姜利剛 童毓華
[摘要] 光學(xué)相干斷層掃描血管造影通過連續(xù)探測同一位置的血管內(nèi)紅細(xì)胞運(yùn)動(dòng),生成三維血流信息,獲取高分辨率的眼底血管圖像。分頻幅去相關(guān)血流成像演算技術(shù),減少了因眼球軸向運(yùn)動(dòng)和組織運(yùn)動(dòng)產(chǎn)生的噪點(diǎn)及偽影,優(yōu)化了信噪比,使得對毛細(xì)血管網(wǎng)的檢測更具有連貫性。光學(xué)相干斷層掃描血管造影目前已應(yīng)用于糖尿病性視網(wǎng)膜病變、年齡相關(guān)性黃斑變性、視網(wǎng)膜血管阻塞、青光眼、中心性漿液性脈絡(luò)膜病變等疾病的診療中,具有廣闊的臨床應(yīng)用及科研前景。本文就光學(xué)相干斷層掃描血管造影在眼底微血管定量分析中的應(yīng)用作綜合性論述。
[關(guān)鍵詞] 光學(xué)相干斷層掃描血管造影;糖尿病性視網(wǎng)膜病變;年齡相關(guān)性黃斑變性;視網(wǎng)膜血管阻塞;青光眼;中心性漿液性脈絡(luò)膜病變
[中圖分類號] R774.1 ? ? ? ? ?[文獻(xiàn)標(biāo)識(shí)碼] A ? ? ? ? ?[文章編號] 1673-9701(2020)12-0184-09
[Abstract] Optical coherence tomography angiography generates three-dimensional blood flow information by continuously detecting the movement of red blood cells in the same location, and obtains high-resolution images of fundus vessels. The split-spectrum amplitude decorrelation angiography(SSADA) reduces the noise and artifacts caused by the axial movement of the eyeball and tissue movement, optimizes the signal-to-noise ratio, and makes the detection of the capillary network more consistent. Optical coherence tomography angiography has been applied to the diagnosis and treatment of diseases such as diabetic retinopathy, age-related macular degeneration, retinal vascular obstruction, glaucoma, and central serous choroidal disease. It has broad clinical application and scientific research prospects. This article makes a comprehensive discussion on the application of optical coherence tomography angiography in the quantitative analysis of fundus microvasculature.
[Key words] Optical coherence tomography angiography; Diabetic retinopathy; Age-related macular degeneration; Retinal vascular obstruction; Glaucoma; Central serous choroidal disease
光學(xué)相干斷層掃描(optical coherence tomography,OCT)是一種非侵入性的成像方式,可以對視網(wǎng)膜進(jìn)行詳細(xì)地結(jié)構(gòu)視覺化,最早的報(bào)道見于1991年Huang D博士[1]發(fā)表在Science的關(guān)于OCT的論文,其敘述了OCT的基本原理,與B型超聲波很相似,區(qū)別在于它是探測光的反射而不是探測聲的反射。OCT 有助于臨床醫(yī)生發(fā)現(xiàn)和監(jiān)測視網(wǎng)膜血管疾病中液體的滲出,但無法直接發(fā)現(xiàn)毛細(xì)血管無灌注區(qū)和新生血管,臨床上常用熒光素眼底血管造影(fundus fluorescein angiography,F(xiàn)FA)或吲哚箐綠血管造影檢查(Indocyanine green angiography,ICGA)來檢測這些變化,而這兩項(xiàng)屬于侵入性檢查方式,需要注射造影劑,對身體造成不可避免的損傷。為克服傳統(tǒng)OCT無法直接提供血流信息的弊端以及眼底微血管侵入性檢查帶來的副作用,光學(xué)相干斷層掃描血管造影(optical coherence tomography angiography,OCTA)逐漸被開發(fā),通過連續(xù)探測同一位置的血管內(nèi)紅細(xì)胞運(yùn)動(dòng)[2],生成三維血流信息,獲取高分辨率的眼底微血管圖像。分頻幅去相關(guān)血流成像(split-spectrum amplitude-decorrelation angiography,SSADA)演算技術(shù),在一定程度上減少了因眼球軸向運(yùn)動(dòng)和組織運(yùn)動(dòng)產(chǎn)生的噪點(diǎn)及偽影,優(yōu)化了信噪比,使得對眼底微血管的檢測更具有連貫性。OCTA可以對區(qū)域血流進(jìn)行量化,血流指數(shù)(flow indices,F(xiàn)I)和血管密度(vessel density,VD)[3-5]可以從分層掃描(en-face)最大的投射血流圖上確定。FI在選定的區(qū)域以平均去相關(guān)值計(jì)算,VD在選定的區(qū)域以血管和微血管系統(tǒng)所占的面積百分比來計(jì)算。目前OCTA已經(jīng)成為一種非侵入性的策略,是OCT的功能擴(kuò)展,可視化眼底微血管系統(tǒng),而無需使用外源性靜脈注射染料[6-7]。最重要的是能夠量化VD、FI以及黃斑中心凹無血管區(qū)(foveal avascular zone,F(xiàn)AZ)的面積[8-14],具有廣闊的臨床應(yīng)用及科研前景,下面就OCTA在眼底微血管定量分析中的應(yīng)用進(jìn)行綜合性論述。
1 OCTA 在眼底微血管中的定量分析
1.1 糖尿病性視網(wǎng)膜病變(diabetic retinopathy,DR)
1.1.1 DR臨床特點(diǎn)及OCTA的優(yōu)勢 ?DR是50歲以上人群主要致盲的眼病之一,早期可能無明顯癥狀,隨著疾病進(jìn)展會(huì)導(dǎo)致嚴(yán)重的視力喪失。DR的主要病理學(xué)特點(diǎn)是微血管瘤、毛細(xì)血管無灌注區(qū)、新生血管、視網(wǎng)膜毛細(xì)血管迂曲擴(kuò)張、FAZ擴(kuò)大、旁中心凹毛細(xì)血管區(qū)域增加、脈絡(luò)膜毛細(xì)血管層異常改變等。根據(jù)DR發(fā)展階段和嚴(yán)重程度,可分為非增殖性糖尿病性視網(wǎng)膜病變(non-proliferative diabetic retinopathy,NPDR)和增殖性糖尿病性視網(wǎng)膜病變(proliferative diabetic retinopathy,PDR)。DR主要威脅視力的并發(fā)癥是糖尿病性黃斑病變,包括糖尿病性黃斑水腫(diabetic macular edema,DME)和糖尿病性黃斑缺血(diabetic macular ischemia,DMI)以及PDR引起的并發(fā)癥——玻璃體出血和視網(wǎng)膜脫離。臨床上DR的診斷金標(biāo)準(zhǔn)是FFA,通過觀察FFA圖像上熒光造影劑的充盈和滲漏情況,了解眼底微血管形態(tài)結(jié)構(gòu)的改變。數(shù)字視網(wǎng)膜眼底圖像分析已被證明能夠在常規(guī)DR篩查中檢測早期DR和DME,盡管它具有很高的敏感性和特異性,但陰性預(yù)測值較低[15]。而隨著OCTA技術(shù)不斷地發(fā)展,其可提供無創(chuàng)、快捷、定量的檢查,已廣泛應(yīng)用于臨床,能夠獲得視網(wǎng)膜脈管系統(tǒng)的三維圖像[16-17],顯示視網(wǎng)膜不同層面的血流[18],觀察視盤周圍毛細(xì)血管網(wǎng),最重要的是可以利用OCTA定量分析眼底微血管的改變。
1.1.2 OCTA定量評估眼底微血管及預(yù)測DR分級 ? ?Ting等[19]使用OCTA評估2型糖尿病患者的視網(wǎng)膜微血管系統(tǒng),定量監(jiān)測糖尿病患者視網(wǎng)膜微血管的變化,評估高血壓、高脂血癥、吸煙和腎功能不全等全身血管危險(xiǎn)性因素對DR微脈管系統(tǒng)的影響,但是,這些發(fā)現(xiàn)與視力的相關(guān)性目前仍未知,需要在更多患者中開展進(jìn)一步的研究加以證實(shí)。同年Durbin等[20]評估50只眼的視網(wǎng)膜血管,獲取了VD以及與DR嚴(yán)重程度相關(guān)的毛細(xì)血管閉合的定量數(shù)據(jù),并且不需要眼底圖像就可以對DR進(jìn)行診斷和監(jiān)測,但其未對外部干擾因素進(jìn)行分析,比如糖尿病病程長短、治療、性別以及血糖控制情況,另外,同一個(gè)體的兩只眼之間相關(guān)性也未做明確闡述。Johannesen等[21]對8項(xiàng)研究DR患者FAZ面積的變化進(jìn)行了系統(tǒng)評價(jià),其中7項(xiàng)研究發(fā)現(xiàn),NPDR患者FAZ面積增大,6項(xiàng)關(guān)于DR的OCTA研究發(fā)現(xiàn),與健康對照組相比,PDR患者FAZ面積增大,黃斑中心凹毛細(xì)血管灌注減少,而且DR的嚴(yán)重程度與FAZ面積呈正相關(guān)[22]。
OCTA可以更容易、更準(zhǔn)確地測量FAZ面積,Takase等[23]發(fā)現(xiàn),與傳統(tǒng)手動(dòng)測量相比,OCTA能夠快速、準(zhǔn)確地計(jì)算出FAZ面積,該研究不足之處是未對DR進(jìn)行系統(tǒng)分級,而最近一項(xiàng)回顧性研究[24]在DR分級方面做了相關(guān)論述,74例糖尿病患者的98只眼通過OCTA測量VD來早期檢測非增殖性DR毛細(xì)血管密度的變化,結(jié)果是可靠的。VD的定量評估對于預(yù)測分級、選擇治療方案和隨訪治療效果至關(guān)重要,并可預(yù)測DR的進(jìn)展[25]。
1.1.3 OCTA或許可以為早期診斷DR提供定量數(shù)據(jù) ? ?Simonett等[26]對NPDR和健康對照組使用OCTA自動(dòng)定量軟件計(jì)算表層視網(wǎng)膜毛細(xì)血管叢(superficial retinal capillary plexus,SCP)和深層視網(wǎng)膜毛細(xì)血管叢(deep retinal capillary plexus,DCP)的黃斑VD和FAZ面積,分析得出DM1患者的DCP的黃斑VD明顯降低,而SCP的黃斑VD、FAZ面積沒有顯著差異,提示DCP的灌注異?;蛟S是DM1的早期表現(xiàn),與健康對照組相比,糖尿病患者的SCP和DCP均降低,而DCP降低更大[27-28],我們認(rèn)為DCP血管參數(shù)的測量存在一定的誤差,淺表視網(wǎng)膜血管的投射偽影會(huì)干擾深部血流信號,手工校正存在一定的主觀性,需要更大的樣本量及相關(guān)研究進(jìn)一步論證。OCTA對視網(wǎng)膜非灌注區(qū)的定量分析可能有助于早期發(fā)現(xiàn)和監(jiān)測糖尿病和DR的進(jìn)展[29-30],并且能夠量化黃斑區(qū)血流灌注[31],便于我們對疾病進(jìn)行分期分類,從而更好地了解DR的病理生理機(jī)制及有助于指導(dǎo)治療[32]。
1.2 年齡相關(guān)性黃斑變性(age-related macular degeneration,AMD)
1.2.1 AMD病理學(xué)特點(diǎn)及分型 ?AMD是60歲以上老人不可逆性視力喪失的主要原因,為黃斑區(qū)結(jié)構(gòu)的衰老性改變。主要表現(xiàn)為視網(wǎng)膜色素上皮細(xì)胞對視細(xì)胞外節(jié)盤膜吞噬消化能力下降,分為滲出性和非滲出性兩種形式。非滲出性AMD的特征是黃斑區(qū)玻璃膜疣、色素紊亂及地圖樣萎縮,滲出性AMD是由于脈絡(luò)膜新生血管膜(Choroidal neovascularization,CNV)的形成而發(fā)生的,導(dǎo)致視網(wǎng)膜色素上皮層(retinal pigment epithelium,RPE)下或感覺層視網(wǎng)膜下液體滲漏和出血,根據(jù)與RPE位置關(guān)系可分為3種類型,Ⅰ型CNV起源于脈絡(luò)膜,主要在玻璃膜(Bruch's membrane)和視網(wǎng)膜色素上皮之間;Ⅱ型CNV位于視網(wǎng)膜色素上皮之上;而Ⅲ型CNV即視網(wǎng)膜內(nèi)型,是Ⅰ型和Ⅱ型的混合型。嚴(yán)重的視力喪失主要?dú)w因于兩個(gè)過程:非滲出性AMD晚期發(fā)生地圖樣萎縮和CNV的形成[33]。
1.2.2 OCTA定量分析滲出性AMD中CNV的血流量和面積 ?2014年Jia等[34]進(jìn)行了一項(xiàng)觀察性橫斷面研究,使用OCTA對5例滲出性AMD的眼睛和5例年齡匹配的正常對照組進(jìn)行掃描,提供了CNV的詳細(xì)圖像和數(shù)據(jù),獲取有關(guān)CNV血流量和面積的定量信息,結(jié)果具有顯著差異,其還對滲出性AMD的發(fā)病機(jī)制做了相關(guān)闡述,而該研究尚存在不足之處,比如缺乏足夠的樣本量,不同種族及個(gè)體之間具有差異。隨后,多項(xiàng)研究擴(kuò)大樣本量[35-38]相繼論證OCTA具有定量分析三種CNV的能力,敏感性從50%~100%不等。與FFA和ICGA相比,OCTA是一種無創(chuàng)的成像技術(shù),是評估CNV的有價(jià)值工具之一,在檢測滲出性AMD以及評估治療效果方面迅速發(fā)展[39]。Coscas等[40]報(bào)道關(guān)于玻璃體腔內(nèi)注射抗血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)前后,比較CNV面積的變化,抗VEGF治療后CNV面積在一定程度上減少,大量研究[41-45]同樣證實(shí)了上述觀點(diǎn),并且Ⅱ型CNV面積的減少大于Ⅰ型CNV,或許是由于抗VEGF藥物不易滲透至RPE層下,導(dǎo)致對Ⅱ型CNV的療效更好。由此可見,OCTA可以對脈絡(luò)膜毛細(xì)血管微血管進(jìn)行無創(chuàng)監(jiān)測,尤其對于CNV的識(shí)別及評估抗VEGF治療的療效,目前抗VEGF治療已廣泛應(yīng)用于臨床,而不同抗VEGF藥物的療效也存在一定差異,通過OCTA可進(jìn)一步定量分析各種抗VEGF藥物的療效。
1.2.3 OCTA在非滲出性AMD定量分析中的應(yīng)用 ? ?OCTA在非滲出性AMD中也得到了進(jìn)一步的發(fā)展。Shin等[46]使用OCTA評估83只干性AMD眼和83只年齡和性別相匹配的正常眼,定量分析了VD、FAZ和灌注密度(perfusion density,PD),結(jié)果顯示了非滲出性AMD患者的黃斑中心凹微循環(huán)的改變,VD、PD較對照組減少,而FAZ面積增大,同時(shí),年齡、最佳矯正視力(best corrected visual acuity,BCVA)、中央黃斑厚度(central macular thickness,CMT)和神經(jīng)節(jié)細(xì)胞內(nèi)叢狀層(ganglion cell-Inner plexiform layer,GC-IPL)厚度與整個(gè)區(qū)域的VD和PD可能存在相關(guān)性,提示了在分析非滲出性AMD患者的OCTA數(shù)據(jù)時(shí),應(yīng)考慮年齡、BCVA、CMT和GC-IPL厚度的影響,尤其在非滲出性AMD患者的VD和PD臨床評估期間,GC-IPL厚度特別重要。此觀點(diǎn)與Waheed[47]一致。雖然非滲出性AMD引起的微血管變化使SCP灌注減少,從而缺血導(dǎo)致GC-IPL變薄,而由于是橫斷面研究,我們無法確定視網(wǎng)膜內(nèi)側(cè)變薄與黃斑中心凹微血管灌注減少之間的因果關(guān)系,因此應(yīng)進(jìn)行其他前瞻性縱向研究以進(jìn)一步探討這種相關(guān)性。
非滲出性AMD的另一個(gè)重要發(fā)現(xiàn)是檢測到靜止的、非滲出的CNV[48-51]。ICGA下可觀察到這些病變的存在[52-53],但檢出率較低,而OCTA可以迅速準(zhǔn)確地識(shí)別,值得一提的是玻璃疣和RPE層脫離的投影偽影很容易被誤解為CNV,因此必須對OCTA圖像進(jìn)行詳細(xì)地分析,以避免出現(xiàn)假陽性圖像,另外不要對其進(jìn)行貿(mào)然處理,這些無癥狀的病灶可能給RPE和感光細(xì)胞提供營養(yǎng),抗VEGF治療可能誘發(fā)黃斑萎縮。OCTA可以提供新血管膜的結(jié)構(gòu)、大小、位置和血流的詳細(xì)可視化,在用常規(guī)成像進(jìn)行檢測之前,對識(shí)別非滲出性“亞臨床CNV”病變具有重要意義。
1.3 視網(wǎng)膜血管阻塞
1.3.1 視網(wǎng)膜血管阻塞中OCTA的優(yōu)勢 ?視網(wǎng)膜結(jié)構(gòu)精細(xì),功能復(fù)雜,易受到自身血管疾病和全身血管性疾病的影響,最典型的就是視網(wǎng)膜動(dòng)靜脈阻塞。視網(wǎng)膜動(dòng)脈阻塞(retinal artery occlusion,RAO)是損害視力的急性發(fā)作的嚴(yán)重眼病,而視網(wǎng)膜靜脈阻塞(retinal vein occlusion,RVO)是繼DR后引起視網(wǎng)膜血管疾病的第二常見原因,并且是視力喪失的常見原因。OCTA提供了視網(wǎng)膜毛細(xì)血管叢的詳細(xì)圖像和病理結(jié)構(gòu)的定量數(shù)據(jù),具有不同的血管模式,可對視網(wǎng)膜血管疾病進(jìn)行鑒別[54],還可以顯示幾乎所有的FFA結(jié)果,例如急性和慢性RVO的特征,毛細(xì)血管灌注減少,黃斑水腫,血管擴(kuò)張,F(xiàn)AZ面積擴(kuò)大[55-56]。OCTA技術(shù)可作為RVO 診斷和隨訪的臨床工具,提供以前FFA和ICGA無法觀察到的血管細(xì)節(jié)以及定量的眼底微血管數(shù)據(jù)。
1.3.2 OCTA定量評估及分析抗VEGF藥物的療效 ?Winegarner[57]觀察到視網(wǎng)膜中央靜脈阻塞(central retinal vein occlusion,CRVO)眼玻璃體腔內(nèi)注射阿柏西普后,SCP、DCP血流灌注增加,BCVA與SCP、DCP的VD相關(guān),但其無法直接比較治療前后的血流灌注參數(shù),需要進(jìn)一步的前瞻性研究來確定維持視網(wǎng)膜灌注所需的最佳抗VEGF治療劑量。同年Sellam[58]進(jìn)一步評估RVO合并黃斑水腫患者玻璃體腔內(nèi)注射抗VEGF藥物的療效,通過OCTA定量監(jiān)測抗VEGF治療前后血管血流量的變化,結(jié)果顯示抗VEGF治療后患者的SCP和DCP血流灌注顯著改善,F(xiàn)AZ面積也較前變小,改善了視網(wǎng)膜血流量,特別是在視網(wǎng)膜深層[59],但有一點(diǎn)值得注意的是,該項(xiàng)研究中的淺表視網(wǎng)膜血流會(huì)干擾OCTA識(shí)別深部血流信號,導(dǎo)致DCP血流密度參數(shù)存在一定誤差,希望在未來的技術(shù)開發(fā)中,可以對分層定界識(shí)別算法進(jìn)行充分完善,以提高精確度。
1.3.3 OCTA早期定量監(jiān)測視網(wǎng)膜血管阻塞的進(jìn)展 ? ?Wakabayashi等[60]通過OCTA定量分析證實(shí)了黃斑水腫患者的SCP和DCP的VD均降低。此外,VD及FAZ面積大小與視覺功能密切相關(guān)[61-63]。Chung等[64]通過比較RVO的OCTA和FFA成像特點(diǎn),肯定了其在臨床管理中的作用,雖然 FFA可以提供周邊視網(wǎng)膜的血管成像,但OCTA在評估FAZ面積和毛細(xì)血管非灌注方面更為精確[65]??梢?,OCTA具有精確檢測眼底異常微血管的能力,以達(dá)到早期診斷和預(yù)防疾病的目的,在臨床上完全可以應(yīng)用OCTA檢測記錄視網(wǎng)膜VD、FAZ面積等指標(biāo)來早期監(jiān)測疾病的進(jìn)展[66-68],對于監(jiān)測視網(wǎng)膜動(dòng)脈閉塞臨床過程中血管流量的變化具有重要意義[69]。Bonini等[70]描述了RAO患者的視網(wǎng)膜微脈管系統(tǒng),并認(rèn)為OCTA可以準(zhǔn)確識(shí)別不同層面的視網(wǎng)膜毛細(xì)血管,足夠敏感地評估黃斑缺血的程度并監(jiān)測RAO過程中的血管流量變化。而一項(xiàng)回顧性觀察性研究[71]納入19名RAO患者(發(fā)病7天內(nèi))和19名年齡和性別匹配的正常對照個(gè)體,對所有患者進(jìn)行全面的眼科檢查和OCTA檢查。RAO患者SCP、DCP的PD顯著低于對側(cè)眼睛,CMT與視網(wǎng)膜中央動(dòng)脈阻塞(entral retinal artery occlusion,CRAO)患者的BCVA相關(guān),另外,還發(fā)現(xiàn)與健康對照個(gè)體相比,RAO正常眼SCP的PD降低。我們猜測在RAO發(fā)作之前可能存在慢性微血管變化,這些微血管變化可能導(dǎo)致RAO發(fā)作,甚至導(dǎo)致其他心腦血管事件的發(fā)生。因此,SCP中PD的降低可能是RAO的潛在預(yù)測因素。Seknazi等[72]通過OCTA對65只RVO眼的FAZ面積以及毛細(xì)血管血流密度與FFA周邊無灌注區(qū)進(jìn)行相關(guān)性分析,發(fā)現(xiàn)FAZ面積與FFA周邊無灌注區(qū)呈正相關(guān),DCP的PD與FFA周邊無灌注區(qū)呈負(fù)相關(guān),說明視網(wǎng)膜缺血狀態(tài)與FAZ面積呈正相關(guān),與DCP的PD呈負(fù)相關(guān),但沒有對FAZ面積與PD進(jìn)行直接相關(guān)性比較分析。關(guān)于FAZ面積與VD及視力的相關(guān)性有待更進(jìn)一步的前瞻性研究和足夠的樣本量來驗(yàn)證,而最近從FAZ導(dǎo)出了兩個(gè)附加參數(shù):非圓度指數(shù)(Acircularity Index,AI)和FAZ范圍300 μm寬度內(nèi)的血流密度(FD-300)。AI為FAZ的周長除以相等面積的標(biāo)準(zhǔn)圓形周長[73-75],用于評估FAZ的圓形性,AI比FAZ更為敏感,CRAO和BRAO患者的AI較高。FD-300代表FAZ周圍300 μm寬度內(nèi)的血流密度,CRAO和BRAO患者中的FD-300與健康對照組相比也有所降低[76],隨著更多相關(guān)性研究的陸續(xù)報(bào)道[77-80],上述兩個(gè)參數(shù)可提供更深入、更詳細(xì)的血管信息,到達(dá)精確檢測眼底微血管改變及早期診斷疾病的目的。
1.4 青光眼(Glaucoma)
1.4.1 青光眼發(fā)病機(jī)制及視乳頭血流特點(diǎn) ?青光眼是全世界不可逆性失明的主要原因,眼內(nèi)壓(intraocular pressure,IOP)升高被認(rèn)為是青光眼發(fā)生和發(fā)病的主要危險(xiǎn)因素,而且視乳頭及其周圍灌注減少、血管調(diào)節(jié)紊亂等其他血管因素在青光眼中也發(fā)揮著重要作用[81-84]。眼部血流功能障礙與青光眼發(fā)病機(jī)制相關(guān)的證據(jù)已有多年的研究[85-87],視乳頭的血供除表層來自視網(wǎng)膜中央動(dòng)脈外,其余篩板前區(qū)、篩板區(qū)和篩板后區(qū)主要來自睫狀后短動(dòng)脈。其中篩板前區(qū)血供,除直接來自睫狀后短動(dòng)脈的分支及少數(shù)脈絡(luò)膜動(dòng)脈分支外,還由Zinn環(huán)發(fā)出的脈絡(luò)膜動(dòng)脈分支供應(yīng),視網(wǎng)膜中央動(dòng)脈與睫狀后短動(dòng)脈系統(tǒng)分別在篩板后區(qū)軟膜血管網(wǎng)和眼外段視神經(jīng)內(nèi)吻合[88]。
1.4.2 傳統(tǒng)檢查方法的局限性及OCTA的優(yōu)勢 ?既往研究中已經(jīng)嘗試了多種技術(shù)來定量分析視乳頭及其周圍的血流量,F(xiàn)FA和ICGA均顯示青光眼眼底微血管血流發(fā)生改變,但只是定性而非定量的評估,并且檢查具有侵入性,具有嚴(yán)重不良反應(yīng)的風(fēng)險(xiǎn)。此外,兩種模式相對較低的分辨率和二維的定性評估限制定位異常血管的能力。磁共振血管造影理論上可以用于對視乳頭進(jìn)行三維定量評估,但在臨床實(shí)用性方面存在明顯局限性,并且難以達(dá)到所需檢測視神經(jīng)微循環(huán)缺陷的詳細(xì)程度。激光流量計(jì)研究已經(jīng)發(fā)現(xiàn)了青光眼和正常對照組之間的血流差異,但是該技術(shù)的臨床應(yīng)用受到變異性的限制。彩色多普勒超聲檢查在分辨率方面受到較大限制,只能用于檢查眼睛的大血管。OCTA是一種新興技術(shù),可以提供詳細(xì)的可量化參數(shù),從而可以更客觀地評估視乳頭及其周圍的微血管。
1.4.3 OCTA定量分析視乳頭及其周圍血流量 ?Jia等[89]于2012年首次在黃斑部和視乳頭及其周圍測試SSADA算法,發(fā)現(xiàn)與其他算法相比,它顯著提高流量檢測的信噪比。2014年,Jia等[90]又使用OCTA定量分析視乳頭及其周圍血流量,注意到青光眼與健康眼相比,視乳頭周圍視網(wǎng)膜血流量降低,青光眼患者視乳頭周圍血流量約減少25%。后來上述觀點(diǎn)在一組83例青光眼患者和74例同齡健康對照組比較后得到了進(jìn)一步論證[91],而該研究的局限性在于其沒有評估糖尿病、系統(tǒng)性高血壓、眼灌注壓、抗青光眼藥物與視乳頭及其周圍血管密度的相關(guān)性。因此不能排除全身性疾病、抗青光眼藥物對視乳頭及其周圍血管密度測量的影響。Park等[92]比較正常眼壓性青光眼和高眼壓性青光眼患者的視乳頭及其周圍血管密度,發(fā)現(xiàn)高眼壓性青光眼患者視乳頭周圍血管密度降低,而正常眼壓性青光眼和健康對照組之間沒有差異。而最近一項(xiàng)研究報(bào)道[93],與年齡和性別相匹配的正常人相比,正常眼壓性青光眼和高眼壓性青光眼患者的視乳頭及其周圍血管密度均降低,而正常眼壓性青光眼組顯著降低,造成兩種研究結(jié)果不一致的原因尚不清楚,但是,這種不一致可能歸因于各個(gè)研究參與者的種族、年齡、OCTA設(shè)備和青光眼嚴(yán)重程度的差異。
1.5 中心性漿液性脈絡(luò)膜病變(central serous chorioretinopathy,CSC)
1.5.1 CSC發(fā)病機(jī)制 ?CSC是一種常見的獲得性黃斑病變,本病發(fā)病機(jī)制過去有人認(rèn)為是炎癥刺激和血管痙攣等因素造成,目前公認(rèn)的發(fā)病機(jī)制是由于RPE層細(xì)胞屏障功能的受損,而最近Shinojima等[94]的研究指出,CSC 的發(fā)病機(jī)制或許另有原因,OCTA 可為闡明CSC發(fā)病機(jī)制提供重要的信息,其特征為后極部視網(wǎng)膜下積液,形成黃斑部視網(wǎng)膜神經(jīng)上皮淺脫離,因RPE層屏障破壞導(dǎo)致液體外流到視網(wǎng)膜下間隙。慢性CSC 患者中可觀察到多種晚期并發(fā)癥,如CNV、視網(wǎng)膜囊性改變、視網(wǎng)膜下纖維化等,都可導(dǎo)致永久性視力損害。
1.5.2 OCTA定量評估脈絡(luò)膜毛細(xì)血管(Choroidal capillaries,CC)血流量 ?最近相關(guān)研究[95]對CSC患者的CC血流量進(jìn)行定量評估,發(fā)現(xiàn)CSC患者中的血管異常,CC血流量灌注不足,提示原發(fā)性脈絡(luò)膜病變中或許存在著缺血性過程,因此可以通過OCTA 定量分析CC血流量來評估HD-PDT 療法對CSC的治療效果。Fujita等[96]闡述通過觀察6只患有慢性CSC患眼,在半量光動(dòng)力療法(half-dose verteporfin photodynamic therapy,HD-PDT)治療之前、治療1周后和治療1個(gè)月后分別用OCTA自動(dòng)定量分析,比較HD-PDT治療前后CC血流量面積的差異。結(jié)果顯示慢性 CSC在經(jīng)過HD-PDT治療后,異常血流量逐漸減少,在HD-PDT治療1個(gè)月后不規(guī)則區(qū)域的脈絡(luò)膜毛細(xì)血管血流量減少,與脈絡(luò)膜厚度減少一致,該研究的局限性在于隨訪時(shí)間較短以及樣本量尚有不足。隨后,Xu等[97]便將28例CSC患者共33只眼納入研究,通過OCTA計(jì)算HD-PDT治療前后CC的血流量差異,觀點(diǎn)一致,并指出PDT治療后會(huì)導(dǎo)致短期CC灌注不足。同樣,該研究HD-PDT治療后的隨訪時(shí)間較短,缺乏高精確度的定量軟件對異常血流進(jìn)行系統(tǒng)分析。OCTA進(jìn)行的縱向觀察或許有助于確定CSC是否轉(zhuǎn)變?yōu)橄⑷鈽用}絡(luò)膜血管病變(polypoidal choroidal vasculopathy,PCV),但是需要進(jìn)行更大樣本量的研究,以加深我們對這種診斷方法的了解以及收集更多信息以驗(yàn)證此成像技術(shù)在臨床實(shí)踐中的應(yīng)用。
2 OCTA目前的局限性與展望
OCTA是一種新興的有前景的成像技術(shù),可以顯示眼底微血管和計(jì)算眼底微血管血流參數(shù),作為目前眼科研究和臨床實(shí)踐的新型診斷工具,可以幫助彌補(bǔ)其他成像技術(shù)的不足,以建立診斷和監(jiān)測疾病進(jìn)展,最值得一提的就是其可以定量分析眼底微血管的VD和FI,相比FFA或ICGA的定性觀察,OCTA實(shí)現(xiàn)了重大突破。
雖然OCTA具有快速圖像采集、高重復(fù)性和無侵入性等優(yōu)勢,但這種新的成像方式仍然存在許多局限性:①當(dāng)前可用的掃描范圍有限,對周邊部視網(wǎng)膜無法評估,也無法與標(biāo)準(zhǔn)和超廣角的FFA和ICGA相提并論[98],掃描范圍越小,采集速度越快,分辨率越高,但是,掃描范圍越小,病變可能位于其外部且檢出率越低。②屈光介質(zhì)和低固視能力:玻璃體渾濁、玻璃體積血、白內(nèi)障、眼球震顫等均能影響成像的質(zhì)量和效率。③由于檢測血流速度的范圍有限,容易遺漏過快、過慢或者混濁的血流信號。④投射偽影,淺表或深部視網(wǎng)膜血管的投射偽影會(huì)干擾脈絡(luò)膜脈管系統(tǒng)的血流信號,干擾了對更深組織的評估與測量[99]。⑤無法檢測血管滲漏和功能性血管疾病。⑥由于儀器分辨率的限制,可能無法檢測一些低流量的新生血管膜。
[14] Stana D,Potop V,Istrate SL,et al. Foveal avascular zone area measurements using OCT angiography in patients with type 2 diabetes mellitus associated with essential hypertension[J].Rom J Ophthalmol,2019,63(4):354-359.
[15] DAloisio R,Giglio R,Di Nicola M,et al. Diagnostic accuracy of digital retinal fundus image analysis in detecting diabetic maculopathy in type 2 diabetes mellitus[J].Ophthalmic Res,2019,61(2):100-106.
[16] Chua J,Chin CWL,Tan B,et al. Impact of systemic vascular risk factors on the choriocapillaris using optical coherence tomography angiography in patients with systemic hypertension[J].Scientific reports,2019,9(1):5819.
[17] Guo Y,Camino A,Zhang M,et al. Automated segmentation of retinal layer boundaries and capillary plexuses in wide-field optical coherence tomographic angiography[J].Biomed Opt Express,2018,9(9):4429-4442.
[18] Garrity ST,Iafe NA,Phasukkijwatana N,et al. Quantitative analysis of three distinct retinal capillary plexuses in healthy eyes using optical coherence tomography angiographyquantitative analysis using OCTA[J].Invest Ophthalmol Vis Sci,2017,58(12):5548-5555.
[19] Ting Daniel Shu Wei,Tan Gavin Siew Wei,Agrawal Rupesh,et al. Optical coherence tomographic angiography in type 2 diabetes and diabetic retinopathy[J]. JAMA Ophthalmol,2017,135(4):306-312.
[20] Durbin Mary K,An Lin,Shemonski Nathan D,et al.Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy[J].JAMA Ophthalmol,2017,135(4):370-376.
[21] Johannesen SK,Viken JN,Vergmann AS,et al. Optical coherence tomography angiography and microvascular changes in diabetic retinopathy:A systematic review[J].Acta Ophthalmol,2019,97(1):7-14.
[22] Salz DA,de Carlo TE,Adhi M,et al. Select features of diabetic retinopathy on swept-source optical coherence tomographic angiography compared with fluorescein angiography and normal eyes[J].JAMA Ophthalmol,2016, 134(6):644-650.
[23] Takase N,Nozaki M,Kato A,et al. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography[J]. Retina,2015, 35(11):2377-2383.
[24] Pedinielli A,Bonnin S,Sanharawi ME,et al. Three different optical coherence tomography angiography measurement methods for assessing capillary density changes in diabetic retinopathy[J].Ophthalmic Surg Lasers Imaging Retina,2017,48(5):378-384.
[25] Le D,Alam M,Miao BA,et al. Fully automated geometric feature analysis in optical coherence tomography angiography for objective classification of diabetic retinopathy[J].Biomed Opt Express,2019,10(5):2493-2503.
[26] Simonett JM,Scarinci F,Picconi F,et al. Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus[J]. Acta Ophthalmol,2017,95(8):751-755.
[27] Michalska-Ma?覥ecka K,Heinke KA. Optical coherence tomography angiography in patients with diabetic retinopathy treated with anti-VEGF intravitreal injections:Case report[J].Medicine(Baltimore),2017,96(45):8379.
[28] Bhardwaj S,Tsui E,Zahid S,et al. Value of fractal analysis of optical coherence tomography angiography in various stages of diabetic retinopathy[J].Retina,2018,38(9):1816-1823.
[29] AttaAllah HR,Mohamed AAM,Ali MA.Macular vessels density in diabetic retinopathy:Quantitative assessment using optical coherence tomography angiography[J]. Int Ophthalmol,2019,39(8) :1845-1859.
[30] Alibhai A Yasin,Moult Eric M,Shahzad Rida,et al.Quantifying microvascular changes using OCT angiography in diabetic eyes without clinical evidence of retinopathy[J].Ophthalmology Retina,2018,2(5):418-427.
[31] Atta Allah HR,Mohamed AAM,Ali MA. Macular vessels density in diabetic retinopathy:Quantitative assessment using optical coherence tomography angiography[J].Int Ophthalmol,2018,39(8):1845-1859.
[32] Pan J,Chen D,Yang X,et al. Characteristics of neovascularization in early stages of proliferative diabetic retinopathy by optical coherence tomography angiography[J].Am J Ophthalmol,2018,192:146-156.
[33] Christenbury JG,Phasukkijwatana N,Gilani F,et al. Progression of macular atrophy in eyes with type 1 neovascularization and age-related macular degeneration receiving long-term intravitreal anti-vascular endothelial growth factor therapy:An optical coherence tomographic angiography analysis[J].Retina,2018,38(7):1276-1288.
[34] Jia Y,Bailey ST,Wilson DJ,et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration[J]. Ophthalmology,2014,121(7):1435-1444.
[35] Moult E,Choi W,Waheed NK,et al. Ultrahigh-speed swept-source OCT angiography in exudative AMD[J]. Ophthalmic Surgery Lasers & Imaging Retina,2014,45(6):496-505.
[36] Kuehlewein L,Dansingani KK,de Carlo TE,et al. Optical coherence tomography angiography of type 3 neovascularization secondary to age-related macular degeneration[J].Retina,2015,35(11):2229-2235.
[37] El Ameen A,Cohen SY,Semoun O,et al. Type 2 neovascularization secondary to age related macular degeneration imaged by optical coherence tomography angiography[J].Retina,2015,35(11):2212-2218.
[38] Miere A,Querques G,Semoun O,et al. Optical coherence tomography angiography in early type 3 neovascularization[J].Retina,2015,35(11):2236-2241.
[39] Chalam KV,Sambhav K. Optical coherence tomography angiography in retinal diseases[J]. J Ophthalmic Vis Res,2016,11(1):84-92.
[40] Coscas G,Lupidi M,Coscas F,et al. Optical coherence tomography angiography during follow-up:Qualitative and quantitative analysis of mixed type Ⅰ and Ⅱ choroidal neovascularization after vascular endothelial growth factor trap therapy[J]. Ophthalmic Res,2015,54(2):57-63.
[41] Muakkassa NW,Chin AT,de Carlo T,et al. Characterizing the effect of anti-vascular endothelial growth factor therapy on treatment-naive choroidal neovascularization using optical coherence tomography angiography[J]. Retina,2015,35(11):2252-2259.
[42] Kuehlewein L,Sadda SR,Sarraf D.OCT angiography and sequential quantitative analysis of type 2 neovascularization after ranibizumab therapy[J]. Eye,2015,29(7):932-935.
[43] Muakkassa NW,Chin AT,de Carlo T,et al. Characterizing the effect of anti-vascular endothe-lial growth factor therapy on treatment-naive choroidal neovascu-larization using optical coherence tomography angiography[J]. Retina,2015,35:2252-2259.
[44] Phasukkijwatana N,Tan AC,Chen X,et al.Optical coherence tomography angiography of type 3 neovascular-isation in age-related macular degeneration after antiangiogenic therapy[J]. Br J Ophthalmol,2017,101(5):597-602.
[45] Mastropasqua L,Toto L,Borrelli E,et al.Optical coherence tomography angiography assessment of vascular effects occurring after aflibercept intravitreal injections in treatment-naive patients with wet AMD[J]. Retina,2017, 37(2):247-256.
[46] Shin YI,Kim JM,Lee MW,et al.Characteristics of the foveal microvasculature in Asian patients with dry age-related macular degeneration:An optical coherence tomography angiography study[J].Ophthalmologica,2019,23:1-9.
[47] Waheed NK,Moult EM,F(xiàn)ujimoto JG,et al.Optical coherence tomography angiography of dry age-related macular degeneration[J].Dev Ophthalmol,2016,56:91-100.
[48] Roisman L,Zhang Q,Wang RK,et al. Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration[J]. Ophthalmology,2016,123(6):1309-1319.
[49] Carnevali A,Cicinelli MV,Capuano V,et al. Optical coherence tomography angiography:A useful tool for diagnosis of treatment-naive quiescent choroidal neovascularization[J]. Am J Ophthalmol,2016,169:189-198.
[50] Nehemy MB,Brocchi DN,Veloso CE. Optical coherence tomography angiography imaging of quiescent choroidal neovasculariza-tion in age-related macular degeneration[J].Ophthalmic Surgery,Lasers & Imaging Retina,2015,46(10):1056-1057.
[51] Palejwala NV,Jia Y,Gao SS,et al. Detection of Nonexudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography[J]. Retina,2015,35(11):2204-2211.
[52] Green WR,McDonnell PJ,Yeo JH. Pathologic features of senile macular degeneration[J]. Ophthalmology,1985,92(5):615-627.
[53] Hanutsaha P,Guyer DR,Yannuzzi LA,et al. Indocyanine-green videoangiography of drusen as a possible predictive indicator of exudative maculopathy[J]. Ophthalmology,1998,105(9):1632-1636.
[54] Faes L,Bodmer NS,Locher S,et al.Test performance of optical coherence tomography angiography in detecting retinal diseases:A systematic review and meta-analysis[J].Eye (Lond),2019,33(8):1327-1338.
[55] Novais EA,Waheed NK.Optical coherence tomography angiography of retinal vein occlusion[J].Dev Ophthalmol,2016,56:132-138.
[56] Wons Juliana,Pfau Maximilian,Wirth Magdalena A,et al. Optical coherence tomography angiography of the foveal avascular zone in retinal vein occlusion[J]. Ophthalmologica,2016,235(4):195-202.
[57] Winegarner Andrew,Wakabayashi Taku,Hara-Ueno Chikako,et al.Retinalmicrovasculature and visual acuity after intravitreal aflibercept in eyes with central retinal vein occlusion:An optical coherence tomography angiography study[J].Retina,2018,38(10):2067-2072.
[58] Sellam Alexandre,Glacet-Bernard Agnes,Coscas Florence,et al.Qualitative and quantitative follow-up using optical coherence tomography angiography of retinal vein occlusion treated with anti-VEGF:Optical coherence tomography angiography follow-up of retinal vein occlusion[J].Retina,2017,37(6):1176-1184.
[59] Suzuki Norihiro,Hirano Yoshio,Tomiyasu Taneto,et al. Retinal hemodynamics seen on optical coherence tomography angiography before and after treatment of retinal vein occlusion[J].Invest Ophthalmol Vis Sci,2016,57(13):5681-5687.
[60] Wakabayashi Taku,Sato Tatsuhiko,Hara-Ueno Chikako,et al. Retinal microvasculature and visual acuity in eyes with branch retinal vein occlusion:Imaging analysis by optical coherence tomography angiography[J].Invest Ophthalmol Vis Sci,2017,58(4):2087-2094.
[61] Samara Wasim A,Shahlaee Abtin,Sridhar Jayanth,et al. Quantitative optical coherence tomography angiography features and visual function in eyes with branch retinal vein occlusion[J].Am J Ophthalmol,2016,166:76-83.
[62] Seknazi Daniel,Coscas Florence,Sellam Alexandre,et al. Optical coherence tomography angiography in retinal vein occlusion:Correlations between macular vascular density,visual acuity,and peripheral nonperfusion areaon fluoresce in angiography[J].Retina,2018,38(8):1562-1570.
[63] Kang Joon-Won,Yoo Romi,Jo Youn Hye,et al. Correlation of microvascular structures on optical coherence tomography angiography with visual acuity in retinal vein occlusion[J].Retina,2017,37(9):1700-1709.
[64] Chung Chung Yee,Tang Heather Hoi Yau,Li Siu Hung,et al.Differential microvascular assessment of retinal vein occlusion with coherence tomography angiography and fluorescein angiography:A blinded comparative study[J].Int Ophthalmol,2018,38(3):1119-1128.
[65] De Castro-Abeger,Alexander H,de Carlo,et al. Optical coherence tomography angiography compared to fluorescein angiography in branch retinal artery occlusion[J].Ophthalmic Surg Lasers Imaging Retina,2015,46(10):1052-1054.
[66] Bonini Filho,Marco A,Adhi,et al. Optical coherence tomography angiography in retinal artery occlusion[J].Retina,2015,35(11):2339-2346.
[67] Sambhav K,Grover S,Chalam KV.The application of optical coherence tomography angiography in retinal diseases[J].Surv Ophthalmol,2017,62(6):838-866.
[68] Choi Ji Hyung,Yang Hee Kyung,Lee Ji Eun. Incidental branch retinal artery occlusion on optical coherence tomography angiography presenting as segmental optic atrophy in a child:A case report[J].BMC Ophthalmol,2017, 17(1):256.
[69] Baumal Caroline R. Optical Coherence Tomography angiography of retinal artery occlusion[J].Dev Ophthalmol,2016,56:122-131.
[70] Bonini Filho MA,Adhi M,de Carlo TE,et al. Optical coherence tomography angiography in retinal artery occlusion[J]. Retina,2015,35(11):2339-2346.
[71] Yang S ,Liu X,Li H,et al.Optical coherence tomography angiography characteristics of acute retinal arterial occlusion[J].BMC Ophthalmol,2019,19(1):147.
[72] Seknazi D,Coscas F,Sellam A,et al. Optical coherence tomography angiography in retinal vein occlusion:Correlations between macular vascular density,visual acuity,and peripheral nonperfusion area on fluorescein angiography[J]. Retina,2018,38(8):1562-1570.
[73] Deng Y,Cai X,Zhang S,et al. Quantitative analysis of retinal microvascular changes after conbercept therapy in branch retinal vein occlusion using optical coherence tomography angiography[J].Ophthalmologica,2019,242(2):69-80.
[74] Krawitz BD,Mo S,Geyman LS,et al. Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography[J].Vis Res,2017,139:177-186.
[75] Li Z,Alzogool M,Xiao J,et al.Optical coherence tomography angiography findings of neurovascular changes in type 2 diabetes mellitus patients without clinical diabetic retinopathy[J].Acta Diabetol,2018,55(10):1075-1082.
[76] Yang S,Liu X,Li H,et al. Optical coherence tomography angiography characteristics of acute retinal arterial occlusion[J].BMC Ophthalmol,2019,19(1):147.
[77] Deng Y,Zhong QW,Zhang AQ,et al. Microvascular changes after conbercept therapy in central retinal vein occlusion analyzed by optical coherence tomography angiography[J].Int J Ophthalmol,2019,12(5):802-808.
[78] Deng Y,Cai X,Zhang S,et al. Quantitative analysis of retinal microvascular changes after conbercept therapy in branch retinal vein occlusion using optical coherence tomography angiography[J].Ophthalmologica,2019,242(2):69-80.
[79] 王林妮,于榮國,楊錦,等.視網(wǎng)膜分支靜脈阻塞黃斑水腫程度對黃斑中心凹無血管區(qū)量化分析的影響[J].中華眼底病雜志,2019,35(1):20-24.
[80] Inanc M,Tekin K,Kiziltoprak H,et al. Changes in retinal microcirculation precede the clinical onset of diabetic retinopathy in children with type 1 diabetes mellitus[J].Am J Ophthalmol,2019,207(11):37-44.
[81] Tobe LA,Harris A,Hussain RM,et al. The role of retrobulbar and retinal circulation on optic nerve head and retinal nerve fibre layer structure in patients with open-angle glaucoma over an 18-month period[J].Br J Ophthalmol,2015,99(5):609-612 .
[82] Leske MC,Connell AM,Wu SY,et al. Risk factors for open-angle glaucoma. The barbados eye study[J]. Arch Ophthalmol,2015,113(7):918-924.
[83] De Moraes CG,Liebmann JM,Greenfield DS,et al.Low-pressure glaucoma treatment study. Risk factors for visual fieldprogression in the low-pressure glaucoma treatment study[J]. Am J Ophthalmol,2012,154(4):702-711.
[84] Harris A,Rechtman E,Siesky B,et al.The role of optic nerve blood flow in the pathogenesis of glaucoma[J].Ophthalmol Clin North Am,2005,18(3):345-353.
[85] Tiwari US,Singh M,Aishwarya A,et al. Comparison of flow velocity in ophthalmic artery between glaucomatous and normal subjects[J].Rom J Ophthalmol,2019,63(4):346-353.
[86] Cull G,Burgoyne CF,F(xiàn)ortune B,et al. Longitudinal hemodynamic changes within the optic nerve head in experimental glaucoma[J].Invest Ophthalmol Vis Sci,2013, 54(6):4271-4277.
[87] Hwang JC,Konduru R,Zhang X,et al. Relationship among visual field,blood flow,and neuralstructure measurements in glaucoma[J]. Invest Ophthalmol Vis Sci,2012, 53(6):3020-3026.
[88] Onda E,Cioffi GA,Bacon DR,et al. Microvasculature of the human optic nerve[J]. Am J Ophthalmol,1995,120(1):92-102.
[89] Jia Y,Tan O,Tokayer J,et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J].Opt Express,2012,20(4):4710-4725.
[90] Jia Y,Wei E,Wang X,et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma[J].Ophthalmology,2014,121(7):1322-1332.
[91] Mansoori T,Gamalapati J,Sivaswamy J,et al.Optical coherence tomography angiography measured capillary density in the normal and glaucoma eyes[J].Saudi J Ophthalmol,2018,32(4):295-302.
[92] Park JH,Yoo C,Kim YY. Peripapillary vessel density in young patients with open-angle glaucoma:Comparison between high-tension and normal-tension glaucoma[J].Scientific Reports,2019,9(1):19160.
[93] Xu H, Zhai R,Zong Y,et al. Comparison of retinal microvascular changes in eyes with high-tension glaucoma or normal-tension glaucoma:A quantitative optic coherence tomography angiographic study[J].Graefes Arch Clin Exp Ophthalmol,2018,256(6):1179-1186.
[94] Shinojima Ari,Kawamura Akiyuki,Mori Ryusaburo,et al. Findings of optical coherence tomographic angiography at the choriocapillaris level in central serous chorioretinopathy[J].Ophthalmologica,2016,236(2):108-113.
[95] Rochepeau C,Kodjikian L,Garcia MA,et al.Optical coherence tomography angiography quantitative assessment of choriocapillaris blood flow in central serous chorioretinopathy[J].Am J Ophthalmol,2018,194:26-34.
[96] Fujita Kyoko,Kawamura Akiyuki,Yuzawa Mitsuko,et al. Choriocapillaris Changes Imaged by OCT angiography after half-dose photodynamic therapy for chronic central serous chorioretinopathy[J]. Ophthalmic Surg Lasers Imaging Retina,2017,48(4):302-310.
[97] Xu Yishuang,Su Yu,Li Lu,et al. Effect of photodynamic therapy on optical coherence tomography angiography in eyes with chronic central serous chorioretinopathy[J].Ophthalmologica,2017,237(3):167-172.
[98] Sawada O,Ichiyama Y,Obata S,et al. Comparison between wide-angle OCT angiography and ultra-wide field fluorescein angiography for detecting non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy[J].Graefes Arch Clin Exp Ophthalmol,2018, 256(7):1275-1280.
[99] Told R,Sacu S,Hecht A,et al. Comparison of sd-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration[J]. Invest Ophthalmol Vis Sci,2018,59(6):2393-2400.
(收稿日期:2019-12-09)