亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        三維Cahn-Hilliard方程的整體適定性

        2020-04-29 08:51:21劉彩鳳

        劉彩鳳

        摘要:主要研究三維Cahn-Hilliard 方程的Cauchy問題。首先,利用傅里葉變換求出其相對(duì)應(yīng)線性方程的形式解并證明形式解的光滑性;然后,構(gòu)造壓縮映射,應(yīng)用 Banach不動(dòng)點(diǎn)定理證明其局部適定性;最后,通過連續(xù)性準(zhǔn)則得到其在無任何小初值假設(shè)條件下的整體適定性。

        關(guān)鍵詞:Cahn-Hilliard 方程;傅里葉變換;Banach 不動(dòng)點(diǎn)定理;連續(xù)性準(zhǔn)則

        中圖分類號(hào):O175.29

        DOI:10.16152/j.cnki.xdxbzr.2020-06-009

        Global well-posedness of the 3D Cahn-Hilliard equation

        LIU Caifeng

        (School of Mathematics, Northwest University, Xi′an? 710127, China)

        Abstract: In this paper,? the Cauchy problem of the three-dimensional Cahn-Hilliard equations has been studied. Firstly, the formal solution of the corresponding linear system is obtained by the Fourier transform method, and the smoothness of the formal solution is proved. Then, the local well-posedness is proved by constructing? the compression map and applying the Banach fixed point theorem.? Finally, the global well-posedness is demonstrated via the continuation criterion without assumption of small initial data in Sobolev spaces.

        Key words: Cahn-Hilliard equation; Fourier transform; Banach fixed point theorem; continuation criterion

        參考文獻(xiàn):

        [1] CAHN J W,HILLIARD J E.Free energy of a nonuniform system.I. interfacial free energy[J].The Journal of Chemical Physics, 1958, 28(2): 258-267.

        [2] COHEN D S, MURRAY J D. A generalized diffusion model for growth and dispersal in a population[J].J Math Biology, 1981, 12(2): 237-249.

        [3] HAZEWINKEL M, KAASHOEK J F,LEYNSE B. Pattern Formation for a One Dimensional Evolution Equation Based on Thom′s River Basin Model[M].Disequilibrium and self-Organisation.Dordrecht:Springer Netherlands,1986,30:23-46.

        [4] TAYLER A B.Mathematical Models in Applied Mechanics [M]. Oxford: Clarendon, 1986.

        [5] ELLIOTT C M, ZHENG S M.On the Cahn-Hilliard equation[J]. Archive for Rational Mechanics and Analysis 1986, 96(4): 339-357.

        [6] RACKE R, ZHENG S M. The Cahn-Hilliard equation with dynamic boundary conditions[J]. Advances in Differential Equations, 2003, 8(1): 8-83.

        [7] PRSS J, RACKE R, ZHENG S M. Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions[J]. Annali Di Matematica Pura Ed Applicata, 2006, 185(4): 627-648.

        [8] ZHENG S M, MILANI A. Exponential attractors and inertial manifolds for singular perturbations of the Cahn-Hilliard equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2004, 57(5/6): 843-877.

        [9] CAFFARELLI? L A, MULER N E.An L∞ bound for solutions of the Cahn-Hilliard equation[J]. Archive for Rational Mechanics and Analysis, 1995, 133(2): 129-144.

        [10]BRICMONT J, KUPIAINEN A, TASKINEN J.Stability of Cahn-Hilliard fronts[J]. Comm Pure Appl Math,1999, 52(7): 839-871.

        [11]LIU S Q, WANG F, ZHAO H J.Global existence and asymptotics of solutions of the Cahn-Hilliard equation[J]. Journal of Differential Equations, 2007, 238(2): 426-469.

        [12]DLOTKO T, SUN C Y. Dynamics of the modified viscous Cahn-Hilliard equation in Rn[J]. Topological Methods in Nonlinear Analysis, 2010, 35(2): 277-294.

        [13]CHOLEWA J W,RODRIGUEZ-BERNAL A. On the Cahn-Hilliard equation in H1(RN)[J]. J Differential Equations, 2012, 253(12): 3678-3726.

        [14]朱長江, 鄧引斌. 偏微分方程教程[M]. 北京:科學(xué)出版社, 2005.

        [15]李開泰,馬逸塵,王立周.廣義函數(shù)和Sobolev空間[M].西安:西安交通大學(xué)出版社, 2008.

        [16]SIMON J. Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure [J]. Siam J Math Anal, 1990, 21(5):1093-1117.

        [17]KLAINERMAN S, MAJDA A. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids [J]. Communications on Pure and Applied Mathematics, 1981,34(4):481-524.

        [18]LEONARDI S, MLEK J, NECAS J, et al. On axially symmetric flows in R3[J]. Z Anal Anwendungen, 1999, 18 (3):639-649.

        [19]CHERRIER P, MILANI A.Linear and Quasi-linear Evolution Equations in Hilbert Spaces[M].Rhode lsland:American Mathematical Society, 2012.

        [20]EVANS L C. Weak Convergence Methods for Nonlinear Partial Differential Equations[M]. Loyola University of Chicago: Conference Board of the Mathematical Sciences, 1988: 9-10.

        [21]TARTAR L. An Introduction to Sobolev Spaces and Interpolation Spaces[M].Berlin,Heidelberg,New York:Springer,2007:10-11.

        [22]LVAREZ-CAUDEVILLA P, GALAKTIONOV V A. Well-posedness of the Cauchy problem for a fourth-order thin film equation via regularization approaches[J]. Nonlinear Analysis:Theory,Methods & Applications, 2015, 121: 19-35.

        (編 輯 張 歡)

        av一区二区三区综合网站| 日韩毛片在线看| 国产成人精品日本亚洲直播| 一二三四在线观看韩国视频| 无码精品国产一区二区三区免费 | 无码va在线观看| 国产人成精品综合欧美成人| 国产自产21区激情综合一区| 久久亚洲中文字幕精品熟| 高潮潮喷奶水飞溅视频无码| 精品一区二区三区在线观看视频| 永久免费毛片在线播放| 国产的自拍av免费的在线观看 | 久久无码人妻一区=区三区| 亚洲在线一区二区三区| 人妻少妇哀求别拔出来| 少妇做爰免费视频网站| 依依成人影视国产精品| 男男做h嗯啊高潮涩涩| 久爱www人成免费网站| 欧美黑人疯狂性受xxxxx喷水| 色二av手机版在线| 日产一区日产2区日产| 久久精品夜色国产亚洲av| 亚洲国产成人91| 午夜av福利亚洲写真集| 日韩欧美中文字幕公布| 亚洲欧美另类激情综合区| 91网红福利精品区一区二| 少妇激情高潮视频网站| 亚洲av无码成人网站在线观看| 无码专区中文字幕DVD| 国产av一区二区内射| 国产精品国产亚洲精品看不卡 | 人人妻人人添人人爽日韩欧美| 中文字幕乱码av在线| 国产自拍偷拍精品视频在线观看 | 日本一区二区三区四区在线看| 精品人妻av区乱码色片| 福利体验试看120秒| 91久久国产情侣真实对白|