文 鍵, 王春龍, 劉華清, 李超龍, 田 津, 王斯民
(1. 西安交通大學(xué) 能源與動力工程學(xué)院, 陜西 西安 710049;2. 西安交通大學(xué) 化學(xué)工程與技術(shù)學(xué)院, 陜西 西安 710049)
大型空分設(shè)備的發(fā)展,對板翅式換熱器的綜合性能提出了新的要求。板翅式換熱器的綜合性能主要包括流動換熱性能和承壓能力,翅片作為板翅式換熱器中最重要的結(jié)構(gòu),其結(jié)構(gòu)尺寸對板翅式換熱器的綜合性能影響較大。因此研究翅片結(jié)構(gòu)尺寸如何影響板翅式換熱器綜合性能就顯得十分重要。當(dāng)前國內(nèi)外的研究多集中在流動換熱性能,ISMAIL等[1]對波紋翅片進行數(shù)值模擬,研究了3個無量綱參數(shù)對傳熱和阻力特性的影響,指出翅片表面橫向渦是強化傳熱的關(guān)鍵。MAHDAVI等[2]利用Galerkin方法對波紋翅片流道內(nèi)二維流動進行分析,發(fā)現(xiàn)表面熱流率和傳熱系數(shù)之間存在非線性關(guān)系。高強等[3]對正弦波紋翅片表冷器的傳熱及阻力特性進行了實驗研究,發(fā)現(xiàn)濕工況下傳熱性能比干工況下高出5%~40%,并擬合得到總傳熱系數(shù)及阻力特性的經(jīng)驗關(guān)聯(lián)式。楊志[4]利用穩(wěn)態(tài)試驗法分析了不同流態(tài)下翅片的波動幅度對換熱器的傳熱和阻力特性的影響,其結(jié)果表明在過渡流狀態(tài)下波動幅度對波紋翅片的傳熱和綜合性能的影響較大,隨著波動幅度的增大,波紋翅片的綜合性能下降。
本文以板翅式換熱器波紋翅片為研究對象,選取翅高、翅距、翅厚、波長以及雙波高作為輸入?yún)?shù)來驅(qū)動幾何模型的生成,并且根據(jù)波紋翅片結(jié)構(gòu)特點,提出2個無量綱參數(shù)波紋尺度和波紋幅度來替代波長和波高進行研究,結(jié)合動態(tài)Kriging響應(yīng)面和遺傳算法,以JF因子最大和翅片結(jié)構(gòu)中應(yīng)力極值τmax最小為優(yōu)化目標(biāo),對波紋翅片結(jié)構(gòu)進行了性能優(yōu)化研究。
圖1為計算幾何模型,其中翅片參數(shù)包括翅高h、翅距s、翅厚t、波長L以及雙波高2A。
由于波紋翅片是通過波紋來加劇流體內(nèi)部的攪混,因此波長和雙波高之間存在較強的耦合作用。為了進一步刻畫波長和雙波高對翅片性能的影響,本文引入了2個無量綱參數(shù):波紋尺度ws以及波紋幅度wa,其定義如下:
在進行模擬計算時,入口邊界條件設(shè)為速度入口,入口溫度為300 K。由于在翅片結(jié)構(gòu)的進出口處添加了延長段,為了維持通道內(nèi)的雷諾數(shù)不變,需要將延長段入口速度進行換算,計算方法如下:
圖1 幾何模型Fig.1 The geometric model of the design
本文中當(dāng)量直徑定義為
出口邊界條件設(shè)為壓力出口,上下隔板表面邊界條件設(shè)為定壁溫(373.15 K);側(cè)面設(shè)定為對稱邊界條件,板翅材料為鋁,且忽略與外界的輻射與對流傳熱,通道流體為空氣,且假定其物性為常物性。固體域的約束條件為:在底面限制其沿豎直方向的位移,上表面加載恒定的壓力0.606 MPa。通道中設(shè)置為恒定壓力0.101 MPa,忽略通道內(nèi)部沿流動方向的壓降。
圖2 流體與固體域網(wǎng)格劃分示意圖Fig.2 Schematic diagram of fluid and solid domain meshing
計算模型的網(wǎng)格由mesh模塊生成,采用掃掠式網(wǎng)格劃分方法得到規(guī)整的結(jié)構(gòu)化網(wǎng)格,如圖2所示。由于流體流動邊界層和熱邊界層在靠近壁面的區(qū)域,速度梯度和溫度梯度較大,為更加精細地刻畫該區(qū)域內(nèi)流動換熱情況,應(yīng)對近壁區(qū)進行加密處理。
在求解過程中,動量方程及能量方程的離散格式采用二階迎風(fēng)格式,湍流模型選擇標(biāo)準(zhǔn)k-ε模型,求解方法采用SIMPLE算法。設(shè)置收斂判別條件為能量方程計算殘差為1×10-10,其他方程計算殘差均為1×10-6。
求解中涉及的基本方程包括連續(xù)性方程、動量方程和能量方程,以及應(yīng)力計算方程,具體方程可參見文獻[5]。
由數(shù)值模擬得到的數(shù)據(jù),可以分別通過計算得到翅片的傳熱因子j和摩擦因子f。
其中,傳熱因子j的定義方程為
摩擦因子f的定義方程為
選用JF因子作為翅片的綜合性能指標(biāo),
翅片的最大應(yīng)力也是翅片性能優(yōu)化的目標(biāo)之一,計算如下,
其中, σ1,σ2,σ3分別為相互正交的3個方向上的主應(yīng)力。
為保證計算結(jié)果的準(zhǔn)確性,同時縮短計算時間,對生成的網(wǎng)格進行了獨立性驗證,當(dāng)網(wǎng)格數(shù)量約為230萬時,j和f因子的計算值基本不發(fā)生變化(變化量小于1%),當(dāng)固體域網(wǎng)格達到約260萬時,最大應(yīng)力的計算值基本不發(fā)生變化(變化量小于1%)。
為了驗證數(shù)值模擬的正確性,將模擬計算值與文獻[7]中波紋翅片的實驗值進行對比,結(jié)果如圖3所示。從圖中可以看出,j因子和f因子均和實驗數(shù)據(jù)吻合較好。j因子數(shù)值模擬結(jié)果與實驗值的平均誤差為5.5%,而f因子數(shù)值模擬結(jié)果與實驗值的平均誤差為7.4%,二者誤差均低于10%,說明計算結(jié)果在一定程度上可以反映實際情況。對于數(shù)值模擬結(jié)果和實驗結(jié)果之間的偏差,其主要原因可能是計算模型的簡化,一方面可能沒有考慮到翅片表面粗糙度的影響,另一方面可能沒有考慮翅片和隔板間釬焊的影響。
圖3 實驗驗證Fig.3 Experimental verification
遺傳算法的優(yōu)化過程包括初始實驗設(shè)計、構(gòu)造響應(yīng)面和優(yōu)化目標(biāo)函數(shù)[6]。實驗設(shè)計選擇中心組合設(shè)計法,該方法具有試驗次數(shù)少、精度高、預(yù)測性好的特點。實驗設(shè)計點的數(shù)值模擬結(jié)果用來構(gòu)建響應(yīng)面,響應(yīng)面可以近似目標(biāo)函數(shù)與設(shè)計變量之間的關(guān)系。在響應(yīng)平面的基礎(chǔ)上,采用多目標(biāo)遺傳算法(MOGA)對結(jié)構(gòu)進行優(yōu)化。這種基于響應(yīng)面技術(shù)的優(yōu)化研究,是利用響應(yīng)面創(chuàng)建的輸入、輸出函數(shù),而非傳統(tǒng)的經(jīng)驗關(guān)聯(lián)式,所以在處理無經(jīng)驗關(guān)聯(lián)式或者經(jīng)驗關(guān)聯(lián)式不夠準(zhǔn)確的情況下非常有效,只要其幾何模型能夠參數(shù)化,優(yōu)化目標(biāo)能夠量化為目標(biāo)函數(shù),即可采用多目標(biāo)遺傳算法來進行優(yōu)化。
用波紋尺度ws以及波紋幅度wa來代替波長和雙波高這兩個參數(shù)進行多參數(shù)優(yōu)化研究,依據(jù)中心組合設(shè)計方法(CCD),針對目前波紋翅片主要使用的翅片參數(shù)范圍,此次選取的優(yōu)化范圍如下:h為4.5~9.5 mm;s為 1.0~3.0 mm;t為 0.1~0.3 mm;ws為 1.0~3.0;wa為 1/6~1/4;Re為 400~1 200。
圖4 敏感性分析Fig.4 Sensitivity analysis
4.1.1 翅片參數(shù)的敏感性分析
圖4是設(shè)計點處局部敏感性分析結(jié)果圖。對于j因子,影響最大的結(jié)構(gòu)參數(shù)為波紋尺度ws以及波紋幅度wa,翅距對j因子也有較大影響,翅高和翅厚對j因子的影響不顯著。對于f因子,波紋尺度ws以及波紋幅度wa的影響明顯大于翅高、翅厚、翅距3個翅片基本參數(shù),說明波紋翅片主要依靠波紋結(jié)構(gòu)來影響流動換熱。對于最大應(yīng)力,翅厚和翅距對其影響非常顯著,其他參數(shù)也在較大程度上影響最大應(yīng)力,所以結(jié)構(gòu)參數(shù)的改變會導(dǎo)致最大應(yīng)力的較大變化,因此在對波紋翅片承壓能力要求較高的場合,在設(shè)計中需要選擇合適的結(jié)構(gòu)參數(shù)來避免局部應(yīng)力過大的情況。
4.1.2 翅片參數(shù)對j因子的影響
翅距對j因子的影響如圖5(a)所示,增大翅距會使j因子增大。翅距增大,水力直徑增加使得一次表面面積增大,傳熱得到強化,故j因子增大。且隨著雷諾數(shù)的增大,翅距對j因子的正相關(guān)性進一步增大。這是因為盡管水利直徑的增加使得流速有所降低,但翅距的增大對波紋翅片流道中二次流的形成起到了強化的作用,流體內(nèi)摻混加劇,而當(dāng)雷諾數(shù)越大時,流體內(nèi)部黏滯阻力對二次流的抑制作用越弱,二次流更易形成。由于流體內(nèi)部流態(tài)與攪混對傳熱的強化作用要大于流速的作用,故當(dāng)雷諾數(shù)較高時,增大翅距會使j因子進一步增大。
圖5 翅片參數(shù)對j因子的影響Fig.5 Effects of fin geometric parameters on factor j
波紋尺度ws對j因子的影響如圖5(b)所示,波紋尺度增大,j因子減小,并且波紋尺度越小時,這種減小幅度越明顯。當(dāng)波紋尺度較小時,波紋結(jié)構(gòu)明顯,對流體的攪混作用強烈,而隨著波紋尺度的增加,流道結(jié)構(gòu)由波紋型幾何特征變?yōu)轭愃茝澒芰鞯赖膸缀翁卣?,波紋結(jié)構(gòu)對流體的攪混作用不再明顯。波紋幅度wa對j因子的影響如圖5(c)所示,增大波紋幅度會使得j因子增大。波紋幅度越大,波紋結(jié)構(gòu)的幾何特征越明顯,其對流體的攪混作用越強烈,j因子增大。從圖中可以觀察到,隨著波紋幅度的增加,j因子的提升速率越來越慢,提升空間越來越小。這是由于當(dāng)波紋幅度增大到一定程度后,在波谷處會形成漩渦與流動死區(qū),導(dǎo)致波紋結(jié)構(gòu)對主流區(qū)的攪混不充分,傳熱性能提升不大。
4.1.3 翅片參數(shù)對f因子的影響
波紋尺度ws對f因子的影響如圖6(a)所示,波紋尺度增大,f因子減小,并且波紋尺度越小時,這種減小幅度越明顯。這與波紋尺度對 j因子的影響機理相同,在波紋翅片的結(jié)構(gòu)設(shè)計中,應(yīng)當(dāng)特別關(guān)注波紋尺度,過大的波紋尺度會抑制二次流的形成,削弱強化傳熱效果,而太小的波紋尺度又會導(dǎo)致壓降的激增。
圖6 翅片參數(shù)對f因子的影響Fig.6 Effects of fin geometric parameters on factor f
波紋幅度wa對f因子的影響如圖6(b)所示。增大波紋幅度會使f因子增大。波紋幅度越大,波紋結(jié)構(gòu)的幾何特征越明顯,其對流體的攪混作用越強烈,f因子增大。值得注意的是,隨著波紋幅度的增加,f因子的增加程度遠大于j因子的提升程度。在設(shè)計波紋翅片時應(yīng)當(dāng)注意到,雖然波紋幅度的增加會使得j因子有明顯的上升,但是j因子有提升的極限,并且與此同時f因子會迅速提高,因此波紋幅度不應(yīng)過大,在各結(jié)構(gòu)參數(shù)無限制的情況下應(yīng)優(yōu)先通過波紋尺度來提升傳熱性能。
4.1.4 翅片參數(shù)對承壓能力的影響
各結(jié)構(gòu)參數(shù)對翅片承壓能力的影響,如圖7所示。隨著翅高增加,波紋翅片的最大應(yīng)力逐漸升高,最大增幅 25.7%。這是由于當(dāng)翅高增加時,翅片橫截面的支撐部分由“短粗形”向“細長形”轉(zhuǎn)變,導(dǎo)致應(yīng)力增大。所以隨著翅高的增加,換熱器的承壓能力逐漸降低。在對換熱器承壓能力要求較高的場合,不宜選用翅高過大的翅片結(jié)構(gòu)。
圖7 翅片參數(shù)對承壓能力的影響Fig.7 Effects of fin geometric parameters on maximum stress
隨著翅距的增加,波紋翅片的最大應(yīng)力顯著升高,最大增幅為116.2%。這是由于當(dāng)翅距增加時,隔板受壓的面積增大,故總壓力升高,但與此同時翅厚保持不變,即承壓部分的面積不變,故承壓面積與受壓面積之比減小,即單位面積下承壓結(jié)構(gòu)需要承受更大的壓力,導(dǎo)致最大應(yīng)力增大。所以隨著翅距的增加,換熱器的承壓能力逐漸降低。
隨著翅厚的增加,波紋翅片的最大應(yīng)力顯著降低,最大降幅為 43.0%,與翅距的影響效果相反,當(dāng)翅厚增加時,承壓面積相對受壓面積有所增加,故單位面積下承壓結(jié)構(gòu)需要承受的壓力減小,導(dǎo)致其最大應(yīng)力減小。所以隨著翅厚的增加,換熱器承壓能力顯著提高。
隨著波紋尺度和波紋幅度的增大,最大應(yīng)力均有所升高,當(dāng)波紋尺度增大時,最大應(yīng)力增幅為22.5%,當(dāng)波紋幅度增大時,最大應(yīng)力增幅為8%,說明波紋結(jié)構(gòu)對承壓能力的影響有限。
本文選取JF因子最大和翅片結(jié)構(gòu)中應(yīng)力極值τmax最小為優(yōu)化目標(biāo),在Re=800的工況條件下對翅片各參數(shù)進行結(jié)構(gòu)優(yōu)化,得到26組可行解,其中3組典型結(jié)構(gòu)優(yōu)化結(jié)果在表1中列出,同時給出一組工業(yè)上常用的波紋翅片結(jié)構(gòu)[8]作為對比。由于優(yōu)化結(jié)果是基于Kriging響應(yīng)面所得到的近似值,為驗證結(jié)果的準(zhǔn)確性,將優(yōu)化結(jié)果的性能預(yù)測值與CFD計算值進行對比。從表1中可以看出,各預(yù)測值與計算值之間的偏差均小于 10%,說明結(jié)合動態(tài) Kriging響應(yīng)面與遺傳算法可以有效對板翅式換熱器翅片結(jié)構(gòu)進行優(yōu)化設(shè)計。根據(jù)表中優(yōu)化結(jié)果可知,相較于常用結(jié)構(gòu),優(yōu)化后翅片熱性能因子可提升 5.8%~7.8%,而最大應(yīng)力可降低7.3%~22.8%。
表1 波紋翅片優(yōu)化結(jié)果Table 1 Optimization results of wavy fins
針對板翅式換熱器波紋翅片進行參數(shù)化建模,采用基于響應(yīng)面分析的多目標(biāo)遺傳算法,從流動、換熱和應(yīng)力3個方面對翅片結(jié)構(gòu)進行了分析及多目標(biāo)優(yōu)化,結(jié)論如下:
(1) 波紋翅片參數(shù)的敏感性分析研究表明,波紋尺度ws、 波紋幅度wa和翅距s對j因子的影響較大,波紋尺度ws和波紋幅度wa對f因子的影響較大,翅厚和翅距對最大應(yīng)力影響非常顯著,其他參數(shù)也在較大程度上影響最大應(yīng)力,結(jié)構(gòu)參數(shù)的改變會導(dǎo)致最大應(yīng)力的較大變化。
(2) 翅片參數(shù)對翅片性能的影響表明,波紋翅片結(jié)構(gòu)參數(shù)主要通過改變換熱面積,改變流速以及加劇流體內(nèi)部攪混來改變流動換熱特性,其中加劇流體內(nèi)部攪混為主要影響途徑,且橫向二次流影響效果明顯大于縱向二次流影響效果。換熱面積的改變與流速的改變效果相近,影響相反,對于不同結(jié)構(gòu)參數(shù)體現(xiàn)出不同的綜合影響效果。
(3) 以JF因子最大和翅片結(jié)構(gòu)中應(yīng)力極值τmax最小為優(yōu)化目標(biāo),得到了3組最優(yōu)結(jié)構(gòu)參數(shù)組合,相較于常用結(jié)構(gòu),優(yōu)化后翅片熱性能因子可提升5.8%~7.8%,而最大應(yīng)力可降低7.3%~22.8%。
符號說明
2A — 雙波高,mm
A — 面積,m2
D — 當(dāng)量直徑,m
h — 翅高,mm
wa — 波紋幅度
ws — 波紋尺度
ρ — 密度,kg?m-3
u — 速度,m?s-1
l — 通道長度,m
L — 波長,mm
Nu — 努塞爾數(shù)
Pr — 普朗特數(shù)
Re — 雷諾數(shù)
s — 翅距,mm
t — 翅厚,mm
μ — 動力黏度,kg?m-1?s-1
σ — 應(yīng)力,Pa
Δp — 壓差,Pa
下標(biāo)
in — 入口
c — 翅片
m — 最大