梅濤 王建設(shè) 張纓
摘 要:目的:研究8周有氧運(yùn)動(dòng)對(duì)骨骼肌microRNA表達(dá)的影響,并對(duì)差異表達(dá)的miRNA進(jìn)行生物信息學(xué)分析以發(fā)現(xiàn)其可能作用途徑,為后續(xù)深入研究運(yùn)動(dòng)對(duì)骨骼肌產(chǎn)生影響的機(jī)制提供方向。研究方法:20只8周齡C57BL/6J小鼠隨機(jī)分為安靜組(C)和運(yùn)動(dòng)組(E)。運(yùn)動(dòng)組預(yù)適應(yīng)訓(xùn)練一周后,采用坡度0°、12 m/min、60 min/天、5天/周、持續(xù)8周的有氧訓(xùn)練方案進(jìn)行跑臺(tái)訓(xùn)練。于訓(xùn)練48小時(shí)后采集小鼠腿部骨骼肌,并提取總RNA,采用miScript miRNA PCR Arrays檢測(cè)骨骼肌miRNA的表達(dá);采用DIANA-microT-CDS、TargetScan對(duì)差異表達(dá)的miRNA進(jìn)行靶基因預(yù)測(cè),Cytoscape Bingo工具對(duì)靶基因進(jìn)行Gene Ontology分析(GO分析),mirPath v.3工具對(duì)差異表達(dá)的miRNA進(jìn)行通路分析。研究結(jié)果:1)共發(fā)現(xiàn)58個(gè)有氧運(yùn)動(dòng)影響骨骼肌差異表達(dá)的miRNAs,其中上調(diào)表達(dá)的miRNAs有miR-411-5p、miR-340-5p、miR-148b-3p 等,共計(jì)44個(gè);下調(diào)表達(dá)的miRNAs共有miR-709、miR-1947-3p、miR-667-5p 等14個(gè)。2)靶基因預(yù)測(cè)結(jié)果顯示,上調(diào)表達(dá)的miRNA共有9 122個(gè)靶基因,下調(diào)表達(dá)的miRNAs共有3 636個(gè)靶基因。3)GO分析發(fā)現(xiàn),上調(diào)表達(dá)的miRNA的靶基因GO功能富集主要包括核酸結(jié)合、蛋白質(zhì)結(jié)合、DNA結(jié)合、調(diào)節(jié)基因表達(dá)、大分子代謝過(guò)程等;下調(diào)表達(dá)的miRNA的靶基因GO功能富集主要包括核酸結(jié)合、蛋白質(zhì)結(jié)合、核酸代謝過(guò)程、轉(zhuǎn)錄過(guò)程等。4)miRNA 通路分析結(jié)果顯示,上調(diào)表達(dá)的miRNA靶向的通路有MAPK信號(hào)通路、mTOR信號(hào)通路、破骨細(xì)胞分化等;下調(diào)表達(dá)的miRNA靶向的通路有糖胺聚糖生物合成 - 硫酸軟骨素信號(hào)通路、Wnt信號(hào)通路、MAPK信號(hào)通路等。結(jié)論:有氧運(yùn)動(dòng)能夠引起骨骼肌內(nèi)miRNA的差異表達(dá);差異表達(dá)
關(guān)鍵詞:有氧運(yùn)動(dòng);microRNA;骨骼肌;生物信息學(xué)分析
Abstract:Objective:To analyze the functions of miRNAs which were affected by 8-week aerobic exercise in skeletal muscle of mice. Methods:Twenty C57BL/6J mice were randomly divided into exercise (E) and control (C) groups. The E group were trained on a treadmill with a program of slope 0°, 12m/min, 60min/day, and 5 days/week. The C group lived normally without training. After 8-week of training, skeletal muscles were harvested for RNA extraction. Subsequently, miScript miRNA PCR Arrays was conducted to identify the differentially expressed miRNAs between two groups. Target gene prediction was performed by using TargetScan and microT-CDS tools. Gene Ontology analysis (GO) on the target gene was performed with Cytoscape Bingo. MirPath v.3 from the DIANA tools was used to execute the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Results: A total of 58 miRNAs affecting the differential expression of skeletal muscle were found. 44 miRNAs were upregulated (miR-411-5p, miR-340-5p, miR-148b-3p, etc.) and 14 miRNAs were downregulated (miR-709, miR-1947-3p, miR-667-5p, etc.) after the aerobic exercise. Prediction of target genes showed that there were a total of 9122 target genes for the up-regulated miRNAs, while 3636 target genes for the down-regulated miRNAs. GO analysis revealed that the differentially expressed miRNAs participated in a variety of molecular functions and biological processes including nucleic acid binding, protein binding, regulation of gene expression, macromolecule metabolic process and others. KEGG analysis showed that the up-regulated miRNAs were significantly enriched in MAPK, Wnt and mTOR signaling pathway. The down-regulated miRNAs were mainly enriched in MAPK, Wnt signaling pathway. Conclusion:Differential expression of miRNAs in skeletal muscle could be induced by Aerobic exercise. The physiological and biochemical processes may be regulated by the differentially expressed miRNAs in skeletal muscle by targeting MAPK signaling pathway, Wnt signaling pathway and mTOR signaling pathway, which provide directions for further research.
Key words: Aerobic Exercise; MicroRNA; Skeletal Muscle; Bioinformatics Analysis
骨骼肌是機(jī)體重要的動(dòng)力源,微小RNA (microRNA, miRNA)參與對(duì)骨骼肌細(xì)胞增殖、分化、肌肉萎縮、骨骼肌重塑、骨骼肌血管再生等的多種生理功能的調(diào)節(jié)作用[1-3]。MiRNA是一類長(zhǎng)度約22個(gè)核苷酸的單鏈非編碼RNA,其主要的作用是通過(guò)抑制靶基因的轉(zhuǎn)錄后翻譯或者降解其mRNA,進(jìn)而負(fù)性調(diào)控動(dòng)植物細(xì)胞內(nèi)的基因表達(dá)[4]。新近研究發(fā)現(xiàn),骨骼肌特異性miRNA(Muscle-specific microRNAs,myomiRs)對(duì)骨骼肌的生理功能的調(diào)控起著十分重要的作用[1]?!斑\(yùn)動(dòng)是良醫(yī)”,一些文獻(xiàn)已報(bào)道有氧運(yùn)動(dòng)影響增齡或病理性的骨骼肌萎縮、骨骼肌肥大等生理過(guò)程[5-7],也可影響骨骼肌中miRNA的表達(dá)水平[8]。然而,有規(guī)律的長(zhǎng)期有氧運(yùn)動(dòng)會(huì)影響哪些miRNA表達(dá),以及這些miRNA在有氧運(yùn)動(dòng)中主要介導(dǎo)哪些信號(hào)通路的變化,國(guó)內(nèi)外未見(jiàn)報(bào)道。
因此,本研究以C57BL/6J雄性小鼠為研究對(duì)象,觀察8周有氧運(yùn)動(dòng)后,小鼠骨骼肌中miRNA的表達(dá)變化,并對(duì)小鼠骨骼肌中差異表達(dá)的miRNA進(jìn)行生物信息學(xué)的分析(包括靶基因預(yù)測(cè)、GO功能注釋分析和通路分析),從miRNA角度探討有氧運(yùn)動(dòng)影響骨骼肌生理過(guò)程的可能調(diào)控機(jī)制,以期為后續(xù)研究提供方向和生物信息學(xué)依據(jù)。
1 材料與方法
1.1 研究對(duì)象
健康 8 周齡C57BL/6J雄性小鼠(購(gòu)于維通利華公司實(shí)驗(yàn)動(dòng)物技術(shù)有限公司,動(dòng)物合格證書:SCX-K(京)2009-0004)20 只,按體重隨機(jī)分為兩組:安靜對(duì)照組(C組)和有氧運(yùn)動(dòng)組(E組),每組 10 只。小鼠體重(18.37±2.26)g,每籠 3~4 只飼養(yǎng)于北京體育大學(xué)動(dòng)物房,動(dòng)物房溫度保持在 20℃~25℃,相對(duì)濕度保持在 50%~70%,每天光照 12 h(7:00-19:00),各組動(dòng)物均自由進(jìn)食和飲水。
1.2 干預(yù)方案
C組、E組小鼠正常籠中活動(dòng);E組小鼠首先進(jìn)行1周適應(yīng)性跑臺(tái)訓(xùn)練,方案為:坡度0°,跑速12 m/min,持續(xù)時(shí)間15 min/天,運(yùn)動(dòng)頻率5天/周。之后采用正式訓(xùn)練方案:坡度0°,跑速12 m/min(約75%最大攝氧量強(qiáng)度)[9],運(yùn)動(dòng)強(qiáng)度持續(xù)時(shí)間60 min/天,運(yùn)動(dòng)頻率5天/周,共8周。
1.3 取材
所有小鼠取材均在8周最后一次運(yùn)動(dòng)后48 h進(jìn)行。小鼠脫頸椎處死,立即取小鼠兩側(cè)腿部骨骼肌,迅速稱量,用錫紙包裹,標(biāo)記,立刻投入液氮中。然后轉(zhuǎn)入-80℃冰箱,保存待用。
1.4 miRNA檢測(cè)
取50 mg小腿骨骼肌組織,采用miRNeasy Mini Kit(Qiagen GmbH,德國(guó))提取骨骼肌總RNA。采用Nanodrop 2000(Thermo Fisher Scientifc,美國(guó))檢測(cè)RNA提取質(zhì)量和濃度。采用miScript II RT Kit(Qiagen GmbH,德國(guó))進(jìn)行反轉(zhuǎn)錄合成cDNA,反轉(zhuǎn)錄體系為:5× miScript HiSpec Buffer 4μL,10× miScript Nucleics Mix 2 μL,RNase-free water 10.5 μL,miScript Reverse Transcriptase Mix 2 μL,Template RNA 1.5 μL。采用miScript SYBR Green PCR Kit、miScript miRNA PCR Arrays(Qiagen GmbH,德國(guó))對(duì)miRNA進(jìn)行基于SYBR Green法的real-time qPCR分析。采用ABI7500熒光定量 PCR儀(Thermo Fisher Scientifc,美國(guó))檢測(cè)CT值。RT-PCR反應(yīng)體系為2× QuantiTect SYBR Green Master Mix 12.5 μL, 10x miScript Universal Primer 2.5 μL,RNase-free water 9.8 μL,cDNA 模板 0.2 μL。RT-PCR反應(yīng)條件為:激活 HotStart DNA Taq 酶95℃ 15 min;變性94℃ 15 s,融合55℃ 30 s,延伸70℃ 30 s,40個(gè)循環(huán);添加溶解曲線。使用2-△△CT法計(jì)算實(shí)驗(yàn)組相對(duì)于對(duì)照組的表達(dá)差異倍數(shù)。
1.5 miRNA靶基因預(yù)測(cè)
采用DIANA-microT-CDS和TargetScan在線預(yù)測(cè)軟件工具對(duì)差異表達(dá)的miRNA進(jìn)行靶基因預(yù)測(cè)。分別預(yù)測(cè)運(yùn)動(dòng)上調(diào)miRNA的靶基因和運(yùn)動(dòng)下調(diào)miRNA的靶基因。由于不同的預(yù)測(cè)工具在算法上存在差異,為增加預(yù)測(cè)的準(zhǔn)確性,選取能同時(shí)被這兩個(gè)預(yù)測(cè)工具預(yù)測(cè)到的基因作為差異miRNA的靶基因。
1.6 Gene Ontology(GO)分析
本研究采用Cytoscape Bingo 插件對(duì)靶基因進(jìn)行GO功能注釋分析。GO是一個(gè)國(guó)際標(biāo)準(zhǔn)化基因功能分類體系,由基因本體聯(lián)合會(huì)所建立,適用于對(duì)基因功能進(jìn)行限定和描述。該體系包含基因分子功能(Molecular Function,MF)、細(xì)胞組分(Cellular Component,CC)、生物過(guò)程(Biological Process,BP)等內(nèi)容。通過(guò)這三個(gè)方面描述miRNA靶基因及其產(chǎn)物具有的分子功能、參與的生物過(guò)程以及位于細(xì)胞中的位置。
1.7 miRNA通路分析
采用DIANA-mirPath v.3分析工具對(duì)差異表達(dá)的miRNA進(jìn)行通路分析,預(yù)測(cè)miRNA能夠影響的信號(hào)通路。該分析工具集成了主流的miRNA靶基因數(shù)據(jù)庫(kù),輸入差異表達(dá)的miRNA,通過(guò)計(jì)算即可獲得miRNA對(duì)應(yīng)靶基因的信號(hào)通路,從而獲知miRNA可能通過(guò)作用于哪些靶基因的信號(hào)通路而影響骨骼肌的生理過(guò)程。
1.8 統(tǒng)計(jì)學(xué)分析
miRNA差異表達(dá)采用Student t檢驗(yàn)計(jì)算P值;GO 分析采用Cytoscape Bingo工具里的超幾何分布方法計(jì)算P值,采用多重比較檢驗(yàn),確定功能注釋的誤判率(FDR),獲得校正后P值;miRNA通路分析采用mirPath v.3分析工具里的Fisher 精確檢驗(yàn)計(jì)算P值;各分析方法以P<0.05 為顯著性閾值。
2 結(jié)果
2.1 8周有氧運(yùn)動(dòng)對(duì)骨骼肌miRNAs表達(dá)的影響
本研究選取差異表達(dá)倍數(shù)的絕對(duì)值≥2.0(|Fold Change|≥2.0),為差異表達(dá)的miRNAs。若Fold Change>0表示有氧運(yùn)動(dòng)上調(diào)的miRNA;若Fold Change<0則為有氧運(yùn)動(dòng)下調(diào)的miRNA,結(jié)果如表1。
由表1可知,共發(fā)現(xiàn)58個(gè)差異表達(dá)的miRNAs,其中上調(diào)表達(dá)的miRNAs有44個(gè),下調(diào)表達(dá)的miRNAs共有14個(gè)。
2.2 miRNA靶基因預(yù)測(cè)結(jié)果
通過(guò)DIANA-microT-CDS和TargetScan軟件分別預(yù)測(cè)每個(gè)差異表達(dá)的miRNA的靶基因,兩個(gè)預(yù)測(cè)軟件的結(jié)果取交集,其結(jié)果如表2和表3。
由表2和表3可知,通過(guò)DIANA-microT-CDS和TargetScan預(yù)測(cè)有氧運(yùn)動(dòng)上調(diào)、下調(diào)miRNA的靶基因有9 122和3 636個(gè)。
2.3 GO分析結(jié)果
采用Cytoscape Bingo 插件對(duì)靶基因進(jìn)行GO功能注釋分析,將得到的分子功能、生物過(guò)程和細(xì)胞組分注釋結(jié)果,按P值從小到大排列,前5位結(jié)果如表4、表5。
從表4中可以看出,有氧運(yùn)動(dòng)上調(diào)miRNA的靶基因,其分子功能主要是與結(jié)合功能相關(guān),如與核酸、蛋白質(zhì)、鋅離子結(jié)合等;靶基因參與的生物過(guò)程主要是基因表達(dá)和代謝過(guò)程的調(diào)控,如基因表達(dá)、大分子和初級(jí)代謝過(guò)程的調(diào)節(jié)等;靶基因編碼的蛋白定位于的細(xì)胞組分的不同部位,如細(xì)胞內(nèi)、細(xì)胞核、細(xì)胞器等。
從表5中可以看出,有氧運(yùn)動(dòng)下調(diào)miRNA的靶基因的分子功能與結(jié)合功能相關(guān),如與核酸、蛋白質(zhì)以及DNA的結(jié)合等;靶基因參與的生物過(guò)程主要是細(xì)胞內(nèi)過(guò)程、基因表達(dá)過(guò)程以及核酸代謝過(guò)程等;靶基因編碼的蛋白定位于細(xì)胞組分的不同部位,如細(xì)胞器等。
3.1 8周有氧運(yùn)動(dòng)對(duì)小鼠骨骼肌miRNA表達(dá)的影響
在本研究中,8周的有氧運(yùn)動(dòng)引起44個(gè)miRNA的表達(dá)水平升高,14個(gè)miRNA的表達(dá)水平降低。運(yùn)動(dòng)上調(diào)表達(dá)的miRNA中,miR-1的表達(dá)水平最高,為對(duì)照組的100.92倍。在C2C12細(xì)胞中,miR-1可通過(guò)靶向組蛋白去乙?;?(HDAC 4)促進(jìn)肌肉的發(fā)育[2]。肌肉活檢實(shí)驗(yàn)發(fā)現(xiàn),在人骨骼肌細(xì)胞分化的過(guò)程中,miR-1的表達(dá)水平顯著升高,提示miR-1在人骨骼肌細(xì)胞的分化過(guò)程中發(fā)揮重要作用[10]。在急性有氧運(yùn)動(dòng)干預(yù)的實(shí)驗(yàn)中,Safdar等人發(fā)現(xiàn),急性有氧運(yùn)動(dòng)可以上調(diào)小鼠骨骼肌內(nèi)miR-1的表達(dá)水平[8]。Nielsen等人研究發(fā)現(xiàn),人骨骼肌中的miR-1在急性有氧訓(xùn)練后的表達(dá)水平升高,但在12周高強(qiáng)度有氧運(yùn)動(dòng)后,miR-1的表達(dá)水平下調(diào)[11]。MiR-1是myomiRs中的一種,常見(jiàn)的myomiRs還包括miR-133、miR-206、miR-208以及miR-499等[1]。但本研究中未發(fā)現(xiàn)miR-133、 miR-206 和 miR-208的表達(dá)水平顯著變化。除此外,本研究還首次發(fā)現(xiàn)有氧運(yùn)動(dòng)可引起小鼠骨骼肌中miR-17、miR-19、miR-27等非myomiRs的差異表達(dá)上調(diào),表明這些miRNA在有氧運(yùn)動(dòng)介導(dǎo)的骨骼肌生理過(guò)程的調(diào)節(jié)中也起著重要作用。已有文獻(xiàn)報(bào)道m(xù)iR-17 、miR-19可調(diào)節(jié)C2C12細(xì)胞的增殖分化[12]。MiR-27a可以通過(guò)抑制PPARγ基因的表達(dá)而抑制骨骼肌的胰島素抵抗[13],且MiR-27a還與骨骼肌肥大或糖脂代謝調(diào)節(jié)相關(guān)[14-15]。
在運(yùn)動(dòng)下調(diào)表達(dá)的miRNA中,僅有miR-744[16]、miR-486[17]和miR-425-3p[18]有報(bào)道與骨骼肌的增殖分化和肌肉肥大相關(guān),它們都屬于非myomiRs。
3.2 差異表達(dá)miRNA的靶基因預(yù)測(cè)及生物功能分析
MiRNA的靶基因預(yù)測(cè)及生物功能分析表明,無(wú)論是上調(diào)的miRNA還是下調(diào)的miRNA,在分子功能上都與大分子(核酸、蛋白質(zhì))或離子(金屬離子、陽(yáng)離子)的結(jié)合有關(guān),進(jìn)而可能會(huì)影響轉(zhuǎn)錄活性及激酶活性。已有研究發(fā)現(xiàn)運(yùn)動(dòng)可以增加肌細(xì)胞增強(qiáng)因子2A基因(MEF2A)與小鼠骨骼肌中肉毒堿棕櫚?;D(zhuǎn)移酶1b基因(Cpt1b)啟動(dòng)子的結(jié)合[19],MEF2A是肌生成過(guò)程中重要的轉(zhuǎn)錄因子,參與骨骼肌發(fā)育及再生。而Mef2a(編碼MEF2A蛋白)正是本研究預(yù)測(cè)差異表達(dá)miR-101a-3p、miR-106a-5p、miR-17-5p、miR-190a-5p、miR-20b-5p等的共同靶基因。Cpt1b基因編碼的CPT蛋白是骨骼肌線粒體脂肪酸β-氧化過(guò)程中重要的限速酶,提示在有氧運(yùn)動(dòng)中引起的這些差異表達(dá)的miRNAs可能參與了骨骼肌的能量代謝過(guò)程。另外,運(yùn)動(dòng)還可以影響MEF2A與葡萄糖轉(zhuǎn)運(yùn)體(Glut4)的結(jié)合,進(jìn)而影響葡萄糖的轉(zhuǎn)運(yùn)[20]。
在運(yùn)動(dòng)影響激酶表達(dá)的研究中,已發(fā)現(xiàn)有氧運(yùn)動(dòng)可上調(diào)蛋白激酶B(PKB/Akt)的mRNA和蛋白表達(dá),進(jìn)而影響骨骼肌的生理過(guò)程[21]。本研究預(yù)測(cè)結(jié)果顯示,miR-1187、miR-19b-3p、miR-744-5p等均靶向Akt基因,提示這些miRNAs可能參與了運(yùn)動(dòng)影響Akt表達(dá)的調(diào)控。
3.3 差異表達(dá)miRNA的調(diào)控通路分析
從本研究中可以看到,在有氧運(yùn)動(dòng)上/下調(diào)miRNA介導(dǎo)的信號(hào)通路中,絲裂原活化蛋白激酶(MAPK)和Wnt信號(hào)通路是共同的調(diào)節(jié)通路,這也是目前研究相對(duì)較多的與骨骼肌生長(zhǎng)發(fā)育相關(guān)的通路。
MAPK信號(hào)通路是細(xì)胞內(nèi)的一個(gè)蛋白鏈,可將信號(hào)傳遞至細(xì)胞核DNA,調(diào)控基因表達(dá)。MAPK在細(xì)胞增殖、分化、凋亡與存活中均發(fā)揮作用[22] 。運(yùn)動(dòng)能夠激活MAPK通路,促進(jìn)通路中的ERK1/2、p38、和JNK表達(dá),被認(rèn)為是運(yùn)動(dòng)對(duì)細(xì)胞的應(yīng)激反應(yīng)[23]。Sylvius等人采用生物信息學(xué)方法分析表明,肌營(yíng)養(yǎng)不良患者骨骼肌中差異表達(dá)miRNA(miR-148a、miR-335和miR-136等)可能通過(guò)MAPK通路調(diào)節(jié)骨骼肌的修復(fù)[24]。然而,目前仍缺乏運(yùn)動(dòng)骨骼肌中miRNA對(duì)MAPK信號(hào)通路調(diào)節(jié)的研究。從本研究中差異表達(dá)的miRNA調(diào)控通路分析結(jié)果顯示, miR-340-5p、miR-106a-5p、miR-29a-5p等14個(gè)miRNA可通過(guò)靶向Mapk、Sos2等基因?qū)趋兰APK信號(hào)通路產(chǎn)生影響。有氧運(yùn)動(dòng)可能介導(dǎo)miRNA靶向MAPK信號(hào)通路,從而引起骨骼肌生理功能改變。運(yùn)動(dòng)-miRNA-MAPK通路可能是運(yùn)動(dòng)引起骨骼肌重塑的機(jī)制之一,但仍需要進(jìn)一步的實(shí)驗(yàn)驗(yàn)證。
在目前已有的實(shí)驗(yàn)性研究中,miRNA對(duì)Wnt信號(hào)通路的調(diào)節(jié)多集中于癌癥研究,如miR-340通過(guò)靶向Wnt途徑抑制乳腺癌細(xì)胞的遷移、侵襲和轉(zhuǎn)移[25]。miR-199a-5p通過(guò)靶向Wnt2信號(hào)通路調(diào)節(jié)平滑肌細(xì)胞的增殖和形態(tài)學(xué)改變 [26]。零星的數(shù)據(jù)顯示,miRNA可通過(guò)Wnt信號(hào)通路發(fā)揮對(duì)骨骼肌細(xì)胞生長(zhǎng)發(fā)育的調(diào)控作用。研究表明,miR-139-5p可通過(guò)抑制Wnt信號(hào)通路而促進(jìn)C2C12細(xì)胞的生成[27],但在本研究中沒(méi)有發(fā)現(xiàn)運(yùn)動(dòng)引起miR-139-5p的差異表達(dá)。另外,在我們的分析結(jié)果中發(fā)現(xiàn),有氧運(yùn)動(dòng)引起了miR-199a-5p、miR-340-5p、miR-376b-5p、miR-106a-5p等miRNA的差異表達(dá)變化,并且發(fā)現(xiàn)這些miRNA均可靶向調(diào)控Wnt通路。
此外,雷帕霉素靶蛋白(mTOR)信號(hào)通路也可調(diào)控細(xì)胞的代謝、生長(zhǎng)、增殖和存活[28],miRNA與mTOR信號(hào)通路的關(guān)系是目前研究miRNA的熱點(diǎn)之一。Jia等人研究發(fā)現(xiàn),在C2C12細(xì)胞分化階段miR-199a呈現(xiàn)高表達(dá),進(jìn)而miR-199a可通過(guò)靶向IGF-1、mTOR等基因,發(fā)揮抑制肌細(xì)胞分化、促進(jìn)肌細(xì)胞肥大的作用[29]。Wang在采用胍基乙酸誘導(dǎo)的骨骼肌增殖分化模型中發(fā)現(xiàn),miR-133a-3p和 miR-1a-3p可以通過(guò)靶向Akt/mTOR/S6K信號(hào)通路促進(jìn)成肌細(xì)胞分化和肌肉生長(zhǎng) [30]。運(yùn)動(dòng)通過(guò)mTOR信號(hào)通路調(diào)節(jié)小鼠骨骼肌蛋白質(zhì)表達(dá)已被證實(shí)[31],并有研究發(fā)現(xiàn)mTOR信號(hào)通路參與了運(yùn)動(dòng)誘導(dǎo)的骨骼肌肥大[32],本研究的結(jié)果分析顯示,有氧運(yùn)動(dòng)引起的差異表達(dá)miRNAs中有miR-340-5p、miR-148b-3p、miR-425-5p 等14個(gè)miRNAs可以調(diào)控mTOR信號(hào)通路,其中miR-486被實(shí)驗(yàn)驗(yàn)證可以通過(guò)mTOR信號(hào)通路調(diào)節(jié)骨骼肌纖維的大小[17]。然而,運(yùn)動(dòng)介導(dǎo)miRNA對(duì)mTOR信號(hào)通路的調(diào)節(jié)作用機(jī)制并不十分清楚。
除上述三個(gè)通路外,目前文獻(xiàn)缺乏對(duì)本研究中列舉的受差異表達(dá)miRNA調(diào)控的其他信號(hào)通路與這些miRNA關(guān)系的研究報(bào)道。揭示運(yùn)動(dòng)、miRNA與這些通路之間的關(guān)系,還有許多工作要做。
4 結(jié)論
8周有氧運(yùn)動(dòng)引起骨骼肌內(nèi)miRNA的差異表達(dá);差異表達(dá)miRNA的生物功能涵蓋基因表達(dá)調(diào)控、代謝調(diào)控等眾多生物功能;有氧運(yùn)動(dòng)引起差異表達(dá)miRNAs可能通過(guò)靶向MAPK信號(hào)通路、Wnt信號(hào)通路和mTOR信號(hào)通路等調(diào)控骨骼肌生長(zhǎng)發(fā)育和生理生化過(guò)程。本研究可為后續(xù)研究有氧運(yùn)動(dòng)對(duì)骨骼肌生長(zhǎng)發(fā)育和生理生化過(guò)程的影響機(jī)制提供方向。
參考文獻(xiàn):
[1]HORAK M, NOVAK J, BIENERTOVA-VASKU J. Muscle-specific microRNAs in skeletal muscle development[J]. Developmental biology, 2016, 410(1):1-13.
[2]Chen J F, MANDEL E M, THOMSON J M, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nature genetics, 2006, 38(2):228-233.
[3]Dai Y, Wang Y M, Zhang W R, et al. The role of microRNA-1 and microRNA-206 in the proliferation and differentiation of bovine skeletal muscle satellite cells[J]. In vitro cellular & developmental biology Animal, 2016, 52(1):27-34.
[4]BARTEL D P. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
[5]THEILEN N T, KUNKEL G H, TYAGI S C. The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy[J]. Journal of cellular physiology, 2017, 232(9):2348-2358.
[6]SOUZA R W, PIEDADE W P, SOARES L C, et al. Aerobic exercise training prevents heart failure-induced skeletal muscle atrophy by anti-catabolic, but not anabolic actions[J]. PloS one, 2014, 9(10):e110020.
[7]MCGLORY C, PHILLIPS S M. Exercise and the Regulation of Skeletal Muscle Hypertrophy[J]. Progress in molecular biology and translational science, 2015(135):153-173.
[8]SAFDAR A, ABADI A, AKHTAR M, et al. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice[J]. PloS one, 2009, 4(5):e5610.
[9]Gong H,Xie J,Zhang N,et al.MEF2A binding to the Glut4 promoter occurs via an AMPKalpha2-dependent mechanism[J].Medicine and science in sports and exercise,2011,43(8):1441-1450.
[10]KOUTSOULIDOU A,MASTROYIANNOPOULOS N P,F(xiàn)URLING D,et al.Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle[J]. BMC developmental biology, 2011, 11(34):1-9.
[11]NIELSEN S, SCHEELE C, YFANTI C, et al. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle[J]. The Journal of physiology, 2010, 588(Pt 20):4029-4037.
[12]Kong D, He M, Yang L, et al. MiR-17 and miR-19 cooperatively promote skeletal muscle cell differentiation[J]. Cellular and molecular life sciences :CMLS, 2019,
[13]Yu Y, Du H, Wei S, et al. Adipocyte-Derived Exosomal MiR-27a Induces Insulin Resistance in Skeletal Muscle Through Repression of PPARgamma[J]. Theranostics, 2018, 8(8):2171-2188.
[14]HERNANDEZ-TORRES F, ARANEGA A E, FRANCO D. Identification of regulatory elements directing miR-23a-miR-27a-miR-24-2 transcriptional regulation in response to muscle hypertrophic stimuli[J]. Biochimica et biophysica acta, 2014, 1839(9):885-897.
[15]CHEMELLO F, GRESPI F, ZULIAN A, et al. Transcriptomic Analysis of Single Isolated Myofibers Identifies miR-27a-3p and miR-142-3p as Regulators of Metabolism in Skeletal Muscle[J]. Cell reports, 2019, 26(13):3784-3797 e8.
[16]Peng S, Song C, Li H, et al. Circular RNA SNX29 Sponges miR-744 to Regulate Proliferation and Differentiation of Myoblasts by Activating the Wnt5a/Ca(2+) Signaling Pathway[J]. Molecular therapy Nucleic acids, 2019(16):481-493.
[17]HITACHI K, NAKATANI M, TSUCHIDA K. Myostatin signaling regulates Akt activity via the regulation of miR-486 expression[J]. The international journal of biochemistry & cell biology, 2014(47):93-103.
[18]JAVED R, Jing L, Yang J, et al. miRNA transcriptome of hypertrophic skeletal muscle with overexpressed myostatin propeptide[J]. BioMed research international, 2014(2014):328935.
[19]Yuan H, Niu Y, Liu X, et al. Exercise increases the binding of MEF2A to the Cpt1b promoter in mouse skeletal muscle[J]. Acta physiologica, 2014, 212(4):283-292.
[20]JOSEPH J S, AYELESO A O, MUKWEVHO E. Exercise increases hyper-acetylation of histones on the Cis-element of NRF-1 binding to the Mef2a promoter:Implications on type 2 diabetes[J]. Biochemical and biophysical research communications, 2017, 486(1):83-87.
[21]SUHR F, BRENIG J, MULLER R, et al. Moderate exercise promotes human RBC-NOS activity, NO production and deformability through Akt kinase pathway[J]. PloS one, 2012, 7(9):e45982.
[22]ARTHUR J S, LEY S C. Mitogen-activated protein kinases in innate immunity[J]. Nature reviews Immunology, 2013, 13(9):679-692.
[23]GOODYEAR L J, CHANG P Y, SHERWOOD D J, et al. Effects of exercise and insulin on mitogen-activated protein kinase signaling pathways in rat skeletal muscle[J]. The American journal of physiology, 1996, 271(2 Pt 1):E403-408.
[24]SYLVIUS N, BONNE G, STRAATMAN K, et al. MicroRNA expression profiling in patients with lamin A/C-associated muscular dystrophy[J]. FASEB journal :official publication of the Federation of American Societies for Experimental Biology, 2011, 25(11):3966-3978.
[25]Shi S, Chen X, Liu H, et al. LGR5 acts as a target of miR-340-5p in the suppression of cell progression and drug resistance in breast cancer via Wnt/beta-catenin pathway[J]. Gene, 2019,(683):47-53.
[26]HASHEMI GHEINANI A, BURKHARD F C, REHRAUER H, et al. MicroRNA MiR-199a-5p regulates smooth muscle cell proliferation and morphology by targeting WNT2 signaling pathway[J]. The Journal of biological chemistry, 2015, 290(11):7067-7086.
[27]Mi L, Li Y, Zhang Q, et al. MicroRNA-139-5p regulates C2C12 cell myogenesis through blocking Wnt/beta-catenin signaling pathway[J]. Biochemistry and cell biology = Biochimie et biologie cellulaire, 2015, 93(1):8-15.
[28]LAPLANTE M, SABATINI D M. mTOR signaling at a glance[J]. Journal of cell science, 2009, 122(Pt 20):3589-3594.
[29]Jia L, Li Y F, Wu G F, et al. MiRNA-199a-3p regulates C2C12 myoblast differentiation through IGF-1/AKT/mTOR signal pathway[J]. International journal of molecular sciences, 2013, 15(1):296-308.
[30]Wang Y, Ma J, Qiu W, et al. Guanidinoacetic Acid Regulates Myogenic Differentiation and Muscle Growth Through miR-133a-3p and miR-1a-3p Co-mediated Akt/mTOR/S6K Signaling Pathway[J]. International journal of molecular sciences, 2018, 19(9).
[31]WILLIAMSON D L, KUBICA N, KIMBALL S R, et al. Exercise-induced alterations in extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin (mTOR) signalling to regulatory mechanisms of mRNA translation in mouse muscle[J]. The Journal of physiology, 2006, 573(Pt 2):497-510.
[32]Zeng F, Zhao H, Liao J. Androgen interacts with exercise through the mTOR pathway to induce skeletal muscle hypertrophy[J]. Biology of sport, 2017, 34(4):313-321.
山東體育學(xué)院學(xué)報(bào)2020年2期