宋 娟,楊佳慧,陸顥瓚,朱宇宬,王德波
(1.青島黃海學(xué)院智能制造學(xué)院,山東青島 266427;2.南京郵電大學(xué)電子與光學(xué)工程學(xué)院,江蘇南京 210023)
壓電式振動能量收集器通過壓電效應(yīng)實現(xiàn)振動機械能至電能的轉(zhuǎn)換,目前研究和應(yīng)用最多的壓電式振動能量收集器為基于懸臂梁結(jié)構(gòu)的器件,懸臂梁作為可自由振動的陣子,自由端附加質(zhì)量塊,懸臂梁上附有壓電材料,壓電材料極化方向的兩側(cè)附有收集電荷的電極[1]。實驗表明,一般的直形單懸臂梁結(jié)構(gòu)由于是一種線性系統(tǒng),工作頻帶較窄[2],且當(dāng)其振動方向偏離最優(yōu)軸時,能量收集器不能產(chǎn)生諧振,其轉(zhuǎn)換效率和能量采集效率會顯著減小。隨后在M. KIM等的[3]工作中,設(shè)計了一種由雙懸臂梁和質(zhì)量塊組成的柔性單平面壓電能量采集器。實驗表明,該結(jié)構(gòu)設(shè)計成功地提高了垂直方向的利用效率,但隨著振動偏離垂直軸,利用效率急劇下降,不具備良好的方向性。然后,在S. KAUSHAL的實驗中對該裝置進行了優(yōu)化,在懸臂梁[4]的自由端附加了4根懸臂梁和1個質(zhì)量塊。然而,它也不能有效地吸收多向振動能量。為了達到吸收多向振動能量的目的,采用了平行懸臂梁的組合形式。在I. TAKAHARU等的工作中,設(shè)計了彎曲和膨脹運動執(zhí)行機構(gòu)[5]。此外,在B. ANDO等的工作中,提出了一種具有兩個垂直懸臂和永磁體的雙向VEH[6]。結(jié)果表明,所報道的兩種器件均成功地提高了頻寬,并達到了吸收多向振動能量的目的。然而,由于傳統(tǒng)的懸臂梁只在正常方向吸收能量,在非垂直方向的吸收效率非常低[7-8]。同時,頻率帶寬很難集中在一個諧振頻率上。
為解決上述問題,本文提出一種基于圓弧懸臂梁的雙自由度能量收集器件,與基于直形梁的雙自由度器件對比,該器件擁有2個諧振頻率,較高的輸出電壓,以及較好的方向兼容性。
雙自由度圓弧形能量收集器如圖1所示,由2個圓弧形懸臂梁相疊而成,2個圓弧梁相互正交,整個結(jié)構(gòu)由固定橋墩、一階懸臂梁、一階質(zhì)量塊、二階懸臂梁、二階質(zhì)量塊、二階壓電材料、一階壓電材料組成。定義器件一階懸臂梁在固定橋墩處的切線方向為器件所在坐標(biāo)系的Y軸。壓電材料采用壓電模式d31極化模式,上極板為輸出電極,質(zhì)量塊和懸臂梁為金屬材質(zhì),電學(xué)連接上直接接地。懸臂梁結(jié)構(gòu)受到外界振動激勵時,懸臂梁隨著自由端的質(zhì)量塊振動,梁自身產(chǎn)生形變,2個面上的應(yīng)力發(fā)生變化,附在上方的壓電材料發(fā)生正壓電效應(yīng),實現(xiàn)機械能-電能的轉(zhuǎn)化。
1—固定橋墩;2—一階懸臂梁;3—一階質(zhì)量塊;4—二階懸臂梁;5—二階質(zhì)量塊;6—二階壓電材料;7—一階壓電材料圖1 雙自由度懸臂梁壓電能量收集器結(jié)構(gòu)示意圖
該結(jié)構(gòu)由于可自由運動的梁長度與負(fù)重質(zhì)量不同,2個懸臂梁的自由振動幅度也不同,這樣將在一個較窄頻帶內(nèi)產(chǎn)生2個諧振頻率。同時圓弧形結(jié)構(gòu)為非線性結(jié)構(gòu),在受到垂直于梁平面的振動時將不同于一般的直形梁只產(chǎn)生彎矩,而圓弧梁產(chǎn)生扭矩,其應(yīng)力變化大于彎矩帶來的應(yīng)力變化,因此圓弧梁的電能輸出是高于一般的直形梁。此外,受益于圓弧梁的非線性幾何結(jié)構(gòu),在受到非垂直于梁平面的激勵時,圓弧梁也將發(fā)生形變,產(chǎn)生相應(yīng)的扭矩,因此圓弧梁的吸收方向性好于直形梁。其中,圓弧雙自由度系統(tǒng)和直形雙自由度系統(tǒng)的應(yīng)力分布如圖2所示。
(b)X軸方向
(c)Y軸方向圖2 雙自由度圓弧構(gòu)型與直形構(gòu)型在Z軸方向、X軸方向、Y軸方向的應(yīng)力分布圖
懸臂梁在受到外部的作用力時,其動能和勢能都將發(fā)生變化。利用能量守恒定律,并且將其修改為適用于雙自由度系統(tǒng)的能量守恒方程,即[7]:
(1)
式中xn為相應(yīng)的獨立的廣義坐標(biāo),且n=1,2,3。
為了簡化分析,忽略阻尼和外力非振動作用對系統(tǒng)的影響,則雙自由度能量收集器在受到外界振動的作用下會產(chǎn)生自由振動,此時其動能和勢能[8]具有下面的形式:
(2)
通過求解上式方程,經(jīng)過化簡有[9]:
(3)
從而可以求得雙自由度圓弧形能量收集器的前兩個諧振頻率為
(4)
式中K0為單自由度系統(tǒng)的彈性系數(shù)。
由式(4)可知:單自由度能量收集器的諧振頻率高于雙自由度圓弧形能量收集器的諧振頻率。
假設(shè)質(zhì)量塊的長度為d,圓弧梁底板圓弧中點半徑為r,當(dāng)忽略雙自由度系統(tǒng)中上梁與下梁之間的相互作用時,其等效的振動結(jié)構(gòu)可以利用單自由度的振動結(jié)構(gòu)進行計算,即該系統(tǒng)各個懸臂梁的等效彈性系數(shù)相當(dāng)于單自由度系統(tǒng)的彈性系數(shù)K0。
(5)
式中:Ec為非線性構(gòu)型懸臂梁的彈性模量;Ic為懸臂梁的慣性矩。
忽略雙自由的2個懸臂梁之間的作用力僅在理想條件下可以實現(xiàn),但是在實際發(fā)生振動作用時,兩圓弧懸臂梁總是存在相互作用,因此k0≈k1≥k2。
在雙自由度系統(tǒng)中,假設(shè)系統(tǒng)的一階固有頻率為fn,PZT層電容為Cc,電阻為Rl,機械阻尼系數(shù)為ξ,Ψm為非線性構(gòu)型的特性函數(shù)[10-11]。設(shè)定系統(tǒng)質(zhì)量塊所受合外力為Fout,外激勵頻率為fout。利用微分方程和模態(tài)分析理論,根據(jù)文獻[12],可以得到單圓弧懸臂梁相對位移方程的解為
(6)
利用式(4)中得到的諧振頻率,設(shè)ωout為外激勵的角頻率。設(shè)荷載阻力為R,等效耦合系數(shù)為γ,由此可以計算出壓電層產(chǎn)生的開路電壓為
基于有限元仿真分析[12],雙自由度圓弧形壓電能量收集器較之于線形具有高性能輸出和有效吸收多方向振動能量的優(yōu)點,原因是非線性圓弧平面結(jié)構(gòu)同時具有彎矩和扭矩,導(dǎo)致懸臂梁的表面應(yīng)力分布不均勻,在不同方向同時對兩種結(jié)構(gòu)施加10 Pa的壓強,兩種結(jié)構(gòu)的表面應(yīng)力分布如圖2所示。通過與傳統(tǒng)的雙自由度直形構(gòu)型比較,雙自由度非線性圓弧平面構(gòu)型在最大振動偏移量下,振動臂表面在水平和垂直方向分別具有有效的應(yīng)力分布。其中圓弧形系統(tǒng)應(yīng)力分布大約在107數(shù)量級,而直形懸臂梁的應(yīng)力大約在105,應(yīng)力分布集中在系統(tǒng)下面的懸臂梁,且主要分布在其固定端部和內(nèi)半徑,其中從圖2(b)可以看出彎矩和扭矩在X方向振動下的共同效用,使得應(yīng)力分布更為均勻,輸出電載荷更大。
而雙自由度直線構(gòu)型的應(yīng)力分布在固定端到振動端方向上是均勻分布的,呈逐步減小的趨勢。同時直線構(gòu)型在水平振動方向上的彎矩值較大,扭矩值趨于無窮大,導(dǎo)致梁臂表面在水平振動方向上的有效應(yīng)力無窮小。此外,根據(jù)圖2中的應(yīng)力分布,雙自由度直形的有效應(yīng)力輸出低于雙自由度圓弧形的應(yīng)力輸出。
建立雙自由度圓弧形及直形懸臂梁振動能量收集器的模型,其相應(yīng)的懸臂梁結(jié)構(gòu)參數(shù)如表1、表2所示。表3為該器件的固有實際材料參量,將其設(shè)定于COMSOL中。針對系統(tǒng)的一個懸臂梁:橋墩為固定端,質(zhì)量塊為自由端。該系統(tǒng)的壓電材料下極板接地。雙自由度系統(tǒng)能量收集器材料參數(shù)如表2所示,其中PZT-5H壓電材料壓電矩陣如式(8)所示。
(8)
表1 雙自由度圓弧形壓電能量收集器結(jié)構(gòu)參數(shù)
表2 直形懸臂梁壓電能量收集器結(jié)構(gòu)參數(shù)
表3 能量收集器材料參數(shù)
利用Comsoltm多物理場仿真軟件及式(7)獲得不同頻率下的開路電壓。假設(shè)能量收集器的振動方向在Z軸方向,通過改變作用在能量收集器上的振動頻率,結(jié)果如圖3所示。其中激勵加速度設(shè)定為0.5g(g為重力加速度,南京地區(qū)為9.792 0 m/s2),頻率取值設(shè)定在2~11 Hz,從圖3可以看出,雙自由度振動系統(tǒng)在該取值范圍內(nèi)具有2個諧振頻率:圓弧形器件的諧振頻率分別為3.2 Hz和9.66 Hz,對應(yīng)的開路電壓分別為26.74 V和9.79 V。直形器件的諧振頻率分別2.9 Hz和10.62 Hz,對應(yīng)的開路電壓分別為26.22 V和8.08 V。圓弧形與直形的諧振頻率都與式(7)計算出的理論諧振頻率基本一致。
基于有限元仿真分析,得到雙自由度圓弧形壓電能量收集器在X軸和Y軸兩個方向也具備有效吸收振動能量的特性,該器件在X軸方向上的頻率響應(yīng)如圖4(a)所示,在Y軸方向上的頻率響應(yīng)如圖4(b)所示,同時直形梁在相同激勵下的頻率響應(yīng)也在同一圖形中給出。根據(jù)仿真結(jié)果圓弧形器件和直形器件的諧振頻率及對應(yīng)開路電壓如表4所示。由于雙自由直形器件只在Z軸方向振動才具有有效的吸收,即直形不具備較好的方向兼容性。
通過分析表中的數(shù)據(jù),并且結(jié)合應(yīng)力分布圖可知:雙自由度圓弧形懸臂梁具備較好的方向兼容性。其在不同方向下的頻率響應(yīng)相差不多,一階諧振頻率理論值為3.0 Hz,二階諧振頻率理論值為9.66 Hz。通過對比可知,其在Z軸方向?qū)?yīng)的理論開路電壓更大,一階諧振頻率的開路電壓理論值為26.74 V,二階諧振頻率對應(yīng)的開路電壓為9.79 V,都比其他2個方向的開路電壓大,即雙自由度圓弧系統(tǒng)在Z軸方向有更好的輸出。
圖3 雙自由度圓弧形與直形在z方向振動時的頻率響應(yīng)
(a)X軸方向
(b)Y軸方向圖4 雙自由度圓弧形能量收集器不同方向上的頻率響應(yīng)圖
表4 雙自由度壓電能量收集器多方向頻率響應(yīng)理論值
制作了雙自由度圓弧形壓電能量收集器的模型,其中金屬梁結(jié)構(gòu)和質(zhì)量塊由CNC機床加工而成,金屬骨架與PZT-5H陶瓷之間由導(dǎo)電凝膠連接,電極利用壓電陶瓷上表面的導(dǎo)電凝膠進行導(dǎo)電。
雙自由度圓弧形能量收集器測試系統(tǒng)連接框圖如圖5所示。測試用PCB焊接與雙自由度系統(tǒng)模型相連接,測試系統(tǒng)的激勵源使用YDC-100多參數(shù)電磁振動臺來產(chǎn)生激勵,利用FLUKE 8808A 5-1/2精密毫伏表及KEYSIGHT InfiniVision MSO-X 2002A示波器測量并記錄壓電材料2個電極之間的電壓有效值及其變化波形,毫伏表和示波器的探頭與PZT-5H的上表面相連接。其中振動臺可以提供Y軸以及Z軸2個方向上的振動,通過調(diào)節(jié)不同方向上作用在該系統(tǒng)的頻率值,可以測試得到能量收集器的頻率響應(yīng)。
圖5 雙自由度圓弧形能量收集器測試系統(tǒng)框圖
將器件及其測試用PCB固定在多參數(shù)振動臺上,將器件固定端的切向方向調(diào)向振動臺Y軸,首先只提供Z軸方向的振動,測試器件在Z軸方向上的頻率響應(yīng);測試完畢后只提供Y軸方向的振動,測試期間在Y軸方向上的頻率響應(yīng);測試完畢后,將器件固定端的切向方向轉(zhuǎn)為X軸,此時只提供振動臺Y軸方向的振動即可測試器件X軸方向上的頻率響應(yīng)。同時可以將2個振動方向上的振動均打開,調(diào)節(jié)2個方向上的激勵幅值即可模擬任意方向上的振動。
通過理論分析及仿真結(jié)果可知,雙自由度系統(tǒng)在Z軸方向的振動為其理想的振動方向。為了更好地測得其頻率響應(yīng)特性,我們將系統(tǒng)的振動方向固定為Z軸方向,且設(shè)定系統(tǒng)的振動激勵為0.5 g。根據(jù)理論計算結(jié)果可知:雙自由度直形結(jié)構(gòu)的前兩階頻率為2.9 Hz和10.62 Hz,雙自由度圓弧形結(jié)構(gòu)的前兩階諧振頻率為3.0 Hz和9.66 Hz,為了得到精確的實測數(shù)據(jù),在實驗中調(diào)節(jié)振動頻率在2~11 Hz進行掃頻,得到雙自由度圓弧形和直形壓電能量收集器的頻率響應(yīng)如圖3所示。
由圖3可知:雙自由度直形能量收集器的實測前2階諧振頻率為3.2 Hz和9.88 Hz;雙自由度圓弧形系統(tǒng)的前2階諧振頻率為3.2 Hz和9.86 Hz。
與仿真得到的諧振頻率對比發(fā)現(xiàn)其低于實測的諧振頻率,該差異可能是來自于實際系統(tǒng)的連接方式。由于在仿真系統(tǒng)中雙自由度兩懸臂梁之間的連接為剛性連接,而在實驗中是由導(dǎo)電銀膠進行連接,盡管為了實現(xiàn)剛性連接效果利用絕緣粘合膠進行固定,但仍存在一定的誤差,使得實際測試得到的雙自由度系統(tǒng)的諧振頻率與仿真得到的值不同。
調(diào)整振動臺激勵方向,調(diào)節(jié)頻率從2~11 Hz進行掃描,分別得到雙自由度圓弧形和直形結(jié)構(gòu)在激勵方向為X和Y軸的頻率響應(yīng)如圖4(a)和圖4(b)所示。
通過對比理論與實測結(jié)果,雙自由度圓弧形能量收集器在3個方向上的頻率響應(yīng)變化與諧振頻率值基本相近,頻率帶寬也相差不大。實測的雙自由度圓弧形及直形系統(tǒng)的諧振頻率及開路電壓如表5所示。
表5 雙自由度結(jié)構(gòu)多方向頻率響應(yīng)實測值
通過對比兩種系統(tǒng)的諧振頻率下的開路電壓可知,直形能量收集器僅在Z軸方向上具有有效的能量輸出,在其他2個方向的頻率響應(yīng)很小,可以不予考慮。相比較于直形結(jié)構(gòu),圓弧形能量收集器具有相對較高的諧振頻率及較高的頻率間距,實用性更好;同時其具備良好的方向性,在3個方向上都有有效輸出,克服了直形方向性限值的不足。
設(shè)計了一種基于圓弧梁結(jié)構(gòu)的雙自由度壓電式振動能量收集器,并對該器件在不同方向激勵下的頻率響應(yīng)做出了相應(yīng)的推導(dǎo),通過Comsol多物理場仿真軟件對該器件進行有限元分析,得到該器件受到不同方向上激勵時期間表面的應(yīng)力分布情況,同時通過實驗驗證了基于圓弧梁的雙自由度壓電式振動能量收集器相比于一般直形壓電式振動能量收集器在輸出功率和方向兼容性上優(yōu)勢。實驗結(jié)果表明:該能量收集器受到3個坐標(biāo)軸方向上的激勵時均存在2個諧振頻率,不同方向上的諧振頻率基本吻合,且各方向上均有有效的電能輸出,驗證了雙自由度圓弧形壓電能量收集器在多方向收集和寬頻帶收集上的潛力。