亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        量子點(diǎn)-Su-Schrieffer-Heeger原子鏈系統(tǒng)的電子輸運(yùn)特性*

        2020-04-30 08:33:38張藍(lán)云薛海斌陳彬陳建賓邢麗麗
        物理學(xué)報(bào) 2020年7期
        關(guān)鍵詞:共振情形量子

        張藍(lán)云 薛海斌? 陳彬 陳建賓 邢麗麗

        1) (太原理工大學(xué)新材料界面科學(xué)與工程教育部重點(diǎn)實(shí)驗(yàn)室, 太原 030024)

        2) (太原理工大學(xué)物理與光電工程學(xué)院, 太原 030024)

        Su-Schrieffer-Heeger(SSH)原子鏈?zhǔn)堑湫偷木哂型負(fù)溥吘墤B(tài)的一維系統(tǒng), 并且已在光子和冷原子系統(tǒng)中實(shí)驗(yàn)實(shí)現(xiàn).本文在緊束縛近似下, 利用傳輸矩陣方法研究了量子點(diǎn)-SSH原子鏈系統(tǒng)的電子輸運(yùn)特性, 這里,量子點(diǎn)的作用是調(diào)節(jié)SSH原子鏈與電極的隧穿耦合強(qiáng)度.當(dāng)量子點(diǎn)與SSH原子鏈弱耦合時(shí), 量子點(diǎn)-SSH原子鏈系統(tǒng)的四重簡(jiǎn)并邊緣態(tài)對(duì)應(yīng)SSH原子鏈存在邊緣態(tài)的情形, 而其二重簡(jiǎn)并邊緣態(tài)對(duì)應(yīng)SSH原子鏈不存在邊緣態(tài)的情形; 當(dāng)量子點(diǎn)與SSH原子鏈強(qiáng)耦合時(shí), 其邊緣態(tài)僅在胞內(nèi)跳躍振幅大于胞間跳躍振幅情形下存在, 此時(shí), SSH原子鏈不存在邊緣態(tài).尤其是, 當(dāng)量子點(diǎn)-SSH原子鏈系統(tǒng)與外加電極之間為強(qiáng)隧穿耦合時(shí), 其邊緣態(tài)的電子共振透射峰的個(gè)數(shù)將減少2, 例如: 對(duì)于四重簡(jiǎn)并的邊緣態(tài), 即SSH原子鏈存在邊緣態(tài)的情形,其電子共振透射峰的個(gè)數(shù)將變?yōu)?; 而對(duì)于二重簡(jiǎn)并的邊緣態(tài), 即SSH原子鏈不存在邊緣態(tài)的情形, 其電子的共振透射峰將消失.因而, 可以通過調(diào)節(jié)量子點(diǎn)與SSH原子鏈、外加電極之間的隧穿耦合強(qiáng)度, 觀察邊緣態(tài)電子共振透射峰的個(gè)數(shù)變化情況來判斷SSH原子鏈?zhǔn)欠裉幱诜瞧接雇負(fù)鋺B(tài).

        1 引 言

        Su-Schrieffer-Heeger (SSH)原子鏈?zhǔn)蔷哂型負(fù)涮匦缘淖詈?jiǎn)單系統(tǒng)[1,2], 且在實(shí)驗(yàn)上已經(jīng)利用光子[3,4]和冷原子[5]系統(tǒng)實(shí)現(xiàn).尤其是, 在SSH原子鏈系統(tǒng)中, 其受拓?fù)浔Wo(hù)的邊緣態(tài)[6]對(duì)局部缺陷和系統(tǒng)的無序具有很強(qiáng)的魯棒性, 因而在自旋電子器件和低功耗器件中具有潛在的應(yīng)用價(jià)值[7].因此,如何從理論[8?18]和實(shí)驗(yàn)上[19?22]確定SSH原子鏈拓?fù)溥吘墤B(tài)的存在成為凝聚態(tài)物理中的重要課題之一.其中, 通過研究SSH原子鏈的電子輸運(yùn)特性對(duì)其邊緣態(tài)的依賴關(guān)系, 從而確定邊緣態(tài)存在的電子輸運(yùn)特性成為一個(gè)重要研究課題.例如, SSH原子鏈的電子透射率、電流散粒噪聲和電導(dǎo)表現(xiàn)出新奇的奇偶性[23].在直流偏置電壓下, SSH原子鏈能量分辨地傳輸、電流和散粒噪聲可以用來探測(cè)其非平庸拓?fù)鋺B(tài)[24]; 而在交流電場(chǎng)驅(qū)動(dòng)下, 電流的散粒噪聲可以用來測(cè)量其拓?fù)湎鄨D[25].但是, SSH原子鏈與電極之間的隧穿耦合強(qiáng)度對(duì)其邊緣態(tài)電子輸運(yùn)特性的影響, 特別是, SSH原子鏈與電極處于強(qiáng)隧穿耦合區(qū)域時(shí), 邊緣態(tài)與其電子輸運(yùn)特性的關(guān)系, 尚未被揭示.

        在本文中, 利用緊束縛近似和傳輸矩陣方法[26]研究了量子點(diǎn)-SSH原子鏈系統(tǒng)的電子輸運(yùn)性質(zhì),并確定其輸運(yùn)性質(zhì)與SSH原子鏈邊緣態(tài)之間的關(guān)系.與SSH原子鏈直接與兩個(gè)電極耦合的情形相比, 將SSH原子鏈的左、右端與兩個(gè)量子點(diǎn)耦合,可以通過SSH原子鏈與兩個(gè)量子點(diǎn)之間的隧穿耦合強(qiáng)度和兩個(gè)量子點(diǎn)與外加電極之間的隧穿耦合強(qiáng)度兩個(gè)參數(shù), 調(diào)節(jié)SSH原子鏈與兩個(gè)電極的隧穿耦合強(qiáng)度, 為研究SSH原子鏈邊緣態(tài)的魯棒性,尤其是, 基于電子輸運(yùn)特性如何確定SSH原子鏈邊緣態(tài)的存在提供一個(gè)可選擇的方案.在量子點(diǎn)-SSH原子鏈系統(tǒng)中, 當(dāng)量子點(diǎn)與SSH原子鏈弱耦合時(shí), 在SSH原子鏈存在邊緣態(tài)的情形下, 量子點(diǎn)-SSH原子鏈系統(tǒng)的邊緣態(tài)為四重簡(jiǎn)并, 而在SSH原子鏈不存在邊緣態(tài)的情形下, 其邊緣態(tài)為二重簡(jiǎn)并.當(dāng)量子點(diǎn)與SSH原子鏈強(qiáng)耦合時(shí), 量子點(diǎn)-SSH原子鏈系統(tǒng)的邊緣態(tài)僅在胞內(nèi)跳躍振幅大于胞間跳躍振幅情形下存在且為二重簡(jiǎn)并, 但是,此時(shí)SSH原子鏈不存在邊緣態(tài).研究結(jié)果表明, 量子點(diǎn)與SSH原子鏈、兩個(gè)電極之間的隧穿耦合強(qiáng)度對(duì)其邊緣態(tài)電子共振透射峰的個(gè)數(shù)起決定性作用, 此特性可以用來判斷SSH原子鏈?zhǔn)欠裉幱诜瞧接雇負(fù)鋺B(tài).

        2 物理模型與研究方法

        2.1 物理模型

        本文考慮的物理模型為量子點(diǎn)-SSH原子鏈系統(tǒng)和兩個(gè)外加電極耦合, 如圖1所示, 整個(gè)系統(tǒng)的哈密頓量可以表示為

        (1)式中右邊第一項(xiàng)為量子點(diǎn)-SSH原子鏈的哈密頓量

        (1)式中右邊第二項(xiàng)和第三項(xiàng)分別表示左電極(源極)和右電極(漏極)的哈密頓量:

        (1)式中第四項(xiàng)表示左右電極與量子點(diǎn)-SSH原子鏈系統(tǒng)之間的隧穿耦合哈密頓量:

        其中, tL和 tR分別是左、右導(dǎo)線與量子點(diǎn)-SSH 原子鏈系統(tǒng)之間的隧穿耦合強(qiáng)度.

        2.2 研究方法

        下面采用傳輸矩陣方法計(jì)算電子通過量子點(diǎn)-SSH原子鏈系統(tǒng)的透射率.首先, 將整個(gè)系統(tǒng)的波函數(shù) ψ 按照每個(gè)“格點(diǎn)”的瓦尼爾態(tài)函數(shù)展開, 可得:

        圖1 量子點(diǎn)-SSH原子鏈系統(tǒng)的示意圖.其中, 空心圓為電極上的原子, 陰影圓表示量子點(diǎn), 紅色圓表示A原子, 藍(lán)色圓表示B原子.t0 是電極上最近鄰兩個(gè)原子之間的跳躍振幅, tη(η =L,R) 表示導(dǎo)線與量子點(diǎn)之間的隧穿耦合強(qiáng)度, τ 為量子點(diǎn)與SSH原子鏈之間的隧穿耦合強(qiáng)度, υ 為胞內(nèi)的跳躍振幅, ω 為胞間的跳躍振幅, N為原胞數(shù)目Fig.1.Schematic of the considered quantum dot-SSH chain hybrid system.The hollow circles denote atoms on the leads, the shadow circles are the quantum dots, red circles are the A atoms, the blue circles represent the B atoms.t0 is the hopping amplitude between the two nearest-neighbor atoms on the leads.tη (η =L,R) describes the strength of tunneling coupling between the lead-h and quantum dot-h, τ is the strength of tunneling coupling between quantum dot and SSH chain, υ and ω denote the intra-cell and inter-cell hopping amplitudes, respectively.N is the number of unit cells.

        其中: aj,k(j??1) 、 dn,α,k、 aj,k(j?1) 分別是左電極、SSH原子鏈、右電極原子瓦尼爾態(tài)函數(shù)的幾率幅; dL,k和 dR,k分別是左、右兩個(gè)量子點(diǎn)瓦尼爾態(tài)函數(shù)的幾率幅.這里, k 為入射電子的波矢, 入射電子的能量 E =2t0coska , 其中, 電極上原子的位置能 ε0已選取為0, 電極上最近鄰兩個(gè)原子之間的跳躍振幅振幅 t0選取為1, 晶格常數(shù)a為1.

        為方便計(jì)算, 將左、右電極上第j個(gè)原子的幾率幅寫成如下平面波的形式:

        其中, r和t分別是反射和透射的幾率幅.將系統(tǒng)的哈密頓量(1)式和波函數(shù)(6)式代入薛定諤方程H|ψ?=E|ψ?, 令方程兩邊相同瓦尼爾態(tài)函數(shù)的系數(shù)相等, 可以得到下面一系列的方程組:

        利用傳輸矩陣方法, 可將(9)式寫成如下形式:

        因而, (9)式可進(jìn)一步簡(jiǎn)化為如下形式:

        另外, 由(7)式和(8)式可得

        將方程(18)代入方程(17), 可求出量子點(diǎn)-SSH原子鏈系統(tǒng)的透射率

        3 數(shù)值結(jié)果與討論

        3.1 量子點(diǎn)-SSH原子鏈系統(tǒng)的能譜圖

        對(duì)于SSH原子鏈, 其邊緣態(tài)在胞內(nèi)跳躍振幅υ小于胞間跳躍振幅 ω 情形下, 即 υ <ω 情形下存在,如圖2(a)所示.在量子點(diǎn)-SSH原子鏈系統(tǒng)中, 其邊緣態(tài)性質(zhì)依賴于量子點(diǎn)與SSH原子鏈的隧穿耦合強(qiáng)度.當(dāng)量子點(diǎn)與SSH原子鏈處于弱隧穿耦合區(qū)域時(shí), 例如, τ =0.01 , 邊緣態(tài)在不同區(qū)域具有不同的簡(jiǎn)并度, 如圖2(b)所示.當(dāng)量子點(diǎn)與SSH原子鏈處于強(qiáng)隧穿耦合區(qū)域時(shí), 例如, τ =1.00 , 邊緣態(tài)僅在 υ >ω 情形下存在, 如圖2(c) 所示.為了確定邊緣態(tài)及其簡(jiǎn)并度, 圖3給出了SSH原子鏈和量子點(diǎn)-SSH原子鏈系統(tǒng)的邊緣態(tài), 即零能本征值對(duì)應(yīng)的波函數(shù)在每個(gè)格點(diǎn)位置上的幾率分布, 這里, 零能本征態(tài)記為 φμ, 其中 μ 為邊緣態(tài)的態(tài)指標(biāo).

        圖2 (a) SSH 原子鏈的能譜圖; (b) 和 (c) 量子點(diǎn)-SSH 原子鏈系統(tǒng)的能譜圖, 其中, (b) τ =0.01 , (c) τ =1.00.胞間跳躍振幅ω=1.00, 原胞數(shù)目N=10Fig.2.(a) Energy spectrum of the SSH chain; (b) and (c) Energy spectrum of the quantum dot-SSH chain hybrid system, where(b) τ =0.01 and (c) τ =1.00.Here, ω =1.00 and N =10.

        當(dāng)量子點(diǎn)與SSH原子鏈弱耦合時(shí), 即 τ =0.01 ,在 υ <ω 情形下, 例如, υ =0.50 , 其零能本征態(tài)為φ1, φ2, φ3和 φ4, 相應(yīng)地, 其邊緣態(tài)的簡(jiǎn)并度為 4.此時(shí), 零能本征態(tài)的幾率分布在與SSH原子鏈耦合的兩個(gè)量子點(diǎn)上的占據(jù)幾率最大, 在SSH原子鏈左、右兩端原子上的占據(jù)幾率則次之.因此, 量子點(diǎn)-SSH原子鏈系統(tǒng)的四重簡(jiǎn)并邊緣態(tài)對(duì)應(yīng)于SSH原子鏈存在邊緣態(tài)的情形, 如圖3(a)和圖3(b)所示.在 υ >ω 情形下, 例如, υ =1.50 , 其邊緣態(tài)的簡(jiǎn)并度為 2, 相應(yīng)地, 零能本征態(tài)為 φ1和 φ2, 雖然其幾率在與SSH原子鏈耦合的兩個(gè)量子點(diǎn)上的占據(jù)幾率最大, 但是, SSH原子鏈左、右兩端原子的占據(jù)幾率并沒有明顯大于其他原子, 因而, 量子點(diǎn)-SSH原子鏈系統(tǒng)的二重簡(jiǎn)并邊緣態(tài)對(duì)應(yīng)于SSH原子鏈不存在邊緣態(tài)的情形, 如圖3(a)和圖3(c)所示.當(dāng)量子點(diǎn)與 SSH原子鏈強(qiáng)耦合時(shí), 即τ=1.00, 僅在 υ >ω 情形下, 例如, υ =2.00 , 存在二重簡(jiǎn)并的邊緣態(tài), 其零能本征態(tài)為 φ1和 φ2.此時(shí), 其幾率僅在與SSH原子鏈耦合的兩個(gè)量子點(diǎn)上的占據(jù)幾率最大, 尤其是, SSH原子鏈左、右兩端原子的占據(jù)幾率甚至小于其他原子如圖3(d)所示.因此, 量子點(diǎn)-SSH原子鏈系統(tǒng)二重簡(jiǎn)并的邊緣態(tài)都對(duì)應(yīng)于SSH原子鏈不存在邊緣態(tài)的情形.

        3.2 量子點(diǎn)-SSH原子鏈系統(tǒng)的電子輸運(yùn)特性

        3.2.1 量子點(diǎn)與SSH原子鏈弱耦合的情形

        圖3 (a) SSH 原子鏈的零能模波函數(shù)在每個(gè)格點(diǎn)位置上的幾率分布, 其中, υ =0.50 ; (b)?(d) 量子點(diǎn)-SSH 原子鏈系統(tǒng)的零能模波函數(shù)在每個(gè)格點(diǎn)位置上的幾率分布, 其中: (b) τ =0.01 , υ =0.50 ; (c) τ =0.01 , υ =1.50 ; (d) τ=1.00υ=2.00Fig.3.(a) The probability distributions of wave functions of the zero-energy modes at each sites in the SSH chain with υ =0.50 ;(b)?(d) The probability distributions of wave functions of the zero-energy modes at each sites in the quantum dot-SSH chain hybrid system, where (b) τ =0.01 , υ =0.50 , (c) τ =0.01 , υ =1.50 , (d) τ =1.00 υ =2.00.

        首先, 分析量子點(diǎn)-SSH原子鏈系統(tǒng)四重簡(jiǎn)并邊緣態(tài)的電子透射率特性, 即圖2(b)中 υ 小于0.8的情形.當(dāng)量子點(diǎn)-SSH原子鏈系統(tǒng)與外加電極耦合時(shí), 量子點(diǎn)-SSH原子鏈系統(tǒng)與左、右電極的耦合強(qiáng)度 tL和 tR, 將影響量子點(diǎn)-SSH原子鏈系統(tǒng)的電子結(jié)構(gòu).因而, tL和 tR的數(shù)值將影響其電子輸運(yùn)特性, 尤其是邊緣態(tài)的電子輸運(yùn)特性.為方便討論,這里選取 tL=tR.當(dāng)量子點(diǎn)-SSH原子鏈系統(tǒng)與電極之間處于弱耦合區(qū)域時(shí), 外加電極對(duì)量子點(diǎn)-SSH原子鏈系統(tǒng)的電子結(jié)構(gòu)影響很小.對(duì)于有限長(zhǎng)的SSH原子鏈, 量子點(diǎn)-SSH原子鏈系統(tǒng)的邊緣態(tài), 實(shí)際上是由四個(gè)能量不相等, 但其數(shù)值都接近于零的本征態(tài)組成, 如圖4(a)所示.此時(shí), 入射電子將在 Ein=0 附近, 出現(xiàn)四個(gè)共振透射峰, 例如,當(dāng) υ =0.60 時(shí), 在 tL=tR=0.010 的情形下, 入射電子 能 量 在 Ein=±0.006 和 Ein=±0.010 附近, 出現(xiàn)了四個(gè)共振透射峰, 其峰值對(duì)應(yīng)的入射電子能量與圖4(a)的能量本征值定性一致, 如圖5(a)中的實(shí)線所示.

        但是, 當(dāng)量子點(diǎn)-SSH原子鏈系統(tǒng)與電極之間處于強(qiáng)耦合區(qū)域時(shí), 外加電極將對(duì)量子點(diǎn)-SSH原子鏈系統(tǒng)的電子結(jié)構(gòu)產(chǎn)生決定性的影響.相應(yīng)地,tL和 tR的數(shù)值將對(duì)入射電子在 Ein=0 附近的電子輸運(yùn)特性起決定作用.因而, 隨著 tL和 tR的數(shù)值逐漸增大, 四個(gè)共振透射峰之間谷底的數(shù)值將逐漸增大, 如圖5(a)所示, 并逐漸轉(zhuǎn)變?yōu)閮蓚€(gè)較寬的透射峰, 如圖5(b)中的虛線和點(diǎn)線所示.之后, 這兩個(gè)較寬的透射峰將隨著 tL和 tR數(shù)值的繼續(xù)增大而形成一個(gè)更寬的透射峰, 如圖5(b)中的雙點(diǎn)劃線和5(c)中的實(shí)線所示.若繼續(xù)增大 tL和 tR的數(shù)值, 這個(gè)很寬的透射峰將劈裂為兩個(gè)透射峰, 最后,在 Ein= ± 0.004 附近形成兩個(gè)共振透射峰, 如圖5(c)所示.

        為了解釋此現(xiàn)象的物理機(jī)制, 在圖4(b)中, 給出了量子點(diǎn)-SSH原子鏈系統(tǒng)與左、右電極第 –1個(gè)和第1個(gè)原子耦合的系統(tǒng)在零能級(jí)附近的能譜圖,這里, 選取 tL=tR=1.000.由圖4(b)可知, 量子點(diǎn)-SSH原子鏈系統(tǒng)與左、右電極第 –1個(gè)和第1個(gè)原子耦合系統(tǒng)在 υ =0.60 時(shí)的能量本征值與這兩個(gè)共振透射峰的位置 Ein=±0.004 定性一致.需要說明的是, 量子點(diǎn)-SSH原子鏈系統(tǒng)的零能本征態(tài)φ1和 φ2的幾率在SSH原子鏈最左邊和最右邊的兩個(gè)原子上占據(jù)幾率最大, 如圖6所示.因此, 當(dāng)量子點(diǎn)-SSH原子鏈系統(tǒng)與電極之間的隧穿耦合強(qiáng)度從弱耦合區(qū)域變化到強(qiáng)耦合區(qū)域時(shí), 在Ein=0附近, 電子的共振透射峰將從四個(gè)減少為兩個(gè).此特性可以用來判斷SSH原子鏈?zhǔn)欠裉幱诜瞧接雇負(fù)鋺B(tài).

        圖4 (a), (c)和 (e)量子點(diǎn)-SSH 原子鏈系統(tǒng)在零能級(jí)附近的能譜圖; (b), (d)和 (f)量子點(diǎn)-SSH 原子鏈系統(tǒng)與左、右電極第–1 個(gè)和第1個(gè)原子耦合的系統(tǒng)在零能級(jí)附近的能譜圖, 其中, tL=tR=1.00Fig.4.(a), (c) and (e)Energy spectrum of the quantum dot-SSH chain hybrid system in the vicinity of the zero energy; (b), (d) and(f) Energy spectrum of the quantum dot-SSH chain hybrid system coupled to the first atom (–1) of the left lead and the first atom(1) of the right one in the vicinity of the zero energy at tL=tR=1.00.

        其次, 分析量子點(diǎn)-SSH原子鏈系統(tǒng)的二重簡(jiǎn)并邊緣態(tài)的電子透射率特性, 即圖2(b)中 υ 大于0.8的情形.當(dāng)量子點(diǎn)-SSH原子鏈系統(tǒng)與電極之間處于弱耦合區(qū)域時(shí), 外加電極對(duì)量子點(diǎn)-SSH原子鏈系統(tǒng)的電子結(jié)構(gòu)影響很小.對(duì)于有限長(zhǎng)的SSH原子鏈, 量子點(diǎn)-SSH原子鏈系統(tǒng)的邊緣態(tài),實(shí)際上是由兩個(gè)能量不相等, 但其數(shù)值都接近于零的本征態(tài)組成, 如圖4(c) 所示.此時(shí), 入射電子將在 Ein=0 附近, 出現(xiàn)兩個(gè)共振透射峰, 例如, 對(duì)于υ=1.50的情形, 當(dāng) tL=tR=0.0001 時(shí), 入射電子能量在 Ein= ±1.8×10?6附近, 出現(xiàn)了兩個(gè)共振透射峰, 其峰值對(duì)應(yīng)的入射電子能量與圖4(c)的能量本征值定性一致, 如圖7(a1)中的實(shí)線所示.

        但是, 當(dāng)量子點(diǎn)-SSH原子鏈系統(tǒng)與電極之間處于強(qiáng)耦合區(qū)域時(shí), 外加電極將對(duì)量子點(diǎn)-SSH原子鏈系統(tǒng)的電子結(jié)構(gòu)產(chǎn)生決定性的影響.相應(yīng)地,tL和 tR的數(shù)值將對(duì)入射電子在 Ein=0 附近的電子輸運(yùn)特性起決定作用.例如, 隨著 tL和 tR數(shù)值的增大, 在 Ein= ±1.8×10?6附近的兩個(gè)共振透射峰,將逐漸展寬, 并且兩個(gè)共振透射峰之間谷底的數(shù)值將逐步上升, 如圖7(a1)所示.若繼續(xù)增大 tL和tR的數(shù)值, 兩個(gè)共振透射峰將變成一個(gè)較寬的共振峰, 如圖7(a2) 中的虛線和點(diǎn)線所示.當(dāng) tL和 tR大于某一數(shù)值時(shí), 例如, 當(dāng) tL=tR=0.0029 時(shí), 較寬的共振透射峰將消失, 入射電子的透射率將趨于零.此現(xiàn)象同樣可以用量子點(diǎn)-SSH原子鏈系統(tǒng)與左、右電極第? 1 個(gè)和第 1 個(gè)原子耦合的系統(tǒng)在零能級(jí)附近的能譜圖定性解釋, 這里, 選取tL=tR=1.000.由圖4(d)可知, 當(dāng)量子點(diǎn)-SSH 原子鏈系統(tǒng)與電極之間處于強(qiáng)耦合區(qū)域時(shí), 外加電極與量子點(diǎn)-SSH原子鏈系統(tǒng)之間強(qiáng)的隧穿耦合相互作用, 將導(dǎo)致量子點(diǎn)-SSH原子鏈系統(tǒng)的邊緣態(tài)消失, 因而, 入射電子在 Ein=0 附近的電子透射率將趨于零.

        圖5 對(duì)于不同的隧穿耦合強(qiáng)度, 量子點(diǎn)-SSH 原子鏈系統(tǒng)的電子透射率隨入射電子能量的變化.其中, τ =0.01 , υ =0.60 ,ω=1.00, N=10Fig.5.The transmission probability versus the energy of incident electron for different strengths of tunneling coupling at τ =0.01 ,υ=0.60, ω =1.00 and N =10.

        圖6 量子點(diǎn)-SSH 原子鏈系統(tǒng)與左、右電極第–1 個(gè)和第1個(gè)原子耦合系統(tǒng)的零能模波函數(shù)在每個(gè)格點(diǎn)位置上的幾率分布.其他參數(shù)與圖5相同.Fig.6.The probability distributions of wave functions of the zero-energy modes at each sites in the quantum dot-SSH chain hybrid system coupled to the first atom (–1) of the left lead and the first atom (1) of the right one.The other parameters are the same as in Fig.5.

        當(dāng)胞內(nèi)跳躍振幅 υ 增大時(shí), 例如, υ =2.00 , 此時(shí), 入射電子在 Ein= ±1.0×10?7附近出現(xiàn)兩個(gè)共振透射峰, 如圖7(b1) 所示.與 υ =1.50 的情形相比, 其峰值對(duì)應(yīng)的入射電子能量變小, 但是, 隨著tL和 tR數(shù)值的逐漸增大, 其在 Ein=0 附近的電子輸運(yùn)特性與 υ =1.50 情形相同.這里, 需要說明的是,對(duì)于 υ =2.00 的情形, 當(dāng) tL和 tR在一個(gè)較小的數(shù)值時(shí), 例如, tL=tR=0.0007 , 入射電子在兩個(gè)共振透射峰位置的透射率就變?yōu)榱? 如圖7(b2)所示.因此, 可以通過將 tL和 tR的數(shù)值從小到大逐漸變化, 然后, 觀察入射電子在 Ein=0 附近共振透射峰的個(gè)數(shù)變化情況來判斷SSH原子鏈?zhǔn)欠裉幱诜瞧接雇負(fù)鋺B(tài).

        3.2.2 量子點(diǎn)與SSH原子鏈強(qiáng)耦合的情形

        圖7 對(duì)于不同的隧穿耦合強(qiáng)度, 量子點(diǎn)-SSH 原子鏈系統(tǒng)的電子透射率隨入射電子能量的變化.其中, τ =0.01 , ω =1.00 ,N=10.(a1)和 (a2) υ =1.50 ; (b1)和 (b2) υ=2.00Fig.7.The transmission probability versus the energy of incident electron for different strengths of tunneling coupling at τ =0.01 ,ω=1.00 and N =10.(a1) and (a2) υ =1.50 ; (b1) and (b2) υ =2.00.

        圖8 對(duì)于不同的隧穿耦合強(qiáng)度, 量子點(diǎn)-SSH 原子鏈系統(tǒng)的電子透射率隨入射電子能量的變化.其中, τ =1.00 , ω =1.00 ,N=10.(a1)和 (a2) υ =2.00 ; (b1)和 (b2) υ=2.50Fig.8.The transmission probability versus the energy of incident electron for different strengths of tunneling coupling at τ =1.00 ,ω=1.00 and N =10.(a1) and (a2) υ =2.00 ; (b1) and (b2) υ =2.50.

        對(duì)于量子點(diǎn)與SSH原子鏈之間強(qiáng)耦合的情形,即在 τ =1.00 情形下, 當(dāng) υ 大于 1.50 時(shí), 量子點(diǎn)-SSH原子鏈系統(tǒng)具有二重簡(jiǎn)并的邊緣態(tài), 如圖3(d)所示.此時(shí), 入射電子在 Ein=0 附近的邊緣態(tài)電子輸運(yùn)特性與量子點(diǎn)-SSH原子鏈弱耦合時(shí)二重簡(jiǎn)并的邊緣態(tài)情形相同, 即, 當(dāng)量子點(diǎn)-SSH原子鏈系統(tǒng)與電極之間的隧穿耦合強(qiáng)度從弱耦合區(qū)域變化到強(qiáng)耦合區(qū)域時(shí), 在 Ein=0 附近, 電子的兩個(gè)共振透射峰將逐漸消失, 如圖8所示.此特性同樣可以用來判斷SSH原子鏈系統(tǒng)是否處于非平庸拓?fù)鋺B(tài).但是, 這里共振透射峰對(duì)應(yīng)的電子入射能量相對(duì)大一些, 例如, 對(duì)于 υ =2.00 的情形, 入射電子能量為Ein=±0.0007, 如圖8(a1) 所示, 其峰值對(duì)應(yīng)的入射電子能量與圖4(e)的能量本征值定性一致, 并且電子共振透射峰的變化過程可以用量子點(diǎn)-SSH原子鏈系統(tǒng)與左、右電極第 –1個(gè)和第1個(gè)原子耦合系統(tǒng)在零能級(jí)附近的能譜圖定性解釋.

        當(dāng)胞內(nèi)跳躍振幅 υ 增大時(shí), 在 Ein=0 附近, 電子共振透射峰的峰值對(duì)應(yīng)的入射電子能量將變小,例如, 當(dāng) υ =2.50 時(shí), 其入射電子在Ein=±0.0001附近出現(xiàn)兩個(gè)共振透射峰, 如圖8(b1)所示; 并且當(dāng) tL和 tR取一個(gè)較小的數(shù)值時(shí), 例如, tL=tR=0.030, 入射電子在兩個(gè)共振透射峰位置的透射率就變?yōu)榱? 如圖8(b2)所示.因而, 同樣可以通過調(diào)節(jié) tL和 tR的數(shù)值, 觀察入射電子在 Ein=0 附近共振透射峰的個(gè)數(shù)變化情況來判斷SSH原子鏈?zhǔn)欠裉幱诜瞧接雇負(fù)鋺B(tài).

        4 結(jié) 論

        本文研究了量子點(diǎn)-SSH原子鏈系統(tǒng)的電子輸運(yùn)特性, 發(fā)現(xiàn)量子點(diǎn)-SSH原子鏈系統(tǒng)四重簡(jiǎn)并的邊緣態(tài)對(duì)應(yīng)于SSH原子鏈存在邊緣態(tài)的情形, 而其二重簡(jiǎn)并邊緣態(tài)對(duì)應(yīng)于SSH原子鏈不存在邊緣態(tài)的情形.當(dāng)量子點(diǎn)-SSH原子鏈系統(tǒng)與外加電極耦合時(shí), 電子在 Ein=0 附近共振透射峰的個(gè)數(shù), 將隨著量子點(diǎn)-SSH原子鏈系統(tǒng)與左、右電極耦合強(qiáng)度 tL和 tR的數(shù)值從小到大, 減少兩個(gè).例如, 對(duì)于四重簡(jiǎn)并邊緣態(tài)的情形, 其共振透射峰的個(gè)數(shù)將變兩個(gè), 而對(duì)于二重簡(jiǎn)并邊緣態(tài)的情形, 其共振透射峰將消失.因此, 可以通過將量子點(diǎn)-SSH原子鏈系統(tǒng)與外加電極之間的隧穿耦合強(qiáng)度從弱到強(qiáng), 觀察電子在 Ein=0 附近共振透射峰的個(gè)數(shù)變化情況來判斷SSH原子鏈?zhǔn)欠裉幱诜瞧接雇負(fù)鋺B(tài).

        猜你喜歡
        共振情形量子
        2022年諾貝爾物理學(xué)獎(jiǎng) 從量子糾纏到量子通信
        避免房地產(chǎn)繼承糾紛的十二種情形
        四種情形拖欠勞動(dòng)報(bào)酬構(gòu)成“拒不支付”犯罪
        公民與法治(2020年4期)2020-05-30 12:31:34
        決定未來的量子計(jì)算
        新量子通信線路保障網(wǎng)絡(luò)安全
        安然 與時(shí)代同頻共振
        選硬人打硬仗——紫陽(yáng)縣黨建與脫貧同頻共振
        CTA 中紡院+ 化纖聯(lián)盟 強(qiáng)強(qiáng)聯(lián)合 科技共振
        一種簡(jiǎn)便的超聲分散法制備碳量子點(diǎn)及表征
        出借車輛,五種情形下須擔(dān)責(zé)
        公民與法治(2016年9期)2016-05-17 04:12:18
        久久不见久久见免费影院国语| 国产女主播福利一区在线观看| 日韩av中文字幕少妇精品| 日韩精品人妻视频一区二区三区| 成熟人妻换xxxx| 黑人巨大跨种族video| 国产一区二区三区精品毛片| 色哟哟亚洲色精一区二区| 精品欧洲av无码一区二区| 四虎精品免费永久在线| 丰满少妇一区二区三区专区 | 国产成人精品白浆久久69| 欧美日韩亚洲精品瑜伽裤 | 粗一硬一长一进一爽一a级| bbbbbxxxxx欧美性| 美女免费观看一区二区三区| 五月四房播播| 影视先锋av资源噜噜| 久久国产精99精产国高潮| 国产自拍伦理在线观看| 久久综合99re88久久爱| 国产精一品亚洲二区在线播放| 亚洲AV无码一区二区三区天堂网| 日韩精品一二区在线视频| 国产日韩精品中文字幕| 377p日本欧洲亚洲大胆张筱雨| 国产乱淫视频| 国语自产啪在线观看对白| 亚洲国产成人精品无码区在线播放 | 亚洲熟妇无码久久精品疯| 蜜桃色av一区二区三区麻豆 | 国产午夜毛片v一区二区三区| 亚洲精品夜夜夜| 精品理论一区二区三区| 草逼动态图视频免费观看网站| 少妇人妻陈艳和黑人教练| 精品国产一区二区三区AV小说 | 国产婷婷一区二区三区| 91热爆在线精品| 日韩人妻精品视频一区二区三区| 五月丁香综合激情六月久久|