凡明錦,魯昱,馬琳,韓云燕,靳亞英,李文倩
膽堿氨基酸離子液體水潤(rùn)滑添加劑的原位制備及性能研究
凡明錦,魯昱,馬琳,韓云燕,靳亞英,李文倩
(寶雞文理學(xué)院 a.化學(xué)化工學(xué)院 b.陜西省植物化學(xué)重點(diǎn)實(shí)驗(yàn)室,陜西 寶雞 721013)
研究原位制備膽堿氨基酸離子液體水潤(rùn)滑添加劑的摩擦學(xué)性能、物理化學(xué)性能及其毒性。以氨基酸和膽堿為原料,在去離子水中原位制備7種氨基酸離子液體水潤(rùn)滑添加劑([Ch][AA] ILs)。以去離子水為對(duì)照樣,對(duì)其摩擦學(xué)性能、物理化學(xué)性質(zhì)進(jìn)行系統(tǒng)研究。以傳統(tǒng)離子液體1-丁基-3-甲基咪唑四氟硼酸鹽(L-B104)為對(duì)照樣,綠藻和海蝦作為實(shí)驗(yàn)對(duì)象,對(duì)其水生生物毒性進(jìn)行評(píng)價(jià)。添加不同種膽堿氨基酸離子液體添加劑后,水溶液的運(yùn)動(dòng)黏度明顯增加,并且呈現(xiàn)出遞增的趨勢(shì)。浸泡在含400 mmol/L膽堿氨基酸離子液體的水基潤(rùn)滑劑中時(shí),鑄鐵棒條的腐蝕極為輕微。作為潤(rùn)滑劑使用時(shí),測(cè)試原位制備的膽堿氨基酸離子液體水基潤(rùn)滑劑的濃度為400 mmol/L時(shí)的減摩抗磨性能,其摩擦系數(shù)都比水小。毒性試驗(yàn)顯示,[Ch][AA] ILs的半抑制濃度(EC50)和半致死濃度(LC50)值遠(yuǎn)遠(yuǎn)大于L-B104。與去離子水相比,以膽堿氨基酸離子液作為水潤(rùn)滑添加劑,在鋼/鋼摩擦副上表現(xiàn)出優(yōu)異的潤(rùn)滑性能。其中,含有芳雜環(huán)的[Ch][Trp]具有最優(yōu)異的減摩抗磨性能,其摩擦學(xué)系數(shù)和磨損體積最小。這可能歸因于芳雜環(huán)的引入使得含有該離子液體添加劑的水溶液黏度顯著增大,在摩擦過程中能夠形成更牢固的潤(rùn)滑保護(hù)膜,從而使該氨基酸膽堿離子液體具備優(yōu)越的減摩抗磨性能。在毒性試驗(yàn)中發(fā)現(xiàn),氨基酸膽堿離子液體水潤(rùn)滑劑的毒性遠(yuǎn)小于傳統(tǒng)離子液體(L-B104),對(duì)試驗(yàn)生物體基本無毒害作用。
氨基酸;離子液;水潤(rùn)滑;添加劑;摩擦學(xué)性能;生物毒性
機(jī)械運(yùn)動(dòng)部件之間的摩擦和磨損是造成機(jī)械設(shè)備中能量損失和部件失效的重要原因,使用潤(rùn)滑劑可以大幅度減少摩擦和磨損,從而達(dá)到節(jié)約能源和節(jié)省材料的目的[1]。人類早期使用的潤(rùn)滑劑主要是動(dòng)植物油脂。直到20世紀(jì)初期,石油工業(yè)的誕生使礦物潤(rùn)滑劑的使用日益廣泛。工業(yè)的飛速發(fā)展,造成了礦物潤(rùn)滑劑的需求量和消費(fèi)量逐年上升。以礦物油為基礎(chǔ)油的潤(rùn)滑油,因生物降解性差和生態(tài)毒性高,容易對(duì)環(huán)境造成危害[2]。隨著人類環(huán)保意識(shí)的不斷增強(qiáng),發(fā)展無毒、可生物降解的綠色潤(rùn)滑劑已成為潤(rùn)滑劑研究領(lǐng)域的一種發(fā)展趨勢(shì)。
離子液體(Ionic liquids,ILs)是指在室溫或接近室溫條件下,完全由陰陽(yáng)離子構(gòu)成的液態(tài)鹽,又稱“低溫熔融鹽”[3-4]。離子液體因具有液態(tài)溫區(qū)寬、溶解性強(qiáng)、蒸汽壓低、穩(wěn)定性好、可循環(huán)使用等優(yōu)點(diǎn),而被廣泛應(yīng)用于合成、催化、分離、材料等領(lǐng)域[5-6],被認(rèn)為是“新一代綠色溶劑”[7-9]。1914年,Walden等報(bào)道了第一個(gè)離子液體硝酸乙基胺([EtNH3] NO3),該離子液體在空氣中很不穩(wěn)定,極易發(fā)生爆炸,因此并沒有引起科學(xué)家過多的關(guān)注。直到1992年,Wilkes等[10]成功合成了抗水性好的離子液體([Emim] BF4),使得離子液體的研究引起科學(xué)家的廣大關(guān)注。2001年,劉維民課題組[11]第一次在國(guó)際上報(bào)道了離子液體是一類具有良好摩擦學(xué)性能的潤(rùn)滑劑。自此,離子液體在潤(rùn)滑劑研究領(lǐng)域的應(yīng)用研究得到了人們的極大關(guān)注[12-19]。隨著對(duì)離子液研究的深入,人們逐漸認(rèn)識(shí)到傳統(tǒng)離子液體由于具有腐蝕性強(qiáng)、毒性高的缺陷,它們的大規(guī)模使用可能會(huì)對(duì)環(huán)境造成嚴(yán)重污染,給生物體帶來極大危害[20-27]。采用低(無)毒性、環(huán)境相容性高和低(無)腐蝕性、性質(zhì)穩(wěn)定、易回收的離子液體將成為一種趨勢(shì)[28]。
綜上所述,可以發(fā)現(xiàn)離子液具有較多優(yōu)異的特性,但是其可以通過廢水的排放對(duì)水環(huán)境和土壤環(huán)境造成污染,并且在毒性方面的研究還處于初級(jí)階段。本文以氨基酸為陰離子原料,膽堿為陽(yáng)離子原料,在水中原位制備了7種膽堿氨基酸離子液體水潤(rùn)滑添加劑([Ch][AA] ILs),研究了其摩擦學(xué)性能、物理化學(xué)性質(zhì)以及對(duì)水生生物的毒性。
膽堿(C5H15NO2,J&K,49%)、丙氨酸(C3H7NO2,J&K,99%)、亮氨酸(C6H13NO2,Aladdin,99%)、甲硫氨酸(C5H11NO2S,Aladdin,99%)、組氨酸(C6H9N3O2,J&K,99%)、脯氨酸(C5H9NO2,J&K,99%)、苯丙氨酸(C9H11NO2,J&K,99%)、色氨酸(C11H12N2O2,J&K,99%)、碳酸氫鈉(NaHCO3)由天津市致遠(yuǎn)化學(xué)試劑有限公提供,1-丁基-3-甲基咪唑四氟硼酸鹽(L-B104)由蘭州化學(xué)物理研究所鄧友全研究小組提供,所合成的潤(rùn)滑劑結(jié)構(gòu)見表1。海蝦由美國(guó)先進(jìn)科技公司A.H.T提供,綠藻由中國(guó)科學(xué)院水生生物研究所提供。
表1 所合成的潤(rùn)滑劑結(jié)構(gòu)
Tab.1 Chemical structure of synthetic lubricant
含有[Ch][AA]離子液體添加劑的水基潤(rùn)滑劑的制備:
含有膽堿丙氨酸離子液體添加劑的水基潤(rùn)滑劑的制備:稱取丙氨酸1.8002 g(20 mmol)和膽堿4.9461 g(20 mmol)置入100 mL的圓底燒瓶中,加入一定量的去離子水(50 mL),在室溫下攪拌反應(yīng)24 h。待反應(yīng)結(jié)束后,得到400 mmol/L的含有膽堿丙氨酸離子液體添加劑的水基潤(rùn)滑劑。其他水基潤(rùn)滑劑的制備方法與此相同。
采用SRV-Ⅴ微振動(dòng)摩擦磨損試驗(yàn)機(jī)和BRUKER- NPFLEX3D表面輪廓儀,對(duì)含有膽堿丙氨酸離子液體添加劑的水基潤(rùn)滑劑的摩擦磨損性能進(jìn)行了評(píng)價(jià)。SRV-Ⅴ微振動(dòng)摩擦磨損試驗(yàn)機(jī)以球-盤點(diǎn)接觸的方式進(jìn)行試驗(yàn),試驗(yàn)條件:振幅為1 mm,頻率為25 Hz,載荷為100 N,測(cè)試時(shí)間為30 min,測(cè)試溫度為25 ℃,相對(duì)濕度為45%~50%。試驗(yàn)用上試球?yàn)?0 mm的AISI 52100鋼球,硬度為59~61HRC。下試盤為AISI 52100鋼盤,直徑為24 mm,厚度為7.9 mm,硬度為59~61HRC。將上試球和下試樣固定好后,在球-盤接觸點(diǎn)之間滴加潤(rùn)滑劑,進(jìn)行摩擦磨損性能測(cè)試。
采用SYP1003-Ⅲ石油產(chǎn)品運(yùn)動(dòng)黏度儀測(cè)試了含有膽堿丙氨酸離子液體添加劑的水基潤(rùn)滑劑的黏度。實(shí)驗(yàn)前,將黏度儀設(shè)置在25 ℃條件下,待溫度恒定,將裝有約5 mL樣品的黏度管垂直懸掛于恒溫體系中,再次待溫度恒定后開始測(cè)試。測(cè)試過程中,用洗耳球吸取黏度管中的樣品,當(dāng)離子液體液面達(dá)到黏度管上球中部時(shí),停止吸取。此時(shí)黏度管中的液面會(huì)自然下降,當(dāng)凹液面下降并且與上刻度線一致時(shí)開始計(jì)時(shí),與下刻度線一致時(shí)停止計(jì)時(shí),重復(fù)測(cè)試3次。利用所記錄的時(shí)間和黏度管上對(duì)應(yīng)的黏度系數(shù),計(jì)算在25 ℃下的樣品黏度數(shù)值。
依據(jù)GB/T 6144—2010對(duì)含有膽堿丙氨酸離子液體添加劑的水基潤(rùn)滑劑的腐蝕性進(jìn)行了測(cè)定。試驗(yàn)過程中,將樣品分別傾倒入裝有鑄鐵條的玻璃瓶(100 mL)中,加入大約20 mL樣品,將鋼塊浸沒。然后將玻璃瓶放置在55 ℃的恒溫鼓風(fēng)干燥箱中24 h。試驗(yàn)結(jié)束后,取出鑄鐵條,用丙酮清洗,并自然風(fēng)干,采用FEI Quanta 250掃描電子顯微鏡對(duì)其表面進(jìn)行掃描分析。
稱取10克海鹽溶于1000 mL的去離子水中,并用碳酸氫鈉將其pH 值調(diào)至7.0~8.0之間。將配制好的人工海水分成兩部分:一部分(A)用來培養(yǎng)海蝦;另一部分(B)用來配制不同濃度梯度的離子液體溶液。在海蝦的培養(yǎng)過程中,取適量蝦卵放入人工海水中,插入魚泵,氣流量控制在使蝦卵上下浮動(dòng)即可,在28 ℃下孵化48 h即可用于毒性測(cè)試。實(shí)驗(yàn)中,將包含有15~20只海蝦的100 μL人工海水A加入96孔板中,再向該孔中加入100 μL配好的離子液體溶液,放置24 h。以海鹽水和含有L-B104添加劑的水溶液為對(duì)照樣(每個(gè)濃度進(jìn)行3組平行對(duì)照),在顯微鏡下觀察并記錄含有不同濃度膽堿丙氨酸離子液體添加劑的水溶液中海蝦的死亡數(shù)目,計(jì)算出其半致死濃度(LC50),用以評(píng)價(jià)該離子液體的毒性。
用培養(yǎng)基將試驗(yàn)樣品分別配制成不同濃度梯度的溶液于試管中,再加入等體積的處于對(duì)數(shù)生長(zhǎng)期的藻液,混合均勻后,測(cè)定其綠藻在波長(zhǎng)為650 nm時(shí)的吸光度值(650)。綠藻的數(shù)目與650值具有一定的關(guān)系,可以反映綠藻的生長(zhǎng)情況,所以確定650值也就確定了綠藻數(shù)目。將膽堿氨基酸離子液體根據(jù)具體情況配制成不同濃度梯度的溶液于試管中,再向試管中加入等體積處于對(duì)數(shù)期的藻液。每隔24 h,用酶標(biāo)儀測(cè)定不同藻液的650值,持續(xù)96 h后,實(shí)驗(yàn)結(jié)束。根據(jù)離子液體對(duì)綠藻生長(zhǎng)情況的影響,篩選合適的濃度梯度,進(jìn)一步進(jìn)行實(shí)驗(yàn)。在實(shí)驗(yàn)中,同樣測(cè)出所配濃度梯度溶液在0、24、48、72、96 h的650值,并進(jìn)行比較,觀察其對(duì)綠藻生長(zhǎng)情況的影響,直到篩選出最終濃度。根據(jù)最終濃度所對(duì)應(yīng)的650值,計(jì)算出相應(yīng)的半抑制濃度(EC50),以評(píng)價(jià)離子液體對(duì)綠藻的毒性大小。
3.1.1 室溫下的黏度
黏度是評(píng)價(jià)潤(rùn)滑劑性能的重要參數(shù)之一,黏度適中的潤(rùn)滑劑在使用過程中可以起到更好的潤(rùn)滑效果。含有膽堿氨基酸離子液體潤(rùn)滑添加劑的水溶液在25 ℃時(shí)的運(yùn)動(dòng)黏度見表2。可以看出,添加不同種膽堿氨基酸離子液體添加劑后,水溶液的運(yùn)動(dòng)黏度明顯增加,其黏度順序?yàn)椋篬Ch][Ala]c[Ch][Pro] < [Ch][Met] < [Ch][His] < [Ch][Phe] < [Ch][Leu] < [Ch][Trp]。由此可以看出,在所合成的離子液體中,苯環(huán)和芳雜環(huán)的引入使得水溶液的運(yùn)動(dòng)黏度增加較為明顯,因而也有利于在摩擦副表面形成更穩(wěn)定的物理吸附保護(hù)膜,可使含有該氨基酸膽堿離子液體添加劑的水溶液具備更優(yōu)異的減摩抗磨性能。
表2 不同膽堿氨基酸離子液和去離子水的黏度
Tab.2 Viscosities of different amino acid choline ionic liquids and deionized water
3.1.2 腐蝕試驗(yàn)
采用GB/T 6144—2010方法研究了7種氨基酸離子液體水潤(rùn)滑添加劑([Ch][AA]ILs)的耐腐蝕性能。浸入水及含400 mmol/L氨基酸離子液體添加劑水溶液中的鑄鐵棒的表面照片如圖1a所示,相應(yīng)表面的掃描電鏡圖像(放大1500倍)如圖1b所示。根據(jù)GB/T 6144—2010,鑄鐵條的腐蝕程度可分為A—D四個(gè)等級(jí):不生銹,光澤好如新(A);沒有生銹,只是光損耗(B);輕微腐蝕、失光(C);腐蝕或嚴(yán)重失光(D)。從圖1a可以看出,浸沒在400 mmol/L的7種氨基酸離子液體水溶液中的鑄鐵棒均未發(fā)現(xiàn)腐蝕現(xiàn)象,而浸泡在純水中的鑄鐵條表面腐蝕嚴(yán)重,表明該類離子液體可顯著降低水的腐蝕性。其中,浸沒在含S元素和咪唑環(huán)離子液體水溶液中的鑄鐵條,表面有較輕微的腐蝕斑點(diǎn),表明S元素和咪唑環(huán)的引入降低了該類離子液體添加劑的抗腐蝕性。
對(duì)照樣去離子水和含不同濃度膽堿亮氨酸離子液體的水基潤(rùn)滑劑在鋼/鋼摩擦副上的摩擦系數(shù)隨時(shí)間的變化曲線如圖2a所示,下試樣鋼塊的磨損體積如圖2b所示。可以看出,在去離子水中添加一定濃度的膽堿亮氨酸離子液體后,其減摩抗磨性能得到顯著改善。添加濃度達(dá)到400 mmol/L時(shí)的摩擦系數(shù)最小、最穩(wěn)定,繼續(xù)增加濃度,摩擦系數(shù)變化不大。因此,從性能和使用成本角度考慮,在接下來的實(shí)驗(yàn)中,選擇離子液體添加濃度為400 mmol/L的水基潤(rùn)滑劑測(cè)試原位制備的氨基酸離子液體的減摩抗磨性能。
圖1 浸泡在對(duì)照樣水和含400 mmol/L氨基酸膽堿離子液體水溶液中的鑄鐵條照片及SEM形貌
圖2 不同濃度水基潤(rùn)滑劑在鋼/鋼摩擦副上的摩擦系數(shù)及其下鋼塊的磨損體積
對(duì)照樣去離子水和含有不同膽堿氨基酸離子液體的水基潤(rùn)滑劑在鋼/鋼摩擦副上的摩擦系數(shù)隨時(shí)間的變化曲線如圖3a所示??梢钥闯?,含有膽堿氨基酸離子液體添加劑的水溶液潤(rùn)滑的摩擦系數(shù)均小于去離子水潤(rùn)滑。通過計(jì)算得出,7種膽堿氨基酸離子液的平均摩擦系數(shù)為:[Ch][Ala](0.19)≈[Ch][Pro](0.19) > [Ch][Met](0.18) > [Ch][His](0.17) > [Ch][Leu](0.16) > [Ch][Phe](0.15) > [Ch][Trp](0.14)。下試樣鋼塊的磨損體積如圖3b所示,可以看出,所制備的膽堿氨基酸離子液體添加劑中除[Ch][Ala]外,其他的對(duì)水基潤(rùn)滑劑的抗磨性能均有不同程度的提高。其中,對(duì)含有芳環(huán)和芳雜環(huán)的膽堿氨基酸離子液體水基潤(rùn)滑劑的抗磨性能的提高程度較為明顯。在所合成的離子液體中,含有芳雜環(huán)的[Ch][Trp]水基潤(rùn)滑劑具有較為優(yōu)異的減摩抗磨性能,其摩擦學(xué)系數(shù)和磨損體積最小,這一結(jié)果也與黏度數(shù)據(jù)分析結(jié)果基本一致。
測(cè)定離子液體添加劑對(duì)水生生物的生態(tài)毒性對(duì)于判斷其環(huán)境友好性非常重要[29-36]。海蝦[37]被世界經(jīng)濟(jì)合作與發(fā)展組織(OECD)認(rèn)為是檢測(cè)化學(xué)品毒性影響的生物指標(biāo),藻類對(duì)多種污染物非常敏感,已被推薦用于監(jiān)管測(cè)試。本文采用上述兩種水生生物對(duì)[Ch][AA]的毒性進(jìn)行了評(píng)價(jià),毒性測(cè)試結(jié)果見表3。
圖3 不同的水潤(rùn)滑劑在鋼/鋼摩擦副上的摩擦系數(shù)及其下鋼塊的磨損體積
表3數(shù)據(jù)表明,無論是以綠藻還是以海蝦為研究對(duì)象,實(shí)驗(yàn)測(cè)得[Ch][AA] ILs的半抑制濃度(EC50)和半致死濃度(LC50)值遠(yuǎn)遠(yuǎn)大于L-B104,前者的EC50值要比后者大2個(gè)數(shù)量級(jí),該結(jié)果表明[Ch][AA] Ils對(duì)綠藻和海蝦的毒性顯著小于L-B104。對(duì)比[Ch][Leu]和[Ch][Pro]的EC50、LC50數(shù)據(jù)可以看出:側(cè)鏈基團(tuán)中碳原子數(shù)相近時(shí),含有環(huán)烷烴的氨基酸離子液體比含直鏈烷烴離子液體的EC50和LC50值明顯減小,說明含有環(huán)烷烴的氨基酸離子液體對(duì)綠藻和海蝦的毒性遠(yuǎn)大于含直鏈烷烴的離子液體。對(duì)比[Ch][Phe]和[Ch][Trp]的EC50、LC50數(shù)據(jù)可知,吡咯氮雜環(huán)的引入使得氨基酸離子液體對(duì)綠藻和海蝦的毒性顯著增大。此外,表3中的數(shù)據(jù)還表明,對(duì)于不同的實(shí)驗(yàn)對(duì)象(綠藻或海蝦),離子液體結(jié)構(gòu)對(duì)其毒性的影響是不同的。對(duì)比[Ch][His]和[Ch][Phe]的EC50、LC50數(shù)據(jù)可知,苯環(huán)的引入使得氨基酸離子液體對(duì)綠藻的毒性顯著減小,對(duì)海蝦的毒性卻顯著增大。總的來說,本實(shí)驗(yàn)中所合成的氨基酸膽堿離子液體水潤(rùn)滑劑的毒性遠(yuǎn)小于傳統(tǒng)離子液體(L-B104),對(duì)試驗(yàn)生物體基本無毒害作用[38]。
表3 [Ch][AA]和L-B104對(duì)兩種水生生物的LC50值和EC50
Tab.3 LC50 and EC50 of [Ch] [AA] and L-B104 for two aquatic organisms
Note: Hazard ranking (HR) was used to evaluate the toxicity of the ILs: 0.1~1 mg/L, highly toxic (+++++); 1~ 10 mg/L, moderately toxic (++++); 10~100 mg/L, slightly toxic (+++); 100~1000 mg/L, practically harmless (++); greater than 1000 mg/L, relatively harmless (+).
通過原位合成的方法成功制備了含不同膽堿氨基酸離子液體添加劑的水基潤(rùn)滑劑,并測(cè)試了它們的物理化學(xué)性能和摩擦學(xué)性能,得出以下結(jié)論:
1)所合成的膽堿氨基酸離子液在水溶液中的濃度為400 mmol/L時(shí),在鋼/鋼摩擦副上具有良好的減摩抗磨性能。
2)在所合成的離子液體中,含有芳雜環(huán)的[Ch][Trp]具有最優(yōu)異的減摩抗磨性能,其摩擦系數(shù)和下試樣鋼塊磨損體積最小。這可能歸因于芳雜環(huán)的引入使得含有該離子液體添加劑水溶液的黏度顯著增大,在摩擦過程中能夠形成更牢固的潤(rùn)滑保護(hù)膜,從而使該氨基酸膽堿離子液體具備優(yōu)越的抗磨性能。
3)膽堿氨基酸離子液體潤(rùn)滑劑的摩擦學(xué)性能和室溫黏度都隨著陰離子結(jié)構(gòu)中烷基鏈長(zhǎng)的增加而變得更優(yōu)異。
4)膽堿氨基酸離子液體添加劑的毒性遠(yuǎn)小于傳統(tǒng)離子液體添加劑L-B104的毒性。
綜上所述,所合成的膽堿氨基酸離子液體添加劑擁有水溶性好、無污染、無毒等優(yōu)異性能,在摩擦學(xué)領(lǐng)域具有很大的發(fā)展空間和應(yīng)用前景。本文對(duì)今后篩選和制備性能優(yōu)異的綠色環(huán)保型水潤(rùn)滑添加劑有一定的理論指導(dǎo)意義和實(shí)踐借鑒價(jià)值。
[1] 翁立軍, 劉維民, 孫嘉奕, 等. 空間摩擦學(xué)的機(jī)遇和挑戰(zhàn)[J]. 摩擦學(xué)學(xué)報(bào), 2005, 25(1): 92-95.WENG Li-jun, LIU Wei-min, SUN Jia-yi, et al. Oppor-tunities and challenges to space tribology[J]. Tribology, 2005, 25(1): 92-95.
[2] 王大璞, 烏學(xué)東, 張信剛, 等. 綠色潤(rùn)滑油的發(fā)展概況[J]. 摩擦學(xué)學(xué)報(bào), 1999, 19(2): 181-186. WANG Da-pu, WU Xue-dong, ZHANG Xin-gang, et al. Developing status of green lubricating oils[J]. Tribology, 1999,19(2): 181-186.
[3] HALLETT J P, WELTON T. Room-temperature ionic liq-uids: Solvents for synthesis and catalysis. 2[J]. Cheminf-orm, 2011, 111(5): 2071-2084.
[4] FAN M J, LIANG Y M, ZHOU F, et al. Dramatically improved friction reduction and wear resistance by insitu formed ionic liquids[J]. RSC advances, 2012, 17(2): 6824-6830.
[5] 楊正文, 蔣麗紅, 王亞明. 離子液體的合成及其應(yīng)用研究進(jìn)展[J]. 化工科技, 2015, 23(4): 64-67. YANG Zheng-wen, JIANG Li-hong, WANG Ya-ming. Progress in synthesis and application of ionic liquids[J]. Science & technology in chemical industry, 2015, 23(4): 64-67.
[6] 李萌, 劉宇, 王強(qiáng), 等. 離子液體合成研究進(jìn)展[J]. 化工時(shí)刊, 2011, 25(5): 44-49. LI Meng, LIU Yu, WANG Qiang, et al. Progress in syn-thesis of ionic liquids[J]. Chemical industry times, 2011, 25(5): 44-49.
[7] COULING D J, BERNOT R J, DOCHERTY K M, et al. Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure-property relationship modeling[J]. Green chemistry, 2006, 8(1): 82-90.
[8] FATEMI M H, IZADIYAN P. Cytotoxicity estimation of ionic liquids based on their effective structural features[J]. Chemosphere, 2011, 84(5): 553-563.
[9] ELHARBAWI M. Development of a novel mathematical model using a group contribution method for prediction of ionic liquid toxicities[J]. Chemosphere, 2011, 85(6): 990- 994.
[10] MASATO T, KENTO H, TAKERU I. Synthesis of organic- inorganic polymer hybrids from acrylate polymer having a triphenylimidazole moiety via π-π interactions[J]. Poly-mer bulletin, 2015, 72(3): 645-651.
[11] YE C, LIU W, CHEN Y, et al. Room-temperature ionic liquids: A novel versatile lubricant[J]. Chemical commun-i-cations, 2001, 21(21): 2244.
[12] QU J, BLAU P J, SHENG D, et al. Ionic liquids as novel lubricants and additives for diesel engine applications[J]. Tribology letters, 2009, 35(3): 181-189.
[13] SPIKES H. The history and mechanisms of ZDDP[J]. Tri-bology letters, 2004, 17(3): 469-489.
[14] SHAH F. Halogen-free chelated orthoborate ionic liquids and organic ionic plastic crystals[J]. Journal of materials chemistry, 2012, 22(14): 6928-6938.
[15] TOTOLIN V, MINAMI I, GABLER C, et al. Halogen- free borate ionic liquids as novel lubricants for tribolo-gical applications[J]. Tribology international, 2013, 67(4): 191-198.
[16] KONDO Y, KOYAMA T, TSUBOI R, et al. Tribological performance of halogen-free ionic liquids as lubricants of hard coatings and ceramics[J]. Tribology letters, 2013, 51(2): 243-249.
[17] SONG Z, LIANG Y, FAN M, et al. Ionic liquids from amino acids: fully green fluid lubricants for various surf-ace contacts[J]. RSC advances, 2014, 37(4): 19396-19402.
[18] 郭靈燕, 姜棟, 王海忠, 等. 磷酸酯類雙離子液體的合成及摩擦學(xué)性能研究[J]. 摩擦學(xué)學(xué)報(bào), 2010, 30(1): 15-18. GUO Ling-yan, JIANG Dong, WANG Hai-zhong, et al. Tribological behavior of the ionic liquid of 1,1’-(hexane- 1,6-diyl) bis (3-ethyl-1h-imidazolium-1-yl) diphosphonate as a lubricant[J]. Tribology, 2010, 30(1): 15-18.
[19] JIANG D, LI-TIAN H U, FENG D P. The tribological pro-perties of phosphate ionic liquid as lubricant for steel/Al tribo-couple[J]. Tribology, 2011, 31(6): 599-603.
[20] TRAN C D, DURI S, DELNERI A, et al. Transient ther-mal response in ultrasonic additive manufacturing of alu-minum 3003[J]. Rapid prototyping journal, 2011, 17(5): 369-379.
[21] PRETTI C, CHIAPPE C, BALDETTI I, et al. Acute tox-icity of ionic liquids for three freshwater organisms: Pseu-dokirchneriella subcapitata, daphnia magna and danio rerio[J]. Ecotoxicology & environmental safety, 2009, 72(4): 1170-1176.
[22] BERNOT R J, BRUESEKE M A, EVANSWHITE M A, et al. Acute and chronic toxicity of imidazolium-based ionic liquids on daphnia magna[J]. Environmental toxico-logy & chemistry, 2010, 24(1): 87-92.
[23] KULACKI K J, LAMBERTI G A. ChemInform abstract: Toxicity of imidazolium ionic liquids to freshwater algae [J]. Cheminform, 2008, 10(1): 104-110.
[24] CHO C W, JEON Y C, PHAM T P T, et al. The ecotoxicity of ionic liquids and traditional organic solvents on micr-oalga selenastrum cap-ricornutum[J]. Ecotoxicology and environmental safety, 2008, 71(1): 166-171.
[25] ANDREW S W, VYVYAN T C. On the freshwater ecoto-xi-city and biodegradation properties of some common ionic liquids[J]. Organic process research & development, 2006, 10(10): 794-798.
[26] PHAM T P, CHO C W, MIN J, et al. Alkyl-chain length effects of imidazolium and pyridinium ionic liquids on photosynthetic response of pseudokirchneriella subcapi-tata[J]. Journal of bioscience & bioengineering, 2008, 105(4): 425-428.
[27] 柯明, 周愛國(guó), 宋昭崢, 等. 離子液體的毒性[J]. 化學(xué)進(jìn)展, 2007, 19(5): 671-679.KE Ming, ZHOU Ai-guo, SONG Zhao-zheng, et al. Tox-i-city of ionic liquids[J]. Progress in chemistry, 2007, 19(5): 671-679.
[28] GATHERGOOD N, SCAMMELLS P J, GARCIA M T. Biodegradable ionic liquids[J]. Green chemistry, 2006, 8(2): 156-160.
[29] HOU X D, LIU Q P, SMITH T J, et al. Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids[J]. PLOS one, 2013, 8(3): e59145.
[30] GOUVEIA W, JORGE T F, MARTINS S, et al. Toxicity of ionic liquids prepared from biomaterials[J]. Chemos-phere, 2014, 104(3): 51-56.
[31] VENTURA S P, SILVA F A, GON?ALVES A M, et al. Ecotoxicity analysis of cholinium-based ionic liquids to Vibrio fischeri marine bacteria[J]. Ecotoxicology & envir-onmental safety, 2014, 102(1): 48-54.
[32] FA E S, SIOPA F, FIGUEIREDO B F, et al. Sustainable design for environment-friendly mono and dicationic cho-linium-based ionic liquids[J]. Ecotoxicology & environm-e-ntal safety, 2014, 108: 302-310.
[33] SANTOS J I, GONCALVES A M M, PEREIRA J L, et al. Environmental safety of cholinium-based ionic liquids: assessing structure-ecotoxicity relationships[J]. Green Ch-e-mistry, 2015, 17(9): 4657-4668.
[34] GHANEM O B, PAPAICONOMOU N, MUTALIB M I A, et al. Thermophysical properties and acute toxicity to-w-ards green algae and Vibrio fischeri, of amino acid- based ionic liquids[J]. Journal of molecular liquids, 2015, 212: 352-359.
[35] GHANEM O B, MUTALIB M I, ELHARBAWI M, et al. Effect of imidazolium-based ionic liquids on bacterial gro-wth inhibition investigated via experimental and QSAR modelling studies[J]. Journal of hazardous materials, 2015, 297: 198-206.
[36] LIU HENG-jun, LU Yin, XU Dong-mei, et al. Research on the acute toxicity of imidazolium ionic liquids on the brine shrimp[J]. China environmental science, 2011, 31(3): 454-460.
[37] MAURERJONES M A, LOVE S A, MEIERHOFER S, et al. Toxicity of nanoparticles to brine shrimp: An intro-du-ction to nanotoxicity and interdisciplinary science[J]. Journal of chemical education, 2013, 90(4): 475-478.
[38] HOU X D, LIU Q P, SMITH T J, et al. Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids[J]. PLOS one, 2013, 8(3): e59145.
In-situ Preparation and Properties of Choline Amino Acids Ionic Liquids Water Lubrication Additives
,,,,,
(a.School of Chemistry and Chemical Engineering, b.Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China)
The work aims to study the tribological properties, physicochemical properties and toxicity of in situ preparation of choline amino acid ionic liquid water lubricated additives. Seven kinds of amino acid ionic liquid lubricating additives ([Ch][AA] ILs) were prepared in situ from amino acid and choline in deionized water. Firstly, its tribological properties and physicochemical properties were systematically studied with deionized water as a reference sample. Then, the traditional ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (L-B104) was used as control sample, and green algae and sea shrimp were used as experimental objects to evaluate the aquatic toxicity of the additives. The kinematic viscosity of aqueous solution increased significantly and showed an increasing trend after adding different kinds of choline amino acid ionic liquid additives. The corrosion of iron bars immersed in aqueous solution containing 400 mmol/L amino acid choline ionic liquid was very slight. When used as lubricant, water-based lubricants with ionic liquid concentration of 400 mmol/L were selected to test the antifriction and antiwear properties of amino acid ionic liquids prepared in situ, and their friction coefficients were smaller than those of water. Toxicity tests showed that the values of EC50 and LC50 of [Ch][AA] ILs were much higher than those of L-B104. Compared with deionized water, choline amino acid ionic liquid as water lubricating additive exhibits excellent lubrication performance on steel/steel friction pairs. Among them, [Ch][Trp] containing aromatic heterocycles has the best antifriction and antiwear properties, and its tribological coefficient and wear volume are the smallest. This may be attributed to the significant increase in the viscosity of aqueous solution containing the ionic liquid additive due to the introduction of aromatic heterocycles. A strong physical adsorption protective film is formed during the friction process, which makes the amino acid choline ionic liquid possess superior wear resistance. In the toxicity test, the toxicity of amino acid choline ionic liquid lubricant is much less than that of traditional ionic liquid (L-B104). It has no toxic effect on the experimental organisms.
amino acids; ionic liquids; water lubricants; additive; tribological properties; biotoxicity
2019-06-10;
2019-09-11
FAN Ming-jin (1979—), Female, Doctor, Professor, Research focus: novel high performance lubricating materials. E-mail: mingjinfan@163.com
凡明錦, 魯昱, 馬琳, 等.膽堿氨基酸離子液體水潤(rùn)滑添加劑的原位制備及性能研究[J]. 表面技術(shù), 2020, 49(6): 194-201.
TH117.2
A
1001-3660(2020)06-0194-08
10.16490/j.cnki.issn.1001-3660.2020.06.023
2019-06-10;
2019-09-11
國(guó)家自然科學(xué)基金面上項(xiàng)目(51675006);固體潤(rùn)滑國(guó)家重點(diǎn)實(shí)驗(yàn)室開放課題項(xiàng)目(LSL-1812)
Fund:Supported by the National Natural Science Foundation of China (51675006); The Open Project of State Key Laboratory of Solid Lubrication (LSL-1812)
凡明錦(1979—),女,博士,教授,主要研究方向?yàn)樾滦透咝阅軡?rùn)滑材料的研究與開發(fā)。郵箱:mingjinfan@163.com
FAN Ming-jin, LU Yu, MA Lin, et al. In-situ preparation and properties of choline amino acids ionic liquids water lubrication additives[J]. Surface technology, 2020, 49(6): 194-201.