黑龍江省黑河市第五中學(xué) 黑龍江 省黑河市164300
在《張邱建算經(jīng)》中,原書卷下第38 題,也是全書的最后一題:“今有雞翁一,值錢伍;雞母一,值錢三;雞雛三,值錢一。凡百錢買雞百只,問(wèn)雞翁、母、雛各幾何?”
這個(gè)問(wèn)題用算術(shù)或方程來(lái)解都可以,初中的實(shí)際問(wèn)題我們運(yùn)用的都是方程的思想來(lái)解。
下面就來(lái)談?wù)劤踔袛?shù)學(xué)實(shí)際問(wèn)題與各類方程的應(yīng)用。
初中一共有四種類型的方程。
1.一元一次方程。
定義:一元一次方程指只含一個(gè)未知數(shù)、未知數(shù)最高次數(shù)為1 且兩邊都為整式的等式。形如:ax+b=c(a、b、c 都是常數(shù),a ≠0)
2.二元一次方程組。
定義:由幾個(gè)方程組成的一組方程叫做方程組。如果方程組中含有兩個(gè)未知數(shù),且含未知數(shù)的項(xiàng)的次數(shù)都是一次,那么這樣的方程組叫做二元一次方程組。
3.分式方程。
4.一元二次方程。
定義:只有一個(gè)未知數(shù)且未知數(shù)最高次數(shù)為2 的整式方程,其一般形式為ax2+bx+c=0(其中a、b、c 是常數(shù),a≠0)
行程問(wèn)題、船航行和飛機(jī)飛行的問(wèn)題、工程問(wèn)題、銷售問(wèn)題、調(diào)配問(wèn)題、配套問(wèn)題、方案設(shè)計(jì)問(wèn)題等。
1.行程問(wèn)題的基本量:路程、速度、時(shí)間。
公式:路程=速度×?xí)r間,時(shí)間=路程÷速度,速度=路程÷時(shí)間。行程問(wèn)題的基本類型有:相遇問(wèn)題和追及問(wèn)題。(1)相遇問(wèn)題:快車的路程+慢車的路程=原距。(2)追及問(wèn)題:快車的路程-慢車的路程=原距。
2.輪船航行和飛機(jī)飛行的問(wèn)題:
順?biāo)橈L(fēng))速度=靜水(無(wú)風(fēng))速度+水流(風(fēng)速)速度,
逆水(逆風(fēng))速度=靜水(無(wú)風(fēng))速度-水流(風(fēng)速)速度;
公式變形:水流速度=(順?biāo)俣?逆水速度)÷2。
3.工程問(wèn)題:
工程問(wèn)題中的三個(gè)量:工作總量、工作效率、工作時(shí)間。
它們的關(guān)系為:工作總量=工作效率×工作時(shí)間。通常工作總量設(shè)為單位1。
4.銷售問(wèn)題:
常見公式:利潤(rùn)=成本×利潤(rùn)率;定價(jià)=成本×(1+利潤(rùn)率);售價(jià)=標(biāo)價(jià)×折扣率。
第二、明代白銀貨幣化引發(fā)閩東銀礦開采熱,在推進(jìn)白銀文化形成中亦引發(fā)諸多社會(huì)問(wèn)題。這些問(wèn)題引起朝廷、地方官吏、鄉(xiāng)紳階層、礦業(yè)主、礦工和平民百姓等各個(gè)層面人員的思想和行為等的變化,眾多人員皆指向白銀,于是白銀逐漸被神化,出現(xiàn)白銀拜物教;而礦稅監(jiān)的貪婪,地方官吏和鄉(xiāng)紳階層的反思、碰撞,礦主和礦工們關(guān)于開采技術(shù)、觀察天氣、完善管理環(huán)節(jié),進(jìn)而盜礦偷煎,甚至公然與政府對(duì)抗。平民百姓為銀絞盡腦汁為白銀產(chǎn)業(yè)鏈提供各類服務(wù)等。白銀文化在眾多推理下走向成熟。
5.配套問(wèn)題:
若甲:乙=a:b,則b×甲的數(shù)量=a×乙的數(shù)量。
同種實(shí)際問(wèn)題可以選用不同的方程,選用哪種方程主要決定于實(shí)際問(wèn)題中給定的已知條件和未知問(wèn)題,當(dāng)改變條件同時(shí)也改變結(jié)論,那么所要選擇的方程就不會(huì)一樣了。
例題:小李從A 地步行到B 地比乘公交車多用了3.6 個(gè)小時(shí),已知他步行的速度是8 千米/時(shí),公交車的速度是40 千米/時(shí),試求A、B 兩地之間相距多少千米?
解:設(shè)甲、乙兩地相距為x 千米。
x/8-3.6=x/40
總結(jié):此時(shí)用一元一次方程來(lái)解決。
變式一:小李從A 地步行到B 地比乘公交車多用了3.6 個(gè)小時(shí),已知A、B 兩地之間為120 千米,步行比乘坐公交車每小時(shí)少20 千米。求步行速度和公交車的速度分別是多少?
解:設(shè)步行速度是每小時(shí)x 千米,公交車的速度是每小時(shí)(x+20)
總結(jié):此時(shí)用分式方程來(lái)解決。
例題:一艘小船在A、B兩地航行,順流用10小時(shí),逆流用15小時(shí),已知水流速度是25 千米/時(shí),求船在靜水中的速度是多少?
解:設(shè)船在靜水中的速度是x 千米/小時(shí)。
10(x+25)=15(x-25)
總結(jié):此時(shí)用一元一次方程來(lái)解決。
變式一:一艘船在相距200千米的兩地航行,順流航行用10小時(shí),逆流用15 小時(shí),求船在靜水中的速度和水流速度各是多少?
解:設(shè)船在靜水中的速度是x 千米/小時(shí),水流速度是y 千米/小時(shí)。
總結(jié):此時(shí)用二元一次方程組來(lái)解決。
變式二:一艘船在相距200 千米的兩地航行,逆流比順流多用5 小時(shí),已知水流速度是25 千米/時(shí),求船在靜水中的速度。
解:設(shè)船在靜水中的速度是x 千米/小時(shí)。
200/(x+25)+5=200/(x-25)
總結(jié):此時(shí)用分式方程來(lái)解決。
綜上所述,初中常見的實(shí)際問(wèn)題比較簡(jiǎn)單,而方程也只有四種,因此每一種實(shí)際問(wèn)題所對(duì)應(yīng)選用的方程比較明顯。仔細(xì)辨別,從條件和結(jié)論中即可判斷出來(lái)。