楊 毅,呂大煒,張建強(qiáng),吳 盾
鄂爾多斯盆地北緣延安組2號(hào)煤層稀土元素異常原因及其地質(zhì)意義
楊 毅1,2,呂大煒1,張建強(qiáng)3,吳 盾4
(1. 山東科技大學(xué) 山東省沉積成礦與沉積礦產(chǎn)重點(diǎn)實(shí)驗(yàn)室,山東 青島 266590;2. 安徽省核工業(yè)勘查技術(shù)總院,安徽 蕪湖 241003;3. 中國(guó)煤炭地質(zhì)總局勘查研究總院,北京 100039;4. 中國(guó)科學(xué)技術(shù)大學(xué)地球與空間科學(xué)學(xué)院,安徽 合肥 230026)
鄂爾多斯盆地北緣延安組2號(hào)煤層稀土元素的異常原因一直存在著爭(zhēng)議,以2號(hào)煤發(fā)育較完整的榆林大海則煤礦為例,運(yùn)用電感耦合等離子質(zhì)譜(ICP-MS)、掃描電子顯微鏡(SEM)等方法,分析煤及夾矸中稀土元素(REE)含量及其礦物學(xué)特征,并揭示稀土元素異常原因。結(jié)果顯示:煤中總稀土元素(∑REE)含量為3.71~46.21 μg/g,輕稀土元素(LREE,La—Eu)比重稀土元素(HREE,Gd—Lu)更富集;稀土元素標(biāo)準(zhǔn)化配分模式圖顯示少數(shù)樣品為Eu正異常;稀土元素含量較高的樣品和擁有Eu正異常的樣品主要分布在與夾矸距離較近的煤層中,表明煤中稀土元素分布受到了夾矸的影響;在夾矸中發(fā)現(xiàn)很多晶型較好的鋯石、磷灰石、透長(zhǎng)石及銳鈦礦,這些礦物是在聚煤過(guò)程中接受火山物質(zhì)的直接證據(jù)。綜合認(rèn)為,鄂爾多斯盆地延安組2號(hào)煤沉積期,盆地周緣存在一次火山活動(dòng),火山灰降落覆蓋在泥炭沼澤之上,影響了聚煤作用,致使煤中稀土元素分布異常。研究結(jié)果解釋了鄂爾多斯盆地北緣的煤中稀土元素異常原因,為研究區(qū)煤的加工利用方式提供參考。
稀土元素(REE);礦物學(xué);Eu異常;火山活動(dòng);鄂爾多斯盆地
鄂爾多斯盆地早–中侏羅世延安組是重要的含煤地層,延安組成煤期也一直被認(rèn)為是盆地內(nèi)部的穩(wěn)定期[1]。但近幾年來(lái),部分學(xué)者發(fā)現(xiàn)延安組成煤期可能受到盆地北緣火山活動(dòng)影響,但是對(duì)于盆地周邊地質(zhì)活動(dòng)僅僅是依據(jù)物源區(qū)巖性特征而提出有火山活動(dòng)的跡象,如王雙明[2]指出延安組沉積后期,盆地內(nèi)部沉積可能受到了周邊火山活動(dòng)的影響;黃迪穎[3]通過(guò)分析鄂爾多斯盆地北緣和東緣物源區(qū)巖性特征指出,延安組沉積末期頻發(fā)小規(guī)?;鹕交顒?dòng)。
煤中稀土元素能夠反映沉積巖形成時(shí)期的地質(zhì)特征。雖然成煤植物本身可以攜帶稀土元素一同沉積[4],但煤層中的稀土元素富集主要與無(wú)機(jī)組分有關(guān)[5-6]。一般認(rèn)為煤中稀土元素富集的成因類(lèi)型有4種:①陸源型,稀土元素通過(guò)地表水輸入到沉積盆地中;②凝灰?guī)r型,酸性或堿性火山灰的降落和淋濾;③大氣型降水和地下水驅(qū)動(dòng)及滲透;④熱液型,與含礦熱液流體的上升有關(guān)[7]。因此,煤中稀土元素富集特征及類(lèi)型可以提供聚煤環(huán)境、沉積物源、同步火山活動(dòng)及表生條件等方面的信息[8-9]。
鄂爾多斯盆地北緣2號(hào)煤層是重要的主采煤層,位于延安組地層上部,接近直羅組。前人對(duì)鄂爾多斯盆地延安組煤層的地球化學(xué)研究主要集中于2號(hào)煤層,其稀土異常原因存在著爭(zhēng)議:Wang Xiaomei等[10]發(fā)現(xiàn)2號(hào)煤的H型稀土元素模式是由風(fēng)化作用造成的;Zhao Cunliang等[11]研究得出2號(hào)煤中Eu正異常是由熱液引起的。但Wang Xibo[12]則認(rèn)為,2號(hào)煤中Eu富集歸因于物源供給。因此,研究2號(hào)煤具有兩層意義:第一,生產(chǎn)角度上,研究鄂爾多斯盆地北緣主采煤層稀土元素的特征及主控因素,為有效指導(dǎo)煤中伴生元素的選煉提供依據(jù);第二,科學(xué)意義上,能夠在一定程度上消除稀土元素異常成因的爭(zhēng)議,為今后研究中生代早–中侏羅世深時(shí)古氣候提供數(shù)據(jù)支撐和理論依據(jù)。另外,在以往的研究工作中,關(guān)于2號(hào)煤稀土元素研究并沒(méi)有結(jié)合煤層中夾矸的特征,可能是由于煤層夾矸分布不均勻?qū)е碌模鐤|勝煤田2號(hào)煤夾矸相對(duì)較薄(厚度僅為0.5~1.0 cm),不容易引起注意;而榆林大海則煤礦其2號(hào)煤較厚(最大采高7.23 m),且?jiàn)A矸也較厚(3.7~8.0 cm),具有良好的采樣地質(zhì)條件(斜井開(kāi)采),因此,以大海則煤礦2號(hào)煤為對(duì)象,通過(guò)研究煤層與夾矸的地球化學(xué)和礦物學(xué)特征,探討煤中稀土元素異常原因,力求還原延安期末地質(zhì)特征,并為2號(hào)煤層后期加工利用提供借鑒。
鄂爾多斯盆地位于華北克拉通西部[13],形成于中–晚三疊世[14],其面積約25萬(wàn)km2,是一個(gè)集煤炭、石油和天然氣資源為一體的大型陸相能源盆地[15-16]。鄂爾多斯盆地劃分為6個(gè)構(gòu)造單元[17]:伊盟隆起、渭北隆起、西緣逆沖帶、晉西撓褶帶、天環(huán)坳陷和伊陜斜坡(圖1)。
大海則煤礦(38°8′2″N,109°32′10″E)位于陜西省榆林市西北方向22 km,位于整個(gè)盆地的中東部。鉆井資料顯示,延安組地層厚度為180~200 m,主要由粉砂巖、泥巖、砂巖和煤組成,整體顏色多為灰色—灰白色。根據(jù)煤層分布,延安組自下而上依次劃分為5段[18],2號(hào)煤位于第四段內(nèi)(圖1),煤層平均厚度為7.23 m,內(nèi)含一層厚度為3.7~8.0 cm的灰白色夾矸。
在大海則煤礦工作面從上至下按0.5 m的間距采取了12個(gè)煤樣,依次編號(hào)為D-1—D-12;采取一個(gè)夾矸樣品,編號(hào)為J-1(圖2)。夾矸距煤層頂部2.3 m,厚度在3.7~8.0 cm,具沉凝灰結(jié)構(gòu),塊狀構(gòu)造,顆粒大小為0.1~0.2 mm,磨圓度較差,為次棱角狀,質(zhì)軟多孔且富含黏土,遇水膨脹,膠結(jié)物為泥質(zhì),根據(jù)這些特征可以判別夾矸為灰白色凝灰質(zhì)細(xì)砂巖。所有樣品全部用塑料自封袋密封包裝。
所有樣品粉碎至200目(74 μm)以下,用電熱鼓風(fēng)干燥箱85℃烘干6 h,采用劉穎等[19]推薦的樣品消解方法,分析用水為超純水,制備設(shè)備為Mili-Q,電阻率小于18 MΩ。運(yùn)用電感耦合等離子質(zhì)譜儀(ICP-MS,thermo element 2)測(cè)試所有樣品中稀土元素豐度;為控制測(cè)試準(zhǔn)確度,添加標(biāo)準(zhǔn)樣品(GSS-16,珠江三角洲土壤)測(cè)試項(xiàng)作為參考。
圖1 鄂爾多斯盆地巖性柱狀圖與區(qū)域構(gòu)造單元?jiǎng)澐?/p>
圖2 采樣層位示意
為了準(zhǔn)確定性樣品表面礦物并觀(guān)察其形態(tài),采用掃描電子顯微鏡(SEM-EDS,Phenom ProX)對(duì)樣品進(jìn)行觀(guān)測(cè),樣品表面鍍鈀,真空范圍為50~70 Pa,加速電壓為15 kV,光斑尺寸為5.0~6.0 nm。
大海則煤礦延安組2號(hào)煤及夾矸樣品中稀土元素含量見(jiàn)表1。煤樣中稀土元素總含量(∑REE)為3.71~46.21 μg/g。其中,總含量較高的樣品D-1、D-2、D-3、D-4、D-5都出現(xiàn)在夾矸附近(圖2),說(shuō)明夾矸的發(fā)育對(duì)煤中稀土元素的影響很大。所有樣品的LREE/HREE均大于1,意味著輕稀土元素較重稀土元素更富集。
代世峰等[20]提出:煤中稀土元素標(biāo)準(zhǔn)化更適合用上地殼稀土元素標(biāo)準(zhǔn)化值(UCC)[21]?;诖?,將2號(hào)煤樣品稀土元素含量用UCC標(biāo)準(zhǔn)化后繪制出稀土元素配分模式圖(圖3),由圖中可以看出,少數(shù)樣品(D-2、D-4、D-5、D-6)表現(xiàn)出Eu的正異常,這些樣品同樣位于夾矸附近。所有樣品的稀土元素總量都低于上地殼的平均含量146.37 μg/g[21],也低于世界硬煤中的平均含量60.21 μg/g[22];出現(xiàn)Eu正異常的樣品,其Eu的標(biāo)準(zhǔn)化值也低于1(圖3),因此,大海則礦2號(hào)煤中的稀土元素不具備工業(yè)價(jià)值。
表1 榆林大海則煤礦2號(hào)煤與夾矸中稀土元素含量
注:L/H為輕稀土元素與重稀土元素含量之比,即LREE/HREE;Eu=2Eu/(Sm+Gd),為元素含量,單位μg/g。
圖3 榆林大海則礦2號(hào)煤樣的稀土元素配分模式
通過(guò)掃描電子顯微鏡對(duì)夾矸進(jìn)行觀(guān)察,發(fā)現(xiàn)夾矸主要由石英、透長(zhǎng)石和高嶺石組成,副礦物有鋯石、磷灰石、銳鈦礦、黃鐵礦、石膏等(圖4)。其中,石膏和黃鐵礦伴生產(chǎn)出,膠體脫水收縮導(dǎo)致黃鐵礦表面產(chǎn)生裂縫(圖4a);高嶺石賦存在其他礦物中,如透長(zhǎng)石顆粒之間,以基質(zhì)的形式出現(xiàn)(圖4b),一些高嶺石集合體呈球狀、團(tuán)狀且相互疊置(圖4c)。鋯石晶體形態(tài)發(fā)育良好,呈長(zhǎng)條狀或柱狀,兩端呈錐狀,均勻地散布于樣品中(圖4d)。磷灰石以細(xì)長(zhǎng)的六邊形柱狀產(chǎn)出,可能由于上覆巖層的壓力而使磷灰石晶體發(fā)生斷裂和破碎(圖4e)。銳鈦礦都是以集合體的形式產(chǎn)出,單個(gè)晶體顆粒細(xì)小,為自生成因(圖4f)。
利用掃描電子顯微鏡對(duì)煤樣進(jìn)行觀(guān)察可以發(fā)現(xiàn),2號(hào)煤中主要礦物有:石英、高嶺石、黃鐵礦和方解石。其中高嶺石呈手風(fēng)琴狀(圖5a),顯然是自生的,方解石和黃鐵礦充填在煤的孔隙或裂隙中(圖5b,圖5c)。石英多為陸源性,賦存在有機(jī)質(zhì)中(圖5d),樣品D-4中還發(fā)現(xiàn)有晶型較好的磷灰石,磷灰石表面的裂紋和破碎的斷口表明晶體在沉積后期由于上覆巖層的壓力而發(fā)生斷裂,這與圖4e表現(xiàn)一致。
掃描電鏡發(fā)現(xiàn),夾矸中可見(jiàn)諸如透長(zhǎng)石、鋯石、磷灰石、銳鈦礦等礦物。雖然鋯石和磷灰石一般在碎屑巖中也有存在,但是火山成因與陸源碎屑成因有著明顯區(qū)別:陸源碎屑巖中的磷灰石通常作為其他礦物之間的充填物,沒(méi)有較好晶型[23],火山成因的鋯石具有原始晶型,多面體清晰可見(jiàn),棱角明顯,發(fā)育成群[24],本次研究中所發(fā)現(xiàn)的鋯石都具有此特征,呈細(xì)長(zhǎng)柱狀,并有六邊形斷面,未見(jiàn)陸源搬運(yùn)的痕跡。銳鈦礦在火山灰中通常是自生成因,銳鈦礦取代火山玻璃質(zhì)或浮石碎屑,或以膠體的形式作為充填物精細(xì)散布[25]。透長(zhǎng)石在火山灰中通常比較豐富,由于比較容易遭受風(fēng)化,因此,在一般的陸源碎屑巖中很難發(fā)現(xiàn)完整晶型的透長(zhǎng)石[26]。本次研究中的透長(zhǎng)石晶型保存完好,顯示出風(fēng)化程度較低或未經(jīng)長(zhǎng)距離搬運(yùn)的原始狀態(tài)。高嶺石集合體在火山灰中通常會(huì)呈現(xiàn)隱晶質(zhì)基質(zhì)、球團(tuán)狀和蠕蟲(chóng)狀[25],本次研究所發(fā)現(xiàn)的高嶺石都為前兩者,參差不齊相互疊置的晶體顯示出弱搬運(yùn)的跡象。因此,研究區(qū)夾矸中發(fā)現(xiàn)的礦物都是典型的火山成因而非陸源碎屑成因,夾矸的巖性應(yīng)為沉積凝灰?guī)r。
圖4 掃描電鏡下夾矸樣品(J-1)中礦物
圖5 掃描電鏡下煤樣中礦物
由于鄂爾多斯盆地的結(jié)晶基底是太古代至元古代的變質(zhì)巖[26],盆地主體具克拉通內(nèi)盆地特征;自侏羅紀(jì)以來(lái),盆地內(nèi)部就保持穩(wěn)定的構(gòu)造特征[14]。因此,本次研究發(fā)現(xiàn)的火山物質(zhì)是同期火山活動(dòng)的產(chǎn)物。
夾矸附近的煤層存在Eu正異常,稀土元素總量(∑REE)相對(duì)較高,并且在樣品D-4中出現(xiàn)了與夾矸中相同的火山特征礦物磷灰石,表明這些煤樣受到了夾矸沉積發(fā)育的影響。而Eu的正異??赡芘c物源區(qū)巖石性質(zhì)、地下熱液流體或煤炭沼澤加入了同生火山碎屑物等相關(guān)[27]。由于Eu2+離子半徑與Ba2+離子半徑相似,在諸如重晶石、毒重石這些礦物中,Eu可以通過(guò)同構(gòu)置換Ba,因此,高含量的Ba可能也會(huì)干擾Eu和其他稀土元素的評(píng)價(jià)[28]。
基于前人的研究,在鄂爾多斯盆地北緣馬家塔煤礦和裕民煤礦3號(hào)煤(對(duì)應(yīng)本文研究的榆林地區(qū)2號(hào)煤)中也出現(xiàn)Eu正異常;而其余煤層如補(bǔ)連塔煤礦2號(hào)煤(對(duì)應(yīng)榆林地區(qū)1號(hào)煤),長(zhǎng)罕溝煤礦、納林溝煤礦及罕臺(tái)川煤礦的4號(hào)煤[9](對(duì)應(yīng)榆林地區(qū)3號(hào)煤),神府煤田5號(hào)煤[29](對(duì)應(yīng)榆林地區(qū)4號(hào)煤)中也出現(xiàn)Eu正異常現(xiàn)象。在礦物特征方面,鄂爾多斯盆地北緣未受火山影響的沉積巖以含砂礫巖、粗砂巖、粉砂巖、粉砂質(zhì)泥巖和泥巖為主,顯微鏡下未見(jiàn)典型的火山碎屑物或火山特征礦物[30]。
綜上可知,本次研究發(fā)現(xiàn)再次證實(shí)火山活動(dòng)是2號(hào)煤稀土元素異常原因,即鄂爾多斯盆地北緣延安組2號(hào)煤沉積期,盆地周緣存在一次火山活動(dòng),火山灰降落并覆蓋在泥炭沼澤之上,導(dǎo)致煤中稀土元素的異常分布。
a. 鄂爾多斯盆地榆林大海則礦延安組2號(hào)煤層夾矸中發(fā)現(xiàn)的礦物有高嶺石、透長(zhǎng)石、鋯石、磷灰石、銳鈦礦等,這些礦物都顯示火山成因而非陸源碎屑成因,夾矸的巖性應(yīng)為沉積凝灰?guī)r。
b. 研究區(qū)2號(hào)煤中稀土元素配分模式存在異常,夾矸附近或靠上部的煤層存在Eu正異常,并且稀土元素總量(∑REE)較高,顯示煤層中稀土元素異常與夾矸存在聯(lián)系。
c. 依據(jù)煤層和夾矸中稀土元素含量及形貌特征,認(rèn)為鄂爾多斯盆地延安組2號(hào)煤沉積期,盆地北緣存在火山活動(dòng),火山灰降落并覆蓋在泥炭沼澤之上,影響了聚煤作用和煤中稀土元素的異常分布。
d. 本次研究解釋了2號(hào)煤中稀土元素異常原因,為2號(hào)煤加工利用方式提供一定的參考,也為研究早–中侏羅世深時(shí)古氣候提供一定的依據(jù)。
請(qǐng)聽(tīng)作者語(yǔ)音介紹創(chuàng)新技術(shù)成果等信息,歡迎與作者進(jìn)行交流
[1] 王東東,邵龍義,李智學(xué),等. 鄂爾多斯盆地延安組層序地層格架與煤層形成[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2013,43(6):1726–1739. WANG Dongdong,SHAO Longyi,LI Zhixue,et al. Sequence stratigraphic framework and coal formation of Yan’an Formation in Ordos basin[J]. Journal of Jilin University(Earth Science Edition),2013,43(6):1726–1739.
[2] 王雙明. 鄂爾多斯盆地聚煤規(guī)律及煤炭資源評(píng)價(jià)[M]. 北京:煤炭工業(yè)出版社,1996:436–437. WANG Shuangming. Coal accumulation law and coal resource evaluation in Ordos basin[M]. Beijing:Coal Industry Press,1996:436–437.
[3] 黃迪穎. 中國(guó)侏羅紀(jì)綜合地層和時(shí)間框架[J]. 中國(guó)科學(xué):地球科學(xué),2019,49(1):227–256. HUANG Diying. Jurassic integrated stratigraphy and time frame in China[J]. Science China:Earth Science,49(1):227–256.
[4] 邵靖邦,曾凡桂,王宇林,等. 平莊煤田煤中稀土元素地球化學(xué)特征[J]. 煤田地質(zhì)與勘探,1997,25(4):13–16. SHAO Jingbang,ZENG Fangui,WANG Yulin,et al. The geochemistry of rare earth element in brown coal of Pingzhuang coalfield,Inner Monglia[J]. Coal Geology & Exploration,1997,25(4):13–16.
[5] DAI Shifeng,LI Dan,CHOU Chenlin,et al. Mineralogy and geochemistry of boehmite-rich coals:New insights from the Haerwusu surface mine,Jungar coalfield,Inner Mongolia,China[J]. International Journal of Coal Geology,2008,74(3/4):185–202.
[6] FINKELMAN R B. Modes of occurrence of environmentally sensitive trace elements in coal[J]. Fuel and Energy Abstracts,1997,38(3):135.
[7] HOWER J C,EBLE C F,DAI Shifeng,et al. Distribution of rare earth elements in eastern Kentucky coals:Indicators of multiple modes of enrichment[J]. International Journal of Coal Geology,2016,160/161:73–81.
[8] 劉東娜,周安朝,劉建權(quán). 東勝煤田侏羅系延安組煤中稀土元素地球化學(xué)特征[J]. 中國(guó)煤田地質(zhì),2007,19(2):20–22. LIU Dongna,ZHOU Anchao,LIU Jianquan. Geochemical characteristics of rare earth elements in Yan’an Formation,Jurassic system,Dongsheng coalfield[J]. Coal Geology of China,2007,19(2):20–22.
[9] ZHAO Fenghua,CONG Zhiyuan,PENG Suping,et al. Geochemical characteristics of REE in Jurassic coal of Yan’an Formation from Dongsheng coalfield[J]. Journal of China University of Mining & Technology(English Edition),2002,12(2):138–142.
[10] WANG Xiaomei,JIAO Yangquan,WU Liqun,et al. Rare earth element geochemistry and fractionation in Jurassic coal from Dongsheng-Shenmu area,Ordos basin[J]. Fuel,2014,136:233–239.
[11] ZHAO Cunliang,DUAN Dujuan,LI Yanheng,et al. Rare earth elements in No.2 coal of Huangling mine,Huanglong coalfield,China[J]. Energy Exploration & Exploitation,2012,30(5):803–818.
[12] WANG Xibo. Petrology and geochemistry of the Jurassic coals in southwestern Ordos basin,China[J]. Energy Exploration & Exploitation,2010,28(6):513–530.
[13] 張泓,何宗蓮,晉香蘭,等. 鄂爾多斯盆地構(gòu)造演化與成煤作用:1∶500 000鄂爾多斯煤盆地地質(zhì)構(gòu)造圖簡(jiǎn)要說(shuō)明[M]. 北京:地質(zhì)出版社,2005:49–53. ZHANG Hong,HE Zonglian,JIN Xianglan,et al. Tectonic evolution and coal accumulation of the Ordos basin:A brief explanation of the geological tectonic map of the Ordos coal basin(with scale of 1∶50 000)[M]. Beijing:Geological Publish House,2005:49–53.
[14] 劉池洋,趙紅格,桂小軍,等. 鄂爾多斯盆地演化:改造的時(shí)空坐標(biāo)及其成藏(礦)響應(yīng)[J]. 地質(zhì)學(xué)報(bào),2006,80(5):617–637. LIU Chiyang,ZHAO Hongge,GUI Xiaojun,et al. Space-time coordinate of the ecolution and reformation and mineralization response in Ordos basin[J]. Acta Geologica Sinica,2006,80(5):617–638.
[15] ZHANG Chuang,YI Chao,DONG Qian,et al. Geological and geochronological evidence for the effect of Paleogene and Miocene uplift of the northern Ordos basin on the formation of the Dongsheng uranium district,China[J]. Journal of Geodynamics,2018,114:1–18.
[16] 葛道凱,楊起,付澤明,等. 陜西榆林侏羅紀(jì)煤系基底古侵蝕面的地貌特征及其對(duì)富縣組沉積作用的控制[J]. 沉積學(xué)報(bào),1991,9(3):65–73. GE Daokai,YANG Qi,F(xiàn)U Zeming,et al. The geomorphologic features of basement of Jurassic coal measures and its control on the sedimentation of Fuxian Formation in Yulin,Shaanxi Province[J]. Acta Sedimentologica Sinica,1991,9(3):65–73.
[17] 張?zhí)旄?,孫立新,張?jiān)疲? 鄂爾多斯盆地北緣侏羅紀(jì)延安組、直羅組泥巖微量、稀土元素地球化學(xué)特征及其古沉積環(huán)境意義[J]. 地質(zhì)學(xué)報(bào),2016,90(12):3454–3472. ZHANG Tianfu,SUN Lixin,ZHANG Yun,et al. Geochemical characteristics of trace elements and rare earth elements in the Jurassic Yan’an Formation and Zhiluo Formation in the northern margin of the Ordos basin and their paleoenvironmental significance[J]. Acta Geologica Sinica,2016,90(12):3454–3472.
[18] YANG Renchao,HAN Zuozhen,LI Zengxue,et al. Base-level cycles and Episodic coal accumulation:Case study of Dongsheng coalfield in Ordos basin[J]. Journal of China University of Mining & Technology(English Edition),2006,16(4):439–442.
[19] 劉穎,劉海臣,李獻(xiàn)華. 用ICP-MS準(zhǔn)確測(cè)定巖石樣品中的40余種微量元素[J]. 地球化學(xué),1996,25(6):552–558. LIU Ying,LIU Haichen,LI Xianhua. Accurate determination of more than 40 trace elements in rock samples by ICP-MS[J]. Geochimica,1996,25(6):552–558.
[20] DAI Shifeng,GRAHAM I T,WARD C R. A review of anomalous rare earth elements and yttrium in coal[J]. International Journal of Coal Geology,2016,159:82–95.
[21] Taylor S R,McLennan S M. The continental crust:Its composition and evolution[M]. London:Blackwel,1985:312.
[22] Ketris M P,Yudovich Y E. Estimations of clarkes for Carbonaceous biolithes:World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology,2009,78(2):135–148.
[23] SPEARS D A. The origin of tonsteins,an overview,and links with seatearths,fireclays and fragmental clay rocks[J]. International Journal of Coal Geology,2012,94:22–31.
[24] DAI Shifeng,LUO Yangbin,SEREDIN V V,et al. Revisiting the Late Permian coal from the Huayingshan,Sichuan,southwestern China:Enrichment and occurrence modes of minerals and trace elements[J]. International Journal of Coal Geology,2014,122:110–128.
[25] DAI Shifeng,WARD C R,GRAHAM I T. et al. Altered volcanic ashes in coal and coal-bearing sequences:A review of their nature and significance[J]. Earth Science Reviews,2017,175:44–74.
[26] 鄭翻身,康屹青,康紅在,等. 鄂爾多斯古陸核內(nèi)部中生代晚期火山巖的發(fā)現(xiàn)及其地質(zhì)意義[J]. 地質(zhì)力學(xué)學(xué)報(bào),2009,15(1):69–76.Zheng Fanshen,Kang Yiqing,Kang Hongzai,et al. Discovery and geological significance of late Mesozoic volcanic rocks in the ancient continental core of Ordos[J]. Journal of Geomechanics,2009,15(1):69–76.
[27] SEREDIN V V,DAI Shifeng. Coal deposits as potential alternative sources for lanthanides and yttrium[J]. International Journal of Coal Geology,2012,94:67–93.
[28] 伊海生,林金輝,趙西西,等. 西藏高原沱沱河盆地漸新世—中新世湖相碳酸鹽巖稀土元素地球化學(xué)特征與正銪異常成因初探[J]. 沉積學(xué)報(bào),2008,26(1):1–10. YIN Haisheng,LIN Jinhui,ZHAO Xixi,et al. Geochemistry of rare earth elements and origin of positive europium anomaly in Miocene-Oligocene lacustrine carbonates from Tuotuohe basin of Tibetan plateau[J]. Acta Sedimentologica Sinica,2008,26(1):1–10.
[29] 杜芳鵬. 鄂爾多斯盆地延安組煤巖學(xué)及煤元素地球化學(xué)特征[D]. 西安:西北大學(xué),2019. DU Fangpeng. Petrological and element geochemical characteristics of the Yan’an coals in Ordos basin[D]. Xi’an:Northwest University,2019.
[30] 吳斌. 鄂爾多斯盆地東北部中侏羅世古環(huán)境古氣候研究[D]. 成都:成都理工大學(xué),2018. WU Bin. Paleoenvoironment and paleoclimate of the Middle Jurassic in northeastern of Ordos basin[D]. Chengdu:Chengdu University of Technology,2018.
Causes of anomaly of rare earth elements of seam 2 of Yan’an Formation in the northern margin of Ordos basin and its geological significance
YANG Yi1,2, LYU Dawei1, ZHANG Jianqiang3, WU Dun4
(1. Shandong Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China; 2. Anhui Nuclear Exploration Technology Central Institute, Wuhu 241003, China; 3. General Prospecting Institute, China National Administration of Coal Geology, Beijing 100039, China; 4. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China)
The cause of rare earth elements(REE) anomalies in No.2 coal seam of the Yan’an Formation in the northern margin of the Ordos basin has been controversial. This paper takes Dahaize coal mine, Yulin area with well developed No.2 coal as an example to analyze REE, mineralogical characteristics of coal and partings, and to reveal the causes of anomaly of REE by Inductive Coupled Plasma Mass Spectrometry(ICP-MS) and Scanning Electron Microscopy(SEM). The results show that the total rare earth element(∑REE) concentration in the coal samples ranges from 3.71 to 46.21 μg/g. Light rare earths elements(LREE, La-Eu) are more abundant than heavy rare earth elements(HREE, Gd-Lu). The distribution patterns of their normalization show that a few of samples have positive anomalies. Samples with high REE content and samples with positive Eu anomalies mainly appeared in the analyzed coal seam close to the partings. It is indicated that the distribution of REE in coal is affected by its partings. There are many zircons, apatites, sanidines and anatase with better crystal form found in the partings, which are direct evidence of the volcanic activity during the peat formation. This suggests that there was a volcanic activity during the No.2 peat formation of the Yan’an Formation in Ordos basin. The volcanic ash fallen over and covered the swamp and affected the coal accumulation and the abnormal distribution of REE in the coal. The results explain the reason of REE anomaly in the coal and provide data support or theoretical basis for the future industrial use of REE in the coal in this area.
rare earth elements; mineralogy; Eu abnormity; volcanic activity; Ordos basin
P595;P618.7
A
10.3969/j.issn.1001-1986.2020.02.013
1001-1986(2020)02-0078-07
2019-11-21;
2020-01-16
國(guó)家重點(diǎn)研發(fā)計(jì)劃課題(2017YFC0601405);中國(guó)地質(zhì)調(diào)查局地質(zhì)調(diào)查二級(jí)項(xiàng)目(DD20160187)
National Key R&D Program of China(2017YFC0601405);Geological Survey Project of China Geological Survey(DD20160187)
楊毅,1994年生,男,安徽蕪湖人,碩士,從事地球化學(xué)勘查和研究工作. E-mail:973423253@qq.com
呂大煒,1980年生,男,山東牟平人,教授,從事沉積學(xué)及能源地質(zhì)學(xué)教學(xué)科研工作. E-mail:lvdawei95@163.com
楊毅,呂大煒,張建強(qiáng),等.鄂爾多斯盆地北緣延安組2號(hào)煤層稀土元素異常原因及其地質(zhì)意義[J]. 煤田地質(zhì)與勘探,2020,48(2):78–84.
YANG Yi,LYU Dawei,ZHANG Jianqiang,et al. Causes of anomaly of rare earth elements of seam 2 of Yan’an Formation in the northern margin of Ordos basin and its geological significance[J]. Coal Geology & Exploration,2020,48(2):78–84.
(責(zé)任編輯 范章群)