黎婕 林崇 劉煥霞
摘要:針對時滯矩形廣義系統(tǒng)的混合H∞與無源控制問題,本文通過構造帶時滯的動態(tài)補償器,利用實數(shù)域上正常廣義系統(tǒng)的可容許性判據(jù),得到可使閉環(huán)系統(tǒng)在混合H∞與無源性能指標γ條件下容許的充分條件。通過構建合適的LyapunovKrasovskii泛函,結合放松過的Wirtinger不等式,對泛函導數(shù)積分項進行處理,將不等式中非線性項進行代換,最后通過數(shù)值算例驗證該方法的有效性,并將混合H∞與無源控制問題從正常廣義系統(tǒng)推廣到時滯矩形廣義系統(tǒng)。驗證結果表明,本文所得到的穩(wěn)定性充分條件擁有更大的時滯上界,決策變量更少,保守性和復雜度更低。該研究對時滯矩形廣義系統(tǒng)的穩(wěn)定性分析與控制器設計問題具有重要意義。
關鍵詞:矩形廣義系統(tǒng); 混合H∞與無源控制; 時滯; 動態(tài)補償
中圖分類號: TP13; N941.1 文獻標識碼: A
文章編號: 10069798(2020)02000108; DOI: 10.13306/j.10069798.2020.02.001
廣義系統(tǒng),又稱廣義狀態(tài)空間系統(tǒng),與常規(guī)系統(tǒng)相比,可以更好地描述物理系統(tǒng),因而一直受到廣泛研究和關注[12]。而矩形廣義系統(tǒng),作為一類更廣泛的廣義系統(tǒng),由于狀態(tài)變量個數(shù)與狀態(tài)方程個數(shù)不一致,因而具有更復雜的行為[3]。從20世紀80年代末開始,矩形廣義系統(tǒng)開始受到關注,很多學者著手研究矩形系統(tǒng)的正則性及廣義正則化問題[34],矩形廣義系統(tǒng)脈沖能控性、能觀性問題[56],以及濾波、估計問題和觀測器設計問題等[79]。Zhang G S等人[1011]首次提出用動態(tài)補償方法使閉環(huán)矩形廣義系統(tǒng)正則化;Chen J等人[12]設計了矩形TS模糊離散系統(tǒng)的時滯動態(tài)補償器;Zhang X F等人[1314]又將矩形廣義系統(tǒng)相關理論延伸到分數(shù)階領域。由于時滯存在于許多動力系統(tǒng)中,經(jīng)常導致性能不佳和不穩(wěn)定,因此研究時滯矩形廣義系統(tǒng)的穩(wěn)定性具有重要的理論和現(xiàn)實意義。近年來,隨著線性矩陣不等式(linear matrix inequality,LMI)方法的發(fā)展,許多學者對各種系統(tǒng)的H∞控制問題進行了廣泛研究[1516]。Xu S等人[1718]對連續(xù)和離散時間時滯系統(tǒng)的耗散進行分析和設計;Wu Z G等人[1920]討論了連續(xù)和離散時滯廣義系統(tǒng)的混合H∞與無源濾波問題;Chen J等人[21]研究了時滯廣義系統(tǒng)的混合H∞與無源控制問題。針對時滯矩形廣義系統(tǒng)的混合H∞與無源控制問題,目前還沒有學者對其作相應的研究。基于此,本文將正常廣義系統(tǒng)推廣到時滯矩形廣義系統(tǒng),并利用帶時滯的動態(tài)補償器,得到在混合H∞與無源性能指標γ下使閉環(huán)系統(tǒng)容許的充分條件,實現(xiàn)了混合H∞與無源控制,并通過數(shù)值例子驗證了本文結果有效性。該研究為時滯矩形廣義系統(tǒng)的穩(wěn)定性提供了理論依據(jù)。
5 結束語
本文針對時滯矩形廣義系統(tǒng)設計了一類動態(tài)補償器來實現(xiàn)閉環(huán)系統(tǒng)的混合H∞與無源性能控制問題。在文獻[21]的基礎上,首次把混合H∞與無源控制問題推廣到矩形廣義系統(tǒng)中,并利用動態(tài)補償器實現(xiàn)了系統(tǒng)的漸近穩(wěn)定。與文獻[21]相比,本文方法引入了新的自由權矩陣,并采用一種有效算法來計算控制器增益矩陣,所得結果擁有更大的時滯上限,決策變量更少,保守性更低,數(shù)值算例證明了該結果的有效性。另外,本文是在文獻[27]針對矩形廣義系統(tǒng)鎮(zhèn)定問題的研究基礎上,進一步考慮了帶時滯的矩形廣義系統(tǒng)的控制問題。這類問題目前研究成果并不多,將其與實際生產(chǎn)模型相結合可以作為進一步研究的方向。
參考文獻:
[1]Dai L. Singular control systems[M]. Berlin: Springer-Verlag, 1989.
[2]Xu S, Lam J. Robust control and filtering of singular systems[M]. Berlin: Springer-Verlag, 2006.
[3]Fletvher L R. Regularizability of descriptor systems[J]. International Journal of Systems Science, 1986, 17(6): 843847.
[4]Duan G, Chen Y. Generalized regularity and regularizability of rectangular descriptor systems[J]. Journal of Control Theory and Application, 2007, 5(2): 159163.
[5]Ishihara J Y, Terra M H. Impulse controllability and observability of rectangular descriptor systems[J]. IEEE Transactions Automatic Control, 2001, 46(6): 991994.
[6]Hou M. Controllability and elimination of impulsive modes in descriptor systems[J]. IEEE Transactions Automatic Control, 2004, 49(10): 17231727.
[7]Darouach M. H∞ unbiased filtering for linear descriptor systems via LMI[J]. IEEE Transactions Automatic Control, 2009, 54(8): 19661972.
[8]Hsieh C S. H∞ kalman estimation for rectangular descriptor systems with unknown inputs[J]. IEEE Transactions Automatic Control, 2014, 59(3): 826832.
[9]Gupta M K, Tomar N K, Bhaumik S. Full and reduced-order observer design for rectangular descriptor systems with unknown inputs[J]. Journal of the Franklin Institute, 2015, 352(3): 12501264.
[10]Zhang G S. Regularizability controllability and observability of rectangular descriptor systems by dynamic compensation[C]∥Proceedings of the American Control Conference. Minneapolis, MN, USA: 2006: 43934398.
[11]Zhang G S, Liu L. Linear quadratic optimal control based on dynamic compensation for rectangular descriptor systems[J]. Acta Automatica Sinica, 2010, 36(2): 17521757.
[12]Chen J, Lin C, Chen B, et al. Regularization and stabilization for rectangular TS fuzzy discrete-time systems with time delay[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2019, 49(4): 833840.
[13]Zhang X F, Zhao Z L. Normalization and stabilization for rectangular singular fractional order T-S fuzzy systems[J]. Fuzzy Sets and Systems, 2020, 381: 140153.
[14]Zhao Z L, Zhang X F, Wang Q G. Output feedback stabilization of uncertain rectangular descriptor fractional order systems with 0 < a < 1[J]. IEEE Access, 2019: 108948108955.
[15]Ma Y, Fu L, Jing Y, et al. Finite-time H∞ control for a class of discrete-time switched singular time-delay systems subject to actuator saturation[J]. Appl Math Comput, 2015, 261: 264283.
[16]Shao Y Y, Liu X D, Sun X, et al. A delay decomposition approach to H∞ admissibility for discrete-time singular delay systems[J]. Information Sciences, 2014, 279: 893905.
[17]Xu S, Zheng W X, Zou Y. Passivity analysis of neural networks with time-varying delays[J]. IEEE Trans. Circuits Syst II Exp Briefs, 2009, 56 (4): 325329.
[18]Wu Z G, Park J H, Su H, et al. Admissibility and dissipativity analysis for discrete-time singular systems with mixed time-varying delays[J]. Appl Math Comput, 2012, 218 (13): 71287138.
[19]Wu Z G, Park J H, Su H, et al. Mixed H∞ and passive filtering for singular systems with time delays[J]. Signal Process, 2013, 93: 17051711.
[20]Shi P, Zhang Y, Chadli M, et al. Mixed h-infinity and passive filtering for discrete fuzzy neural networks with stochastic jumps and time delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4): 903909.
[21]Chen J, Lin C, Chen B, et al. Mixed H∞ and passive control for singular systems with time delay via static output feedback[J]. Applied Mathematics and Computation, 2017, 293: 244253.
[22]Meisami-Azad M, Mohammadpour J, Grigoriadis K M. Dissipative analysis and control of state-space symmetric systems[J]. Automatica, 2009, 45(6): 15741579.
[23]Chang X H, Ju Hyunseok, Zhou J P. Robust static output feedback H∞ control design for linear systems with polytopic uncertainties[J]. Systems & Control Letters, 2015, 85: 2332.
[24]Park P G, Lee W I, Lee S Y. Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems[J]. Journal of the Franklin Institute, 2015, 352(4): 13781396.
[25]Zheng F, Wang Q G, Lee T H. On the design of multivariable PID controllers via LMI approach[J]. Automatica, 2002, 38(3): 517526.
[26]Sakthivel R, Joby M, Mathiyalagan K, et al. Mixed H∞ and passive control for singular Markovian jump systems with time delays[J]. Journal of the Franklin Institute, 2015, 352(10): 44464466.
[27]Lin C, Chen J, Chen B, et al. Stabilization for a class of rectangular descriptor systems via time delayed dynamic compensator[J]. Journal of the Franklin Institute, 2019, 356(4): 19441954.
Mixed H∞ and Passive Control for Stabilization for Time-Delay Rectangular Descriptor Systems
LI Jie, LIN Chong, LIU Huanxia
(Institute of Complexity Science, Qingdao University, Qingdao 266071, China)
Abstract:? Aiming at the problem of mixed H∞ and passive control for time-delay rectangular descriptor systems, this paper constructs a dynamic compensator with time delay and uses the admissibility criterion of a normal singular system to obtain sufficient conditions under mixed H∞ and passive performance index γ requirements. Firstly, a suitable Lyapunov-Krasovskii functional is constructed in this paper. Then, the derivative term of the functional derivative is processed in combination with the relaxed Wirtinger inequality, and then the non-linear term in the inequality is replaced. Finally, numerical example verifies the validity of the method. In this paper, the mixed H∞ and passive control problem is extended from a normal singular system to a rectangular descriptor system with time delay. The verification results show that the method in this paper has a larger upper bound on time delay, fewer decision variables, and lower conservatism and complexity than the sufficient stability conditions obtained by the existing results. This research is of great significance to the stability analysis and controller design of rectangular descriptor systems with time delay.
Key words:? rectangular descriptor systems; mixed H∞ and passive control; time delay; dynamic compensation
收稿日期: 2019-12-02; 修回日期: 2020-02-4
基金項目:國家自然科學基金資助項目(61673227,61873137)
作者簡介:黎婕(1995-,女,碩士研究生,主要研究方向為矩形廣義系統(tǒng)的分析與控制。
通信作者:林崇(1967-),男,博士,教授,碩士生導師,主要研究方向為系統(tǒng)理論與控制理論。 Email: linchong_2004@hotmail.com