亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The Twin Domination Number of Cartesian Product of Directed Cycle and Path

        2020-07-08 03:25:34MaHongxia

        Ma Hongxia

        (College of Preparatory, Xinjiang Normal University, Urumqi, Xinjiang 830017, China)

        Abstract Let γ*(D)denote the twin domination number of digraph D and let Cm□Pn denote the Cartesian product of the directed cycle Cm and the directed path Pn, for m,n≥2. In this paper, we give a lower bound for γ*(Cm□Pn). Furthermore, we determine the exact values: γ*(C2□Pn)=n; γ*(C3□Pn)=n+2; γ*(C4□ γ*(C5□Pn)=2n+2.

        Key words Twin domination number Cartesian product Directed cycle Directed path

        1 Introduction

        LetD1=(V1,A1)andD2=(V2,A2)be two digraphs which have disjoint vertex setsV1={x1,x2,…,xn1} andV2={y1,y2,…,yn2} and disjoint arc setsA1andA2, respectively.The Cartesian productD=D1□D2has vertex setV=V1×V2and(xi,yj)(xi′,yj′)∈A(D)if and only if one of the following holds:

        (a)xi=xi′andyjyj′∈A2;

        (b)yj=yj′andxixi′∈A1.

        In this paper, we study the twin domination number ofCm□Pnand obtain the lower bound ofγ*(Cm□Pn).Furthermore, we determine the exact values ofγ*(Cm□Pn), whenm=2,3,4,5.

        2 Main results

        We emphasize that the vertices of a directed cycleCmare always denoted by the integers {0,1,…,m-1} and the vertices of a directed pathsPnare denoted by the integers {0,1,…,n-1}.These notations turned out to be convenient to formulate the proof of the following results.

        Letm=3k+1 andai≤k, thenai+ai+1≥2k+1.Whenai≥k+1, it is obvious thatai+ai+1≥2k+1 holds.Hence, whenm≡1(mod 3),ai+ai+1≥2k+1.

        Letm=3k+2 andai≤k, thenai+ai+1≥2k+2.Whenai≥k+1, it is easy to see thatai+ai+1≥2k+2.Thus, we haveai+ai+1≥2k+2 form≡2(mod 3).

        ProofLetSbe a twin dominating set ofCm□Pnwithn≥4.We apply the following algorithm:I=?,J=?,i=1;

        Whilei≤n-3 do

        ifai≥k+1 then

        I=I∪{i};i=i+1

        else

        J=J∪{i,i+1};i=i+2

        end if

        end while.

        From the above algorithm, we see that wheni=n-1 ori=n-2, the algorithm will stop.Hence we get two disjoint setsI,Jsuch that either {0,1,…,n-1}={0}∪I∪J∪{n-1} or {0,1,…,n-1}={0}∪I∪J∪{n-2,n-1}.

        Therefore, we have

        (1)

        or

        (2)

        We consider the following three cases.

        Case 1m≡0(mod 3).

        Subcase 1.11∈I.

        In the second case we get

        Subcase 1.21?I.

        Thusa1≤k.So we obtain thata0≥2kby Lemma 2.1.Then by(1)

        According to(2), we get that

        |S|≥2k+|I|(k+1)+(n-3-|I|)k+3k

        Case 2m≡1(mod 3).

        Similarly, if 1∈I, then

        Otherwise

        If 1?I, we can obtain thata0≥2k+1 by Lemma 2.1.Thus,

        Case 3m≡2(mod 3).

        We now investigate the twin domination number ofC2□Pn.

        It is clear thatγ*(C2□P2)=2 andγ*(C2□P3)=3.Whenn≥4, by Theorem 2.3, we haveγ*(C2□Pn)≥n.We define a setS1={(0,j)|j∈{0,1,…,n-1}}.It is easy to see thatS1is a twin dominating set ofC2□Pnand |S1|=n.Therefore we obtain the following Theorem.

        Theorem 2.4Letn≥2, thenγ*(C2□Pn)=n.

        We now consider the twin domination number of Cartesian productC3□Pnand define a setS2(see Figure 1)as:S2={(0,0),(2,0);(0,j)j≡0(mod 3);(1,j)j≡1(mod 3);(2,j)j≡2(mod 3), forj≥1}.Note that |S2|=n+1.

        Figure 1 The set S2

        Theorem 2.5Letn≥2, thenγ*(C3□Pn)=n+2.

        ProofIt is easy to calculate thatγ*(C3□P2)=4 andγ*(C3□P3)=5.Letn≥4, by Theorem 2.3, we getγ*(C3□Pn)≥n+2.

        Note thatS2∪{(0,n-1)} is a twin dominating set ofC3□Pn, whenn≡0,2(mod 3).Similarly,S2∪{(2,n-1)} is a twin dominating set ofC3□Pn, whenn≡1(mod 3).Thusγ*(C3□Pn)=n+2.

        Figure 2 The set S3

        We consider the twin domination number of Cartesian productC5□Pn, and define a setS4(see Figure 3)as:S4={(0,0),(2,0),(4,0),(0,j),(2,j)j≡0(mod 3);(1,j),(3,j)j≡1(mod 3);(2,j),(4,j)j≡2(mod 3), forj≥1}.Note that |S4|=2n+1.

        Figure 3 The set S4

        It is easy to see thatγ*(C5□P2)=6 andγ*(C5□P3)=8.Whenn≥4, we obtain thatγ*(C5□Pn)≥2n+2 by Theorem 2.3.

        Note thatS4∪{(4,n-1)} is a twin dominating set ofC5□Pn, whenn≡1,2(mod 3).Similarly,S4∪{(0,n-1)} is a twin dominating set ofC5□Pn, whenn≡0(mod 3).Therefore we can obtain the following Theorem.

        Theorem 2.7Letn≥2, thenγ*(C5□Pn)=2n+2.

        99久久婷婷国产综合亚洲| 亚洲视频中文字幕更新| 中文字幕一区乱码在线观看 | 日韩欧美aⅴ综合网站发布| 亚洲av无码av日韩av网站| 91热久久免费精品99| 亚洲av网站在线免费观看| 丰满少妇高潮惨叫久久久| 国产自偷自偷免费一区| 亚洲AV无码久久精品国产老人| 精品久久免费国产乱色也| 中国杭州少妇xxxx做受| 中文人妻av久久人妻18| 91久久国产综合精品| 日韩免费一区二区三区在线| 青青草原亚洲在线视频| 亚洲精品第一页在线观看| 国产精品美女久久久久久| 亚洲红怡院| 日本一区二区啪啪视频| 欧美性生交大片免费看app麻豆 | 亚洲av综合永久无码精品天堂| 欧美精品一区视频| 国产精品三级1区2区3区| 懂色av一区二区三区尤物| 欧美大肥婆大肥bbbbb| 久久这里都是精品一区| 国产午夜福利小视频在线观看| 熟女人妇 成熟妇女系列视频| 东京热久久综合久久88| 久久久亚洲日本精品一区| 蜜桃精品人妻一区二区三区| 国产麻豆精品久久一二三| 禁止免费无码网站| 曰日本一级二级三级人人| 人妻熟女一区二区三区app下载| 中文字幕不卡在线播放| 中文字幕色一区二区三区页不卡| 中文字幕人乱码中文字幕| 久久精品国产9久久综合| 女优视频一区二区三区在线观看|