趙亮 狄佳春 陳旭升
摘要:根據赤霉素氧化酶氨基酸序列的保守結構域和生物學信息,對棉花2個二倍體野生種(A基因組的亞洲棉和D基因組的雷蒙德氏棉)和2個異源四倍體遺傳標準系(陸地棉TM-1和海島棉H7124)進行了全基因組的查找。結果表明,在2個二倍體野生種的A和D基因組中分別預測到219和188個該酶類基因家族成員;在異源四倍體陸地棉TM-1和H7124中分別預測到了310和428個該酶類基因家族成員。通過分析陸地棉中預測到的310個該酶類基因家族成員在赤霉素敏感超矮突變體和野生型轉錄組中表達差異,發(fā)現16個基因具有顯著性差異。利用這16個基因編碼的蛋白質氨基酸序列與報道的擬南芥赤霉素氧化酶氨基酸序列進行進化分析,結果表明Gh_D06G2009屬于GA3ox氧化酶,Gh_D01G0300和Gh_D09G0746為 GA2ox氧化酶,Gh_A06G1341、Gh_A07G1653、Gh_A11G1416、Gh_A13G0444、Gh_A13G1787、Gh_A13G2343、Gh_D01G0055、Gh_D07G0446、Gh_D07G1858、Gh_D08G2680、Gh_D11G3415、Gh_D13G0516、Gh_D13G2157為GA20ox氧化酶。
關鍵詞:棉花;赤霉素;赤霉素氧化酶;基因家族
中圖分類號:S562.01文獻標識碼:A文章編號:1000-4440(2020)03-0553-08
Identification and analysis of gibberellin oxidase gene in cotton genome
ZHAO Liang,DI Jia-chun,CHEN Xu-sheng
(Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/ Key Laboratory of Cotton and Canola Research at the Lower Reach of the Yangtze River Plain, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)
Abstract:Based on the conserved domain of gibberellin oxidase amino acid sequence and bioinformatics, genome-wide searches were performed on two diploid wild cotton species (Gossypium arboreum with A genome and G. Raimondii with D genome) and two allotetraploid genetic standard lines (upland cotton TM-1 and island cotton H7124). In the two diploid wild species, 219 and 188 members of the enzyme family were predicted in the A and D genomes, respectively. In addition, 310 and 428 members of the enzyme family were predicted in allotetraploid upland cotton TM-1 and H7124, respectively. Subsequent analysis of 310 members predicted by us in upland cotton revealed significant differences in 16 genes between gibberellin mutants and wild-type transcriptomes. The amino acid sequence of the protein encoded by these 16 genes and the amino acid sequence of gibberellin oxidase in Arabidopsis thaliana were analyzed, it was found that Gh_D06G2009 could belong to GA3ox oxidase. Gh_D01G0300 and Gh_D09G0746 were GA2ox oxidase. However, Gh_A06G1341, Gh_A07G1653, Gh_A11G1416, Gh_A13G0444, Gh_A13G1787, Gh_A13G2343, Gh_D01G0055, Gh_D07G0446, Gh_D07G1858, Gh_D08G2680, Gh_D11G3415, Gh_D13G0516, Gh_D13G2157 were GA20ox oxidase.
Key words:cotton;gibberellic acid;gibberellin oxidase;gene family
赤霉素(GAs)是一種重要的植物類激素,參與植物生長與發(fā)育等多個生物學進程。在高等植物和真菌中,總計有136種赤霉素被鑒定[1],但是只有一少部分具有生物活性,例如GA1、GA3、GA4和GA7[2]。在高等植物中,赤霉素的生物合成總共涉及到8個關鍵酶,分別為CPS、KS、KO、KAO、GA20ox、GA13ox、GA2ox和GA3ox,生物合成劃分為3個階段:在質體中,牻牛兒牻牛兒二磷酸(GGDP)合成貝殼杉烯(ent-kaurene);通過細胞色素P450單加氧酶,貝殼杉烯(ent-kaurene)轉變?yōu)镚A12;在細胞質中,通過赤霉素氧化酶的作用形成C20-GAs和C19-GAs。植物中GAs最初來自于GGPP,它存在于質體上,是最常見的二萜類C20前體[3]。在模式植物擬南芥中發(fā)現的赤霉素敏感型突變體較多,每個合成途徑基因都有相應的突變體:GA1對應CPS,GA2對應KS,GA3對應KO,GA4對應3βOX,GA5對應20OX。前3個突變體為極端矮化突變體,后兩者屬于矮化突變體,此外對這5個突變體連續(xù)施用GA3,均能使其恢復正常植株的高度。
利用預測的CDS序列,通過DnaSP V6軟件對4個基因組中同源基因進行了同義替換和異義替換分析。分析結果表明,異源四倍體的陸地棉和海島棉中At亞組與亞洲棉的A組之間的異義替換與同義替換的比值(Ka/Ks)都小于1,同樣異源四倍體的Dt亞組與雷蒙德氏棉的D組之間的Ka/Ks值只有Gh_D11G3415基因的比值大于1,其余都小于1 (表3)。說明Ka/Ks值小于1的基因在進化過程中經歷了自然界的純化選擇,而Ka/Ks值大于1的Gh_D11G3415基因在進化過程中經歷了自然界的正向選擇。
通過統(tǒng)計這16個基因在組織器官(根、莖和葉)中表達的相關性發(fā)現,總計有36對基因之間存在顯著的正相關或負相關關系(r>0.9或r<-0.9),其中16對基因之間存在顯著正相關關系,20對基因之間存在顯著負相關關系(圖3)。
3討論
植物激素的研究一直是國內外植物科學研究的重點與熱點[13-14]。農業(yè)生產上第一次“綠色革命”就是利用農作物本身的赤霉素合成和信號轉導缺陷所產生的矮化植株來培育抗倒伏農作物新品種,從而大幅度提高了農作物的產量[15]。赤霉素氧化酶是重要的赤霉素生物合成和調控酶,該酶類是具有保守的結構域,同時基因家族成員的表達模式既有重疊,也存在區(qū)別[16]。本研究根據該酶類的保守結構域用生物信息學方法,對已經公開發(fā)表的4個棉種基因組數據中該酶類家族進行了鑒定。鑒定結果表明,在這4個棉種的基因組數據庫中存在大量該酶類家族成員(亞洲棉219個,雷蒙德氏棉188個,陸地棉TM-1 310個,海島棉H7124 428個)。由于通過生物信息學方法鑒定出的成員較多,因此我們對這些鑒定出的成員在本研究室發(fā)現的赤霉素敏感超矮突變體與野生型轉錄組數據庫中進行了進一步的篩選,最終在陸地棉TM-1中得到16個赤霉素氧化酶家族成員。
系統(tǒng)發(fā)生樹能夠揭示生物進化過程的順序,有助于了解生物進化的歷史,從而解決生物學中的一些問題[17-18]。因此,我們對陸地棉TM-1中得到的16個可能參與赤霉素合成的氧化酶基因與擬南芥中的相關基因利用最大似然法進行進化樹的構建。結果表明,在TM-1中,GA3ox類氧化酶基因有1個(Gh_D06G2009),GA2ox類氧化酶基因有2個(Gh_D01G0300和Gh_D09G0746),GA2ox類氧化酶基因有13個(Gh_A06G1341、Gh_A07G1653、Gh_A11G1416、Gh_A13G0444、Gh_A13G1787、Gh_A13G2343、Gh_D01G0055、Gh_D07G0446、Gh_D07G1858、Gh_D08G2680、Gh_D11G3415、Gh_D13G0516、Gh_D13G2157)。
未來,我們將對這些預測到的基因利用生物技術手段(例如病毒介導的轉基因沉默技術等)進行反向遺傳學驗證,將這些基因敲除后通過對沉默植株的表型鑒定及赤霉素含量的測定來進一步確定參與赤霉素代謝的赤霉素氧化酶。
參考文獻:
[1]MACMILLAN J. Occurrence of gibberellins in vascular plants, fungi, and bacteria[J]. J Plant Growth Regul, 2001,20(4):387-442.
[2]HEDDEN P, PHILLIPS A L. Gibberellin metabolism: new insights revealed by the genes[J]. Trends Plant Sci, 2000,5(12):523-530.
[3]UN T P. Gibberellin metabolism, perception and signaling pathways in Arabidopsis[J]. Arabidopsis Book, 2008,6:103.
[4]SCHOMBURG M F. Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants[J]. Plant Cell, 2003,15(1):151-163.
[5]PLACKETT A R G, POWERS S J, FERNANDEZ-GARCIA N, et al. Analysis of the developmental roles of the Arabidopsis gibberellin 20-oxidases demonstrates that GA20ox1, -2, and -3 are the dominant paralogs[J]. Plant Cell, 2012,24(3):941-960.
[6]SONNHAMMER E L, EDDY S R, BIRNEY E, et al. Pfam: multiple sequence alignments and HMM-profiles of protein domains[J]. Nucleic Acids Res, 1998,26(1):320-322.
[7]KUMAR S, STECHER G, LI M, et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018,35(6):1547-1549.
[8]PRICE M N, DEHAL P S, ARKIN A P. FastTree 2-approximately maximum-likelihood trees for large alignments[J]. PLoS One, 2010,5(3):e9490.
[9]PRICE M N, DEHAL P S, ARKIN A P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix[J]. Mol Biol Evol, 2009,26(7):1641-1650.
[10]ROZAS J, FERRER-MATA A, SANCHEZ-DELBARRIO J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets[J]. Mol Biol Evol, 2017,34(12):3299-3302.
[11]陳旭升,狄佳春,許乃銀,等. 陸地棉超矮稈突變性狀質量遺傳規(guī)律分析[J]. 遺傳, 2007, 29(4):471-474.
[12]LIANG Z, DI J, QI G, et al. The differentially expressed genes identification in dwarf mutant of Gossypium hirsutum by RNA-Seq approach[J]. Agri Gene, 2017,5:37-44.
[13]趙鳳,王小樂,房偉民,等. 外源激素和溫度對切花菊側芽萌發(fā)與內源激素含量的影響[J].江蘇農業(yè)學報,2018,34(1):145-151.
[14]李國龍,孫亞卿,邵世勤,等.甜菜幼苗葉片滲透調節(jié)系統(tǒng)及部分激素對干旱脅迫的響應[J].江蘇農業(yè)科學,2018,46(7):80-84.
[15]談心,馬欣榮. 赤霉素生物合成途徑及其相關研究進展[J]. 應用與環(huán)境生物學報, 2008,14(4):571-577.
[16]PHILLIPS A L, WARD D A, UKNES S, et al. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis[J]. Plant Physiol, 1995,108(3):1049-1057.
[17]郭靜,王超,張宏彬,等. 系統(tǒng)發(fā)生樹構建方法綜述[J]. 計算機應用研究, 2013,30(3):647-655.
[18]李建伏,郭茂祖. 系統(tǒng)發(fā)生樹構建技術綜述[J]. 電子學報, 2006, 34(11):2047-2052.
(責任編輯:張震林)