腫瘤療效,同時(shí)避免BTK抑制劑的非靶點(diǎn)抑酶作用所帶來(lái)的不良反應(yīng)。
參考文獻(xiàn)
[1] Vetrie D, Vo?echovsky I, Sideras P, et al. The gene involved in X-linked agammaglobulinaemia is a member of the Src family of protein-tyrosine kinases. 1993 [J]. J Immunol, 2012, 188(7): 2948-2955.
[2] Tsukada S, Saffran DC, Rawlings DJ, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia [J]. Cell, 1993, 72(2): 279-290.
[3] Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia [J]. N Engl J Med, 2013, 369(1): 32-42.
[4] Byrd JC, Harrington B, OBrien S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia [J]. N Engl J Med, 2016, 374(4): 323-332.
[5] Bradshaw JM. The Src, Syk, and Tec family kinases: distinct types of molecular switches [J]. Cell Signal, 2010, 22(8): 1175-1184.
[6] Hyv?nen M, Saraste M. Structure of the PH domain and Btk motif from Brutons tyrosine kinase: molecular explanations for X-linked agammaglobulinaemia [J]. EMBO J, 1997, 16(12): 3396-3404.
[7] Rawlings DJ, Scharenberg AM, Park H, et al. Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases [J]. Science, 1996, 271(5250): 822-825.
[8] Marcotte DJ, Liu YT, Arduini RM, et al. Structures of human Brutons tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases [J]. Protein Sci, 2010, 19(3): 429-439.
[9] Anderson JS, Teutsch M, Dong Z, et al. An essential role for Brutons tyrosine kinase in the regulation of B-cell apoptosis[J]. Proc Natl Acad Sci U S A, 1996, 93(20): 10966-10971.
[10] Solvason N, Wu WW, Kabra N, et al. Transgene expression of Bcl-xL permits anti-immunoglobulin (Ig)-induced proliferation in xid B cells [J]. J Exp Med, 1998, 187(7): 1081-1091.
[11] Glassford J, Soeiro I, Skarell SM, et al. BCR targets cyclin D2 via Btk and the p85α subunit of PI3-K to induce cell cycle progression in primary mouse B cells [J]. Oncogene, 2003, 22(15): 2248-2259.
[12] Spaargaren M, Beuling EA, Rurup ML, et al. The B cell antigen receptor controls integrin activity through Btk and PLCγ2 [J]. J Exp Med, 2003, 198(10): 1539-1550.
[13] de Gorter DJ, Beuling EA, Kersseboom R, et al. Brutons tyrosine kinase and phospholipase Cγ2 mediate chemokinecontrolled B cell migration and homing [J]. Immunity, 2007, 26(1): 93-104.
[14] Jefferies CA, Doyle S, Brunner C, et al. Brutons tyrosine kinase is a Toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor κB activation by Toll-like receptor 4 [J]. J Biol Chem, 2003, 278(28): 26258-26264.
[15] Nimmerjahn F, Ravetch JV. Fcγ receptors as regulators of immune responses [J]. Nat Rev Immunol, 2008, 8(1): 34-47.
[16] Bournazos S, Wang TT, Ravetch JV. The role and function of Fcγ receptors on myeloid cells [J/OL]. Microbiol Spectr, 2016, 4(6): 10.1128/microbiolspec.MCHD-0045-2016 [2020-03-04]. doi: 10.1128/microbiolspec.MCHD-0045-2016.
[17] Singh SP, Pillai SY, de Bruijn MJW, et al. Cell lines generated from a chronic lymphocytic leukemia mouse model exhibit constitutive Btk and Akt signaling [J/OL]. Oncotarget, 2017, 8(42): 71981-71995 [2020-03-04]. doi: 10.18632/ oncotarget.18234.
[18] Herman SE, Gordon AL, Hertlein E, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765 [J]. Blood, 2011, 117(23): 6287-6296.
[19] Ponader S, Chen SS, Buggy JJ, et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo[J]. Blood, 2012, 119(5): 1182-1189.
[20] Kil LP, de Bruijn MJ, van Hulst JA, et al. Brutons tyrosine kinase mediated signaling enhances leukemogenesis in a mouse model for chronic lymphocytic leukemia [J]. Am J Blood Res, 2013, 3(1): 71-83.
[21] de Rooij MF, Kuil A, Geest CR, et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia [J]. Blood, 2012, 119(11): 2590-2594.
[22] Pighi C, Gu TL, Dalai I, et al. Phospho-proteomic analysis of mantle cell lymphoma cells suggests a pro-survival role of B-cell receptor signaling [J]. Cell Oncol (Dordr), 2011, 34(2): 141-153.
[23] Chang BY, Francesco M, De Rooij MF, et al. Egress of CD19+CD5+ cells into peripheral blood following treatment with the Bruton tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma patients [J]. Blood, 2013, 122(14): 2412-2424.
[24] Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstr?ms macroglobulinemia [J]. N Engl J Med, 2012, 367(9): 826-833.
[25] Yang G, Zhou Y, Liu X, et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstr?m macroglobulinemia[J]. Blood, 2013, 122(7): 1222-1232.
[26] Hunter ZR, Xu L, Yang G, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis [J]. Blood, 2014, 123(11): 1637-1646.
[27] Ngo HT, Leleu X, Lee J, et al. SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia [J]. Blood, 2008, 112(1): 150-158.
[28] Pan Z, Scheerens H, Li SJ, et al. Discovery of selective irreversible inhibitors for Brutons tyrosine kinase [J]. Chem Med Chem, 2007, 2(1): 58-61.
[29] Honigberg LA, Smith AM, Sirisawad M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy [J]. Proc Natl Acad Sci U S A, 2010, 107(29): 13075-13080.
[30] Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies [J]. J Clin Oncol, 2013, 31(1): 88-94.
[31] Wang ML, Rule S, Martin P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma [J]. N Engl J Med, 2013, 369(6): 507-516.
[32] Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenstr?ms macroglobulinemia [J]. N Engl J Med, 2015, 372(15): 1430-1440.
[33] Byrd JC, Brown JR, OBrien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia[J]. N Engl J Med, 2014, 371(3): 213-223.
[34] Coutré SE, Furman RR, Flinn IW, et al. Extended treatment with single-agent ibrutinib at the 420 mg dose leads to durable responses in chronic lymphocytic leukemia/small lymphocytic lymphoma [J]. Clin Cancer Res, 2017, 23(5): 1149-1155.
[35] Burger JA, Tedeschi A, Barr PM, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia [J]. N Engl J Med, 2015, 373(25): 2425-2437.
[36] Dreyling M, Jurczak W, Jerkeman M, et al. Ibrutinib versus temsirolimus in patients with relapsed or refractory mantlecell lymphoma: an international, randomised, open-label, phase 3 study [J]. Lancet, 2016, 387(10020): 770-778.
[37] Walter HS, Rule SA, Dyer MJ, et al. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies [J]. Blood, 2016, 127(4): 411-419.
[38] Thompson PA, Burger JA. Brutons tyrosine kinase inhibitors: first and second generation agents for patients with chronic lymphocytic leukemia (CLL) [J]. Expert Opin Investig Drugs, 2018, 27(1): 31-42.
[39] Jones JA, Hillmen P, Coutre S, et al. Use of anticoagulants and antiplatelet in patients with chronic lymphocytic leukaemia treated with single-agent ibrutinib [J]. Br J Haematol, 2017, 178(2): 286-291.
[40] Wiczer TE, Levine LB, Brumbaugh J, et al. Cumulative incidence, risk factors, and management of atrial fibrillation in patients receiving ibrutinib [J/OL]. Blood Adv, 2017, 1(20): 1739-1748 [2020-03-04]. doi: 10.1182/ bloodadvances.2017009720.
[41] Harrington BK, Gardner HL, Izumi R, et al. Preclinical evaluation of the novel BTK inhibitor acalabrutinib in canine models of B-cell non-Hodgkin lymphoma [J/OL]. PLoS One, 2016, 11(7): e0159607 [2020-03-04]. doi: 10.1371/journal. pone.0159607.
[42] Wang M, Rule S, Zinzani PL, et al. Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial [J]. Lancet, 2018, 391(10121): 659-667.
[43] Kokabee L, Wang X, Sevinsky CJ, et al. Brutons tyrosine kinase is a potential therapeutic target in prostate cancer [J]. Cancer Biol Ther, 2015, 16(11): 1604-1615.
[44] Grassilli E, Pisano F, Cialdella A, et al. A novel oncogenic BTK isoform is overexpressed in colon cancers and required for RAS-mediated transformation [J]. Oncogene, 2016, 35(33): 4368-4378.
[45] Zucha MA, Wu AT, Lee WH, et al. Brutons tyrosine kinase(Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer [J/OL]. Oncotarget, 2015, 6(15): 13255-13268 [2020-03-04]. doi: 10.18632/oncotarget.3658.
[46] Stiff A, Trikha P, Wesolowski R, et al. Myeloid-derived suppressor cells express Brutons tyrosine kinase and can be depleted in tumor-bearing hosts by ibrutinib treatment [J]. Cancer Res, 2016, 76(8): 2125-2136.
[47] Sagiv-Barfi I, Kohrt HE, Czerwinski DK, et al. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK [J]. Proc Natl Acad Sci U S A, 2015, 112(9): E966-E972.