陳輝,金熙,張校曼,高基民
·醫(yī)藥生物技術·
一種經(jīng)microRNA敲低PD-1的新型慢病毒載體在CAR-T細胞中的應用
陳輝1,金熙1,張校曼1,高基民1,2
1 溫州醫(yī)科大學 檢驗醫(yī)學院 生命科學學院,浙江 溫州 325035 2 溫州醫(yī)科大學 浙江啟新生物技術有限公司,浙江 溫州 325035
本研究將microRNA插入EF1α啟動子的內(nèi)含子中,構建攜帶沉默PD-1基因的miRNA的新型慢病毒載體,并將其應用于CAR-T細胞。通過流式細胞術檢測慢病毒載體轉(zhuǎn)導效率和PD-1沉默效率;Western blotting檢測PD-1蛋白表達差異;熒光定量PCR檢測microRNA相對表達情況;熒光素酶生物發(fā)光法和流式細胞術檢測CAR-T細胞的能力。結(jié)果顯示與U6轉(zhuǎn)錄microRNA的載體相比較,將microRNA插入到EF1-α內(nèi)含子中的病毒載體轉(zhuǎn)導效率更顯著,對PD-1的敲低效率均達90%以上,且Western blotting結(jié)果驗證了PD-1的敲低效果。另外通過熒光定量PCR,可顯示出轉(zhuǎn)導該新型慢病毒載體的Jurkat細胞內(nèi)microRNA的相對表達量。熒光素酶生物發(fā)光法證實了CAR-T細胞針對靶細胞的特異殺傷性,流式細胞術結(jié)果表明沉默PD-1的CAR-T細胞相較于正常CAR-T細胞顯示出更強的特異性殺傷能力。本研究成功構建了經(jīng)microRNA敲低PD-1的新型慢病毒載體并驗證了其轉(zhuǎn)導效率的優(yōu)越性,以及基于此載體表達的microRNA可高效地沉默PD-1;且應用此載體的CAR-T細胞能發(fā)揮更強的殺傷活性,從而為后續(xù)該CAR-T細胞治療表達PD-L1的腫瘤奠定基礎。
程序性死亡受體1,microRNA,新型慢病毒載體,嵌合抗原受體T細胞
CAR (Chimeric antigen receptor,嵌合抗原受體) T細胞療法是利用病人自身的免疫細胞來清除癌細胞,CAR是改造后的受體,賦予T細胞非HLA (Human leukocyte antigen,人白細胞抗原) 依賴的方式識別腫瘤抗原的能力,這使得經(jīng)過CAR改造的T細胞相較于天然T細胞受體 (TCR)能夠識別更廣泛的目標[1]。CAR由結(jié)合靶抗原的免疫球蛋白單鏈可變片段 (Single-chain variable fragment,scFv)、跨膜結(jié)構域和細胞內(nèi)T細胞信號傳導結(jié)構域組成。目前,CAR-T細胞療法在癌癥免疫治療中顯示出顯著的功效,特別是在血液系統(tǒng)疾病的治療中[2-3]。
程序性死亡受體-1 (PD-1) 是一種免疫抑制性受體,屬于CD28家族成員的Ⅰ型跨膜蛋白[4],在激活的T細胞、B細胞、單核細胞和樹突狀細胞表面廣泛表達[5]。PD-1與其配體PD-L1 (細胞程序性死亡-配體1,Programmed cell death 1 ligand 1) 結(jié)合可抑制T 細胞的活化、增殖和細胞因子的分泌,誘導T細胞的凋亡,從而負調(diào)控免疫應答[6]。腫瘤細胞通過高表達PD-L1分子,使表達PD-1的腫瘤抗原特異性T 細胞凋亡,導致腫瘤細胞逃避免疫系統(tǒng)的監(jiān)視和殺傷[7]。
慢病毒載體已廣泛用于RNA分子遞送或蛋白表達[8-11]。目前研究發(fā)現(xiàn),基于慢病毒載體的小分子RNA轉(zhuǎn)移至宿主細胞會通過各種機制導致慢病毒滴度降低[12-13],可能是由于病毒顆粒生產(chǎn)過程中mRNA(信使RNA)被降解導致包裝失敗,或者是因病毒轉(zhuǎn)導宿主細胞后的基因表達降低。因此,在許多研究中都對慢病毒載體進行了修飾和優(yōu)化,以增強基因表達或小分子RNA的傳遞[14-19]。
293T細胞株 (人腎上皮細胞系)購自ATCC,用含有10%胎牛血清的DMEM培養(yǎng)基培養(yǎng);過表達人PD-L1和熒光素酶的Raji細胞株由本實驗室自行構建并保種,Jurkat細胞株 (人急性T細胞白血病細胞株)購自ATCC,以上兩種細胞株用含有10%胎牛血清的RPMI 1640培養(yǎng)基培養(yǎng)。T細胞取自健康人外周血,用含5%人AB血清、1 ng/mL IL-2、10 μg/mL IL-7和10 μg/mL IL-15的X-Vivo培養(yǎng)基培養(yǎng)。DMEM、RPMI 1640和胎牛血清購自Gibco公司;X-Vivo購自Lonza公司;人AB血清購自Sigma公司;重組人IL2、IL7和IL15購自PRPROTECH公司。
plenti-EF1α-GFP(Green fluorescent protein)、plenti-EF1α-anti-CD19 CAR表達質(zhì)粒由本實驗室保存;限制性內(nèi)切酶購自New England BioLabs;無縫克隆試劑盒購自南京諾唯贊生物科技有限公司;質(zhì)粒抽提試劑盒購自QIAGEN公司;聚乙酰亞胺 (Polyetherimide,PEI)購自Polysciences公司;生物素標記的人CD19蛋白購自ACRO Biosystems公司;PE標記的鏈霉親和素、PE標記的抗人CD3抗體、Brilliant Violet 421標記的抗人PD-L1抗體、PB標記的抗人CD62L抗體、Alexa Fluor?488標記的抗人CD45RO抗體、APC標記的抗人CD45RA抗體和APC標記的抗人PD-1抗體均購自BioLegend公司。
PCR儀、電泳裝置、凝膠成像系統(tǒng)購自Bio-Rad;FACS Aria II流式細胞儀購自BD公司;DynaMagTM-5磁力架、CO2恒溫細胞培養(yǎng)箱、酶標儀等購自Thermo Fisher公司;超速離心機購自Beckman Coulter公司;熒光顯微鏡、臺式低速離心機、超凈工作臺等購自Eppendorf公司。
1.3.1 慢病毒表達載體構建
三條miRNA分別命名為miRNA-30#backbone (miRNA-30原始序列)、miRNA-30#PD-1#1 (靶向PD-1 3′UTR)、miRNA-30#PD-1#61 (靶向PD-1蛋白編碼區(qū)),均由蘇州金唯智生物科技有限公司合成,3條miRNA均使用同一對引物進行擴增,F(xiàn):5′-TGCGGGCCAAGATCTTCTTCAGGTTAACCCA AC-3′和R:5′-CCAGTGTGCAGATCTTCCTAAAG TAGCCCCTTG-3′,獲得目的片段Q1、Q2、Q3,以Ⅱ為酶切位點,將Q1、Q2、Q3以無縫連接插入plenti-EF1α-GFP質(zhì)粒EF1α啟動子的內(nèi)含子中;以Ⅱ為酶切位點,將Q2、Q3以無縫連接插入plenti-EF1α-anti-CD19 CAR質(zhì)粒EF1α啟動子的內(nèi)含子中。
1.3.2 慢病毒包裝及其轉(zhuǎn)導效率測定
將上述目的質(zhì)粒分別與包裝質(zhì)粒pLP1、pLP2、pMD2G共轉(zhuǎn)染293T細胞得到慢病毒顆粒,設置一定比例轉(zhuǎn)導Jurkat細胞,并于48 h后通過流式細胞儀檢測轉(zhuǎn)導效率。
1.3.3 CAR-T細胞的制備及擴增
采集健康人靜脈血,經(jīng)Ficoll分離液密度梯度離心提取外周血單個核細胞,利用抗CD3/CD28抗體包被的磁珠篩選T細胞,并經(jīng)磁珠活化12–24 h。將上述慢病毒轉(zhuǎn)導至活化的T細胞,待T細胞擴增至一定數(shù)量時取部分細胞,經(jīng)生物素標記的CD19蛋白和PE-SA先后染色,通過流式細胞術檢測CAR表達率。
1.3.4 蛋白質(zhì)印跡分析
細胞裂解液通過SDS-PAGE,然后轉(zhuǎn)移至PVDF膜 (Bio-Rad)??筆D-1抗體 (CST:86163S),抗GAPDH (Beyotime) 抗體分別被用于蛋白印跡一抗和二抗。
1.3.5 實時定量PCR
使用TRIzol試劑從Jurkat細胞中提取總RNA。以U6為內(nèi)參基因,通過特異性引物將miRNA和U6逆轉(zhuǎn)錄為cDNA。逆轉(zhuǎn)錄引物分別是Q-PCR miRNA#1 REV、Q-PCR miRNA#61 REV,實時熒光定量PCR引物如表1所示。相對定量法通過2–ΔΔCt法計算。
表1 熒光定量PCR引物
1.3.6 流式細胞儀
以下抗體用于流式細胞儀實驗:生物素化人CD19 (ACRO Biosystems),APC偶聯(lián)抗PD-1 (BioLegend),Brilliant Violet 421偶聯(lián)抗PD-L1 (BioLegend),PE偶聯(lián)抗人CD3 (BioLegend),APC-SA (BioLegend),PE-SA (BioLegend),APC偶聯(lián)抗CD45RA (BioLegend),PB偶聯(lián)抗CD62L (BioLegend),F(xiàn)ITC偶聯(lián)抗CD45RO (BioLegend)。使用BD AriII流式細胞儀收集細胞數(shù)據(jù),并使用FlowJo軟件進行分析。
1.3.7 熒光素酶生物發(fā)光法檢測CAR-T細胞的殺傷效能
96孔板中每孔鋪10 000個PD-L1-Luc-GFP Raji細胞,然后以不同的效︰靶比添加CAR-T細胞,使每孔的終體積為200 μL。另外設置兩組PD-L1-Luc-GFP Raji細胞孔,一個用RMPI-1640培養(yǎng)基重懸,另一個用ddH2O重懸以裂解細胞,將其用作最大背景值 (MAX) 和最小背景值 (MIN) (每組重復3孔)。加入熒光素酶底物后,用酶標儀檢測自身熒光值V。靶細胞的裂解率可通過以下公式計算:裂解率(%)=(MAX?V)/ (MAX?MIN)×100%。
1.3.8 統(tǒng)計學分析
我們設計了慢病毒質(zhì)粒plenti-EF1α (miRNA- 30-backbone)-GFP、plenti-EF1α (miRNA#1)-GFP、plenti-EF1α (miRNA#61)-GFP,并以由U6啟動子轉(zhuǎn)錄miRNA的慢病毒質(zhì)粒plenti-EF1α-GFP- U6-miRNA#61作為對照 (圖1A)。我們基于miRNA-30骨架 (miRNA-30-backbone) 設計了兩種miRNA (分別針對PD-1基因3′UTR的miRNA-30#PD-1#1和CDS區(qū)的miRNA-30#PD- 1#61),其中miRNA序列經(jīng)Ⅱ酶切位點插入到啟動子EF1α的內(nèi)含子中 (表2)。將上述目的質(zhì)粒經(jīng)第3代慢病毒包裝系統(tǒng)得到相應慢病毒顆粒并轉(zhuǎn)導至Jurkat細胞,通過流式細胞術檢測Jurkat細胞中的報告基因GFP表達情況,以比較在相同條件下不同慢病毒載體上目的基因的表達效率。如圖1B所示,經(jīng)慢病毒LV-EF1α-GFP (陽性對照)、LV-EF1α (miRNA-backbone)-GFP、LV-EF1α (miRNA#1) 和LV-EF1α (miRNA#61)-GFP轉(zhuǎn)導的Jurkat細胞的GFP表達率顯著高于經(jīng)慢病毒LV-EF1α-GFP-U6-miRNA#61轉(zhuǎn)導的Jurkat細胞。該結(jié)果表明,相對于傳統(tǒng)攜帶miRNA的慢病毒載體,將miRNA插至EF1α內(nèi)含子中的慢病毒載體的轉(zhuǎn)基因表達效率更高。
我們通過植物血凝素 (PHA) 活化刺激Jurkat細胞,使其高表達PD-1,再通過轉(zhuǎn)導上述不同慢病毒以評估不同新型慢病毒載體中miRNA介導的PD-1敲除效率。圖2A表明,成功轉(zhuǎn)導病毒的GFP+細胞群中,LV-EF1α (miRNA#1)-GFP和LV-EF1α (miRNA#61)-GFP轉(zhuǎn)導的Jurkat細胞表面幾乎未檢測到PD-1。如圖2B所示,與不靶向其他基因的miRNA骨架相比,miRNA#1和miRNA#61介導的PD-1沉默效率均超過了90%,具有顯著的統(tǒng)計學差異。
圖1 攜帶miRNA的新型慢病毒載體的構建及其目的基因表達效率的驗證
表2 miRNA序列
接下來,我們通過熒光定量PCR檢測了轉(zhuǎn)導新型慢病毒載體后的Jurkat細胞中miRNA的相對表達量以驗證miRNA是否由慢病毒載體遞送。以LV-EF1α-GFP轉(zhuǎn)導的Jurkat細胞作為對照,LV-EF1α (miRNA#1)-GFP和LV-EF1α (miRNA#61)-GFP轉(zhuǎn)導的Jurkat細胞中,miRNA#1和miRNA#61分別顯示出較高的表達水平 (圖2C)。另外,通過Western blotting驗證了LV-EF1α (miRNA#1)-GFP和LV-EF1α (miRNA#61)-GFP轉(zhuǎn)導的Jurkat細胞中PD-1的表達明顯減少 (圖2D)。
圖2 miRNAs介導的PD-1基因沉默的驗證
我們構建了第2代CAR慢病毒載體,其中包含識別CD19的嵌合抗原受體、CD8跨膜區(qū)、人CD28的細胞內(nèi)信號傳導域和CD3ζ T細胞信號傳導域,其中miRNA#1和miRNA#61分別插入EF1α的內(nèi)含子中 (圖3A)。將基于此載體的慢病毒顆粒轉(zhuǎn)導至人原代T細胞以構建CAR-T細胞。如圖3B所示,3種T細胞表面的CAR陽性率分別為88.6%、80.0%和73.8%,顯示成功構建anti-CD19 CAR-T細胞。此外,我們將3種不同的CAR-T細胞分別與高表達CD19的Raji細胞以效靶比為1︰1、 5︰1和10︰1共培養(yǎng)4 h,結(jié)果顯示Raji細胞被 3種CAR-T特異殺傷 (圖3C)。
圖3 經(jīng)miRNA敲低PD-1的新型CAR慢病毒載體構建
使用CD3/CD28抗體包被的磁珠刺激CAR-T細胞48 h后,如圖4A所示,流式細胞術檢測結(jié)果顯示,在攜帶miRNA#1或miRNA#61的CAR-T細胞中PD-1表達率明顯下降,表明miRNA成功地在CAR-T細胞中介導了PD-1的沉默。
為檢測上述經(jīng)miRNA敲低PD-1的CAR-T細胞的殺傷活性差異,將CAR-T細胞與PD-L1+并轉(zhuǎn)有熒光素酶基因和GFP報告基因的Raji細胞以效靶比為1︰1共培養(yǎng)72 h。如圖4B所示,與anti-CD19 CAR-T細胞殺傷效率相比,經(jīng)miRNA敲低PD-1的兩種CAR-T細胞均顯示出殺傷的優(yōu)越性,其靶細胞裂解率明顯提高。
在本研究中,我們以pri-miRNA-30骨架為基礎設計了靶向PD-1的miRNA,從而介導CAR-T細胞PD-1蛋白的敲低。基于慢病毒載體,我們將miRNA插入人延伸因子1α (EF1α) 啟動子的內(nèi)含子中[14,20],miRNA會隨著目的基因的轉(zhuǎn)錄而同時轉(zhuǎn)錄表達,而不是加入額外的U6等啟動子單獨轉(zhuǎn)錄miRNA[21]。Cooper等的研究表明慢病毒包裝過程中EF1α啟動子中的內(nèi)含子不會被剪接丟失[14]?;谝陨习l(fā)現(xiàn),將miRNA插入內(nèi)含子的方式是可行的。將應用此方法的慢病毒載體轉(zhuǎn)導宿主細胞,而目的基因由啟動子EF1α驅(qū)動。后續(xù)的結(jié)果顯示,與攜帶U6啟動子轉(zhuǎn)錄的miRNA的慢病毒轉(zhuǎn)導的宿主細胞 (Jurkat) 相比,將miRNA插入EF1α內(nèi)含子的慢病毒載體傳遞的基因表達明顯更高。這種現(xiàn)象可能是由于此載體可以避免目的基因的mRNA被RNase Ⅲ[22]識別和切割,因為EF1α啟動轉(zhuǎn)錄后mRNA會進行剪接從而其內(nèi)含子和插入其中的miRNA會在剪接過程中被去除。因此,目的基因的mRNA和miRNA將分別由一個啟動子EF1α驅(qū)動,這為同時表達miRNA和CAR結(jié)構的CAR-T細胞療法提供了更高效的方法。
圖4 PD-1沉默的anti-CD19 CAR-T細胞顯示出更強的抗腫瘤活性
本研究證實了miRNA介導的PD-1敲低效率保持在較高水平,且不亞于Cas9的基因敲除[23-24]。更重要的是,經(jīng)miRNA敲低PD-1的CAR慢病毒載體可直接轉(zhuǎn)導T細胞而用于CAR-T免疫療法,而Cas9基因編輯方法相對繁瑣[25],且其在加工過程中可能影響到T細胞的免疫活性或者產(chǎn)生脫靶效應,從而造成不良影響。另外,Rafiq等構建了一種分泌抗PD-1 scFv的CAR-T細胞,它可以通過旁分泌和自分泌兩種方式阻斷免疫檢查點的抑制以增強抗腫瘤功效[26]。盡管miRNA沉默PD-1僅限于CAR-T細胞本身,但其PD-1的敲低效率超過90%,而抗PD-1 scFv阻斷T細胞的效率在某種程度上較低,導致在很大程度上引起CAR-T細胞衰竭。
本研究結(jié)果顯示,隨著T細胞被CD3/CD28抗體活化從而其表面高表PD-1蛋白,與PD-L1陽性的靶細胞共孵育后,Raji細胞表面PD-L1與CAR-T細胞表面PD-1的結(jié)合所發(fā)揮的負調(diào)控作用,可抑制CAR-T細胞的活化、增殖,并誘導其凋亡,而anti-CD19 CAR-T (miRNA-30#1或miRNA-30#61) 細胞中PD-1的高效敲低可避免該負調(diào)控所引起的抑制作用,從而介導了CAR-T細胞發(fā)揮更強的殺傷能力。另外,我們可以設計靶向其他免疫檢查點的miRNA,將其插入該種新型慢病毒載體,如CTLA-4 (cytotoxic T-lymphocyte-associated protein 4)[27]、LAG-3 (Lymphocyte-activation gene 3)[28]、TIM-3 (T cell immunoglobulin and mucin domain-containing protein 3)[29]等,從而達到沉默CAR-T細胞表面多種免疫檢查點以進一步增強其抗腫瘤活性,進而為CAR-T細胞療法提供了一種可靠策略,使CAR-T細胞免受免疫檢查點的抑制并改善其生物學效應。
[1] Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol, 2016, 13(6): 370–383.
[2] Brentjens RJ, Davila ML, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med, 2013, 5(177): 177ra138.
[3] Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med, 2014, 371(16): 1507–1517.
[4] Han YY, Liu DD, Li LH. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res, 2020, 10(3): 727–742.
[5] Payandeh Z, Khalili S, Somi MH, et al. PD-1/PD-L1-dependent immune response in colorectal cancer. J Cell Physiol, 2020, 235(7/8): 5461–5475.
[6] Chemnitz JM, Parry RV, Nichols KE, et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol, 2004, 173(2): 945–954.
[7] Dong HD, Strome SE, Salomao DR, et al.Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med, 2002, 8(8): 793–800.
[8] Merlin S, Follenzi A. Transcriptional targeting and MicroRNA regulation of lentiviral vectors. Mol Ther Methods Clin Dev, 2019, 12: 223–232.
[9] ?kerblom M, Sachdeva R, Quintino L, et al. Visualization and genetic modification of resident brain microglia using lentiviral vectors regulated by microRNA-9. Nat Commun, 2013, 4: 1770.
[10] Sachdeva R, J?nsson ME, Nelander J, et al. Tracking differentiating neural progenitors in pluripotent cultures using microRNA-regulated lentiviral vectors. Proc Natl Acad Sci USA, 2010, 107(25): 11602–11607.
[11] Gentner B, Schira G, Giustacchini A, et al. Stable knockdown of microRNAby lentiviral vectors. Nat Methods, 2009, 6(1): 63–66.
[12] Liu YP, Vink MA, Westerink JT, et al. Titers of lentiviral vectors encoding shRNAs and miRNAs are reduced by different mechanisms that require distinct repair strategies. RNA, 2010, 16(7): 1328–1339.
[13] Poluri A, Sutton RE. Titers of HIV-based vectors encoding shRNAs are reduced by a dicer-dependent mechanism. Mol Ther, 2008, 16(2): 378–386.
[14] Cooper AR, Lill GR, Gschweng EH, et al. Rescue of splicing-mediated intron loss maximizes expression in lentiviral vectors containing the human ubiquitin C promoter. Nucl Acids Res, 2015, 43(1): 682–690.
[15] Fowler DK, Williams C, Gerritsen AT, et al. Improved knockdown from artificial microRNAs in an enhanced miR-155 backbone: a designer’s guide to potent multi-target RNAi. Nucleic Acids Res, 2016, 44(5): e48.
[16] Herrera-Carrillo E, Liu YP, Berkhout B. Improving miRNA delivery by optimizing miRNA expression cassettes in diverse virus vectors. Hum Gene Ther Methods, 2017, 28(4): 177–190.
[17] Hu T, Fu Q, Chen P, et al. Construction of an artificial MicroRNA expression vector for simultaneous inhibition of multiple genes in mammalian cells. Int J Mol Sci, 2009, 10(5): 2158–2168.
[18] Poling BC, Tsai K, Kang D, et al. A lentiviral vector bearing a reverse intron demonstrates superior expression of both proteins and microRNAs. RNA Biol, 2017, 14(11): 1570–1579.
[19] Sun DQ, Melegari M, Sridhar S, et al. Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. Biotechniques, 2006, 41(1): 59–63.
[20] Amendola M, Passerini L, Pucci F, et al. Regulated and multiple miRNA and siRNA delivery into primary cells by a lentiviral platform. Mol Ther, 2009, 17(6): 1039–1052.
[21] Nie LH, Thakur MD, Wang YM, et al. Regulation of U6 promoter activity by transcriptional interference in viral vector-based RNAi. Genom Proteom Bioinformat, 2010, 8(3): 170–179.
[22] Filippov V, Solovyev V, Filippova M, et al. A novel type of RNase III family proteins in eukaryotes. Gene, 2000, 245(1): 213–221.
[23] Guo XL, Jiang H, Shi BZ, et al. Disruption of PD-1 enhanced the anti-tumor activity of chimeric antigen receptor T cells against hepatocellular carcinoma. Front Pharmacol, 2018, 9: 1118.
[24] Hu WH, Zi ZG, Jin YL, et al. CRISPR/Cas9- mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunol Immunother, 2019, 68(3): 365–377.
[25] Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol, 2016, 34(9): 933–941.
[26] Rafiq S, Yeku OO, Jackson HJ, et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy. Nat Biotechnol, 2018, 36(9): 847–856.
[27] Syn NL, Teng MWL, Mok TSK, et al.and acquired resistance to immune checkpoint targeting. Lancet Oncol, 2017, 18(12): e731–e741.
[28] Que Y, Fang ZX, Guan YX, et al. LAG-3 expression on tumor-infiltrating T cells in soft tissue sarcoma correlates with poor survival. Cancer Biol Med, 2019, 16(2): 331–340.
[29] Tang RH, Rangachari M, Kuchroo VK. Tim-3: A co-receptor with diverse roles in T cell exhaustion and tolerance. Semin Immunol, 2019, 42: 101302.
Construction of a novel lentiviral vector knocking down PD-1 via microRNA and its application in CAR-T cells
Hui Chen1, Xi Jin1, Xiaoman Zhang1, and Jimin Gao1,2
1,,325035,,2,,325035,,
By inserting microRNAs into the intron of EF1α promoter, we constructed a novel lentiviral vector knocking down PD-1 gene via microRNA and applied it to CAR-T cells. Lentiviral transduction efficiency and PD-1-silencing efficiency were detected by flow cytometry. PD-1 expression was detected by Western blotting. Relative expression of microRNA was measured by Q-PCR. Cytotoxicity of CAR-T cells based on this vector was tested by luciferase bioluminescence and flow cytometry. Compared with lentiviral vector with microRNA transcribed by U6 promotor, the transduction efficiency of lentiviral vector with microRNA which was inserted into the intron of EF1α promoter was more significant, and the knockdown rate of PD-1 was more than 90%, which was validated by flow cytometry and Western blotting. And the relative expression level of microRNA in Jurkat cells transduced with this novel lentiviral vector was shown by Q-PCR. Compared with normal CAR-T cells, CAR-T cells based on this vector showed stronger cytotoxicity against PD-L1 positive Raji cells. We successfully constructed a novel lentiviral vector that knocked down PD-1 via microRNA and verified the superiority of its transduction efficiency and knockdown efficiency of PD-1. CAR-T cells based on this vector can exert a more powerfulcytotoxicity, thus providing theoretical support for the subsequent treatment of PD-L1 positive tumors.
programmed cell death protein 1, microRNA, novel lentiviral vector, CAR-T cells
10.13345/j.cjb.200193
April 9, 2020;
May 21, 2020
Supported by: National Health Commission Science Foundation-Major Medical and Health Science and Technology Program of Zhejiang Province (No. WKJ-ZJ-1928), Wenzhou Municipal Research Program (Nos. ZS2017014, 2018ZY001).
Jimin Gao. Tel: +86-577-86699341; E-mail: jimingao64@163.com
國家衛(wèi)生健康委員會科學研究基金-浙江省醫(yī)藥衛(wèi)生重大科技計劃 (No. WKJ-ZJ-1928),溫州市重大科技專項 (Nos. ZS2017014,ZS2018ZY001) 資助。
陳輝, 金熙, 張校曼, 等. 一種經(jīng)microRNA敲低PD-1的新型慢病毒載體在CAR-T細胞中的應用. 生物工程學報, 2020, 36(7): 1395–1404.
Chen H, Jin X, Zhang XM, et al. Construction of a novel lentiviral vector knocking down PD-1 via microRNA and its application in CAR-T cells. Chin J Biotech, 2020, 36(7): 1395–1404.
(本文責編 陳宏宇)