林 濤,趙成林,劉航鵬,趙參參
(河北工業(yè)大學人工智能與數(shù)據(jù)科學學院,天津 300130)
風電機組發(fā)電機結(jié)構(gòu)復(fù)雜,在運行中會受風速、機械等復(fù)雜因素的影響,導(dǎo)致其內(nèi)部承受的壓力較大,故障率高,不便于維修[1]。由發(fā)電機及其相關(guān)設(shè)備造成的停機時間占風電機組總故障停機時間的23.2%,這已經(jīng)成為影響發(fā)電機組經(jīng)濟性的重要因素[2]。
對即將發(fā)生的故障進行預(yù)警,采用預(yù)見性維護模式進行風電機組發(fā)電機維護是一種高效的、節(jié)約成本的方式。目前的風機部件狀態(tài)建模主要采用2種方法:基于物理模型的方法與基于數(shù)據(jù)驅(qū)動的方法。與基于物理模型的方法相比,基于數(shù)據(jù)驅(qū)動的方法限制較少,不用深入了解故障過程。通過數(shù)據(jù)采集技術(shù),風場的運營維護人員可以得到大量的風機運行數(shù)據(jù),這為基于數(shù)據(jù)驅(qū)動的風機狀態(tài)分析提供了基礎(chǔ)[3]。
在基于數(shù)據(jù)驅(qū)動的各種狀態(tài)監(jiān)測方法中,通過采用監(jiān)視控制與數(shù)據(jù)采集SCADA(Supervisory Control And Data Acquisition)系統(tǒng)中的風機運行數(shù)據(jù)來訓(xùn)練預(yù)測模型,進而對風機部件進行實時狀態(tài)監(jiān)測已被證明是一種高效的方式。Wang等[4]使用k近鄰、嶺回歸、支持向量機、淺層神經(jīng)網(wǎng)絡(luò)、深度神經(jīng)網(wǎng)絡(luò)作為預(yù)測模型,采用SCADA數(shù)據(jù)對風機齒輪箱進行故障診斷,經(jīng)過比較各模型的殘差,證明了深度神經(jīng)網(wǎng)絡(luò)的診斷精度最高,說明了深度神經(jīng)網(wǎng)絡(luò)在處理風電數(shù)據(jù)上的優(yōu)越性。然而,上述模型雖然達到了診斷的目的,但模型的構(gòu)建過程繁瑣,并且只利用單一的變量殘差來評估部件的健康程度,不能達到全面評估的效果。
棧式自編碼器SAE(Stacked Auto-Encoder)作為一種實現(xiàn)簡單的深度神經(jīng)網(wǎng)絡(luò),可在多維數(shù)據(jù)中提取隱含特征。Zhao等[5]使用棧式自編碼器對風機SCADA數(shù)據(jù)進行分析,通過多維數(shù)據(jù)提取風機運行特征,根據(jù)重構(gòu)誤差及各變量殘差的走勢推斷出風電機組的潛在故障位置,診斷結(jié)果更加全面。上述方法驗證了棧式自編碼器處理風電數(shù)據(jù)的可能性,但只是通過設(shè)定閾值來識別故障,不能得到故障的發(fā)生概率,并且閾值的設(shè)定直接影響了診斷效果,風場運維人員無法很好地把握。
為了使風場運維人員能夠直觀全面地監(jiān)測風電機組發(fā)電機的運行狀態(tài),針對以上風機健康評估研究的經(jīng)驗與存在的問題,本文采用SCADA數(shù)據(jù)進行風電機組發(fā)電機健康評估,對傳統(tǒng)棧式自編碼器進行改進,將其作為風電機組發(fā)電機的狀態(tài)監(jiān)測器,從模型的殘差分布中提取了3種統(tǒng)計指標,并將3種指標進行概率化處理及融合,得到風機發(fā)電機的健康度。與傳統(tǒng)的棧式自編碼器相比,改進的模型能學習到風電數(shù)據(jù)更深層的特征,較早地發(fā)現(xiàn)故障趨勢;與采用閾值的故障指示方法對比,本文提出的評估指標使用概率信息進行故障指示,對于故障趨勢的識別更加靈敏直觀。
本文的健康評估模型框架分為離線模型構(gòu)建和在線健康評估2部分。首先對風機運行數(shù)據(jù)進行清洗處理,得到有效的訓(xùn)練數(shù)據(jù)與測試數(shù)據(jù)。然后對棧式自編碼模型進行訓(xùn)練、測試,得到健康評估基準模型與基準指標。最后將訓(xùn)練好的基準模型作為發(fā)電機在線狀態(tài)監(jiān)測器,并利用滑動時間窗對得到的在線重構(gòu)誤差進行評估,得到每個時間段內(nèi)風電機組發(fā)電機的健康度。本文的健康評估模型框架如圖1所示。
Figure 1 Structure of health assessment圖1 健康評估模型框架圖
棧式自編碼器是基于多層自編碼器的組合網(wǎng)絡(luò),通過最小化輸入與輸出的重構(gòu)誤差,可以使網(wǎng)絡(luò)逐層學習輸入數(shù)據(jù)間的分布規(guī)則,當數(shù)據(jù)出現(xiàn)異常,網(wǎng)絡(luò)內(nèi)部平衡會被打破,導(dǎo)致重構(gòu)誤差增大。作為自編碼器的變種,去噪自編碼器通過以一定概率使輸入為零來進行訓(xùn)練,可以避免自編碼器的特征學習只是輸出對輸入的簡單復(fù)刻,使學習的特征更具有代表性,其最大的優(yōu)勢是學習到的特征不受輸入的限制,從而得到比輸入維度更大的隱含層特征[6]。而稀疏自編碼器通過將隱含層稀疏化,使自編碼神經(jīng)網(wǎng)絡(luò)即使在隱含層神經(jīng)元數(shù)量較多的情況下仍然可以學習輸入數(shù)據(jù)中的一些規(guī)律[7]。
考慮到風機SCADA數(shù)據(jù)具有維度高、數(shù)據(jù)分布模式復(fù)雜的特征,本文改進的SAE模型將以上2種自編碼器結(jié)合,先利用去噪自編碼器學習1個比輸入更大的隱含特征,再通過稀疏自編碼器保證改進的SAE在多神經(jīng)元下的特征學習效率。圖2為本文改進的SAE模型結(jié)構(gòu)圖。
Figure 2 Structure of the improved SAE圖2 改進的SAE結(jié)構(gòu)圖
圖2中x=[x1,x2,…,xn]表示模型輸入矩陣,y=[y1,y2,…,yn]表示模型輸出矩陣,h1,h2,h3表示隱含層矢量。自編碼器的編碼過程如式(1)所示:
h1=f(w1x+b1)
(1)
其中w1與b1分別為輸入層與隱含層之間的權(quán)值與偏置,f為sigmoid函數(shù)。
自編碼器的解碼過程如式(2)所示:
y=f(w4h3+b4)
(2)
其中,w4與b4分別為隱含層與輸出層之間的權(quán)值與偏置。為了避免網(wǎng)絡(luò)出現(xiàn)過擬合,本文在總體代價函數(shù)中加入正則化項,如式(3)所示:
(3)
(4)
其中,hj(xi)為第j個神經(jīng)元在第i個輸入數(shù)據(jù)下的激活度。利用相對熵對節(jié)點的活躍度進行限制,則整個隱含層的稀疏限制如式(5)所示:
(5)
其中,ρ為稀疏性參數(shù),通常是1個接近于0的值,本文中ρ=0.1。通過加入稀疏限制,可得到稀疏自編碼器的總體代價函數(shù)如式(6)所示:
(6)
其中,β為稀疏化的調(diào)節(jié)因子。
將式(3)的結(jié)果作為改進的SAE編碼過程的重構(gòu)誤差,并通過以一定概率使輸入為零,構(gòu)建去噪自編碼器。將式(6)的結(jié)果作為隱含層之間的重構(gòu)誤差,從而構(gòu)造稀疏自編碼器。對模型進行無監(jiān)督預(yù)訓(xùn)練與微調(diào)訓(xùn)練后,得到風電機組發(fā)電機健康評估的基準模型。
當發(fā)電機出現(xiàn)故障趨勢時,通過改進的SAE狀態(tài)監(jiān)測器得到的重構(gòu)誤差分布與基準重構(gòu)誤差的分布會出現(xiàn)明顯差異,為了對分布差異進行量化,先使用平均值、方差、分位數(shù)對離線訓(xùn)練得到的重構(gòu)誤差進行評估,得到風機在正常運行情況下的基準指標;再通過劃分時間窗,計算固定時間段內(nèi)在線重構(gòu)誤差的統(tǒng)計指標;最后將該統(tǒng)計指標與得到的基準指標進行差異性比對,得到分布差異指標。
平均值差異和方差差異是量化2個分布差異的基本指標,也是構(gòu)建健康度指標的前提。z分數(shù)作為一種常用的統(tǒng)計方法,以標準差為單位計算樣本與總體平均值的距離,不受原始測量單位的影響。為了比較離線訓(xùn)練的基準重構(gòu)誤差與在線重構(gòu)誤差的均值偏差,根據(jù)z分數(shù)原理設(shè)計平均值差異ME如式(7)所示:
ME=(uon-uoff)/σoff
(7)
其中,ME為2個誤差的平均值差異,uon為在線重構(gòu)誤差均值,uoff為基準重構(gòu)誤差均值,σoff為基準重構(gòu)誤差的標準差。
F統(tǒng)計量廣泛應(yīng)用于方差分析,為了比較2個誤差的方差差異,設(shè)計1個F統(tǒng)計量VM如式(8)所示:
(8)
風電機組發(fā)電機的實際運行容易受到風速等環(huán)境因素的影響,所以狀態(tài)監(jiān)測得到的重構(gòu)誤差含有大量噪聲,這些噪聲引起的重構(gòu)誤差分布的異常變化,會進一步對2個重構(gòu)誤差間平均值差異與方差差異的評估產(chǎn)生干擾。為了能夠更好地反映整體分布差異的變化,減弱重構(gòu)誤差噪聲的影響,本文設(shè)計異常度AP如式(9)所示:
AP=P(r>δoff)
(9)
其中,AP是異常度,δoff為基準重構(gòu)誤差的90%分位數(shù),r為在線重構(gòu)誤差,P(r>δoff)代表在線重構(gòu)誤差超過基準重構(gòu)誤差90%分位數(shù)的概率。AP值越大證明在線重構(gòu)誤差中的異常樣本越多,發(fā)電機正常運行情況下,AP≈0.1。
利用平均值差異、方差差異、異常度3個指標,可以在考慮異常值影響的情況下,對在線重構(gòu)誤差與離線基準重構(gòu)誤差的分布差異進行評估,為提高評估指標的直觀性,將3種指標進行概率化與融合,得到發(fā)電機健康的綜合評價指標。
本文通過反正切函數(shù)將3個差異指標進行概率化,tanh函數(shù)單調(diào)遞增,且函數(shù)在大于某值后,其變化率變慢,此特點恰好可表示當重構(gòu)誤差中有足夠的異常點時,風機已經(jīng)處于異常狀態(tài)的情況,利于異常狀態(tài)的劃分。利用tanh函數(shù)對指標進行概率化,如式(10)所示:
PBPARA=tanh(PARA/a)
(10)
其中,PBPARA為得到的概率化指標,PARA代表要概率化的差異指標(ME,VM,AP),a為自定義參數(shù)。為了使PARA概率化到0~1,設(shè)置a=1.5。對平均值差異、方差差異、異常度進行概率化后,將3種概率化的指標進行融合,得到故障可能性指標為:
Perror=PBME*PBVM*PBAP
(11)
其中,PBME,PBVM,PBAP分別為平均值差異、方差差異和異常度的概率化指標,從3種不同的角度反映了發(fā)電機的故障可能性,將其指標融合得到的Perror包含了3種指標的特點,直觀地反映了故障發(fā)生的概率。最終得到的健康度如式(12)所示:
HC=1-Perror
(12)
為驗證所提出的健康評估模型的有效性,本文以河北某風場1.5 MW風機作為研究對象,利用21#風機1年的SCADA數(shù)據(jù)進行實驗分析,對其發(fā)電機進行狀態(tài)評估。SCADA系統(tǒng)中擁有70多種變量,包含時間、風速、功率、各部件溫度、機艙振動等信息,數(shù)據(jù)存儲周期為5 min,從系統(tǒng)中選取與發(fā)電機部件相關(guān)的所有變量,共計12個。由于風速對風電機組發(fā)電機的運行會產(chǎn)生顯著影響,而功率是發(fā)電機部件的輸出結(jié)果,反映發(fā)電機的輸出狀態(tài),所以在原先12個變量基礎(chǔ)上加入風速、功率2個變量,組成與發(fā)電機運行相關(guān)的14個變量,如表1所示。
Table 1 SCADA variables related to generator components表1 與發(fā)電機部件相關(guān)的SCADA變量
表1中的變量直接反映發(fā)電機內(nèi)部狀態(tài),通過學習14個變量關(guān)系進行的健康評估相比通過單一變量進行的健康評估更加全面,能夠更好地監(jiān)測風電機組發(fā)電機的性能劣勢,并且當發(fā)電機出現(xiàn)異常狀況,運維人員可以根據(jù)組成改進的SAE重構(gòu)誤差的殘差分量推測故障原因,為接下來的故障預(yù)診斷和維修提供參考。由于實際SCADA系統(tǒng)會發(fā)生傳感器異常、系統(tǒng)處理錯誤等,得到的風機數(shù)據(jù)存在數(shù)據(jù)缺失、異常等問題,必須經(jīng)過數(shù)據(jù)處理才能得到有效的運行數(shù)據(jù)。
本文首先根據(jù)SCADA系統(tǒng)的風機狀態(tài)碼,篩選出風機處于正常運行狀態(tài)的數(shù)據(jù),但由于人為干擾與天氣條件,通過狀態(tài)碼篩選的正常運行數(shù)據(jù)中仍存在少量異常點,影響模型的訓(xùn)練。實際中,當風力發(fā)電機處于正常運行狀態(tài)時,功率曲線附近的風功率點遵循正態(tài)分布規(guī)律,即越接近中心,分布越密集。文獻[8]據(jù)此原理使用子空間聚類方法對SCADA數(shù)據(jù)進行處理,并驗證了該方法篩選風機有效運行數(shù)據(jù)的有效性。由于本文數(shù)據(jù)來源與文獻[8]一致,所以同樣使用子空間聚類方法對上述14個變量的歷史數(shù)據(jù)進行數(shù)據(jù)清洗。得到有效純凈的數(shù)據(jù)后,再進行線性歸一化處理,如式(13)所示:
(13)
其中,z′是歸一化后的標準數(shù)據(jù),z為歸一化前的原始數(shù)據(jù),zmin和zmax分別為原始數(shù)據(jù)集中的最小值與最大值。經(jīng)過數(shù)據(jù)清洗與歸一化處理后,得到280 000條純凈運行數(shù)據(jù),將其用于模型的訓(xùn)練與測試。
將純凈運行數(shù)據(jù)中的24 000條數(shù)據(jù)作為訓(xùn)練集,輸入改進的SAE模型進行訓(xùn)練,通過反復(fù)調(diào)試,確定改進的SAE的網(wǎng)絡(luò)結(jié)構(gòu)為14-100-100-100-14。為確定健康評估基準,使用余下的4 000條有效運行數(shù)據(jù)對模型進行測試,得到測試集的部分重構(gòu)誤差,如圖3所示。
Figure 3 Diagram of reconstruction error of partial test samples圖3 部分測試樣本的重構(gòu)誤差圖
由圖3可知,雖然經(jīng)過了數(shù)據(jù)處理,但2個模型得到的重構(gòu)誤差還是存在不可避免的噪聲,如果采用閾值的方法對重構(gòu)誤差進行評估,很可能產(chǎn)生誤報警現(xiàn)象,若通過本文提出的統(tǒng)計指標對在線重構(gòu)誤差進行分布差異性評估,便可依靠異常度指標消除噪聲的影響。進一步對比2個模型發(fā)現(xiàn),傳統(tǒng)SAE得到的重構(gòu)誤差大部分位于0.15以下,而改進SAE的重構(gòu)誤差大部分位于0.05以下,對2個模型的重構(gòu)誤差進行統(tǒng)計指標分析,如表2所示。
Table 2 Statistical indicator of reconstruction error表2 重構(gòu)誤差的統(tǒng)計指標
通過表2可知,改進SAE模型的重構(gòu)誤差的平均值、標準差、90%分位數(shù)都小于傳統(tǒng)SAE的,這說明改進的模型能夠更充分地學習風電高維數(shù)據(jù)之間的關(guān)聯(lián)特征。為驗證模型改進與指標評估在實際異常檢測上的有效性,將測試得到的重構(gòu)誤差作為基準重構(gòu)誤差,通過具體故障實例進行測試。
該機組于2018年12月19日20:30推送發(fā)電機后軸承溫度報警信息且報警前風機一直處于運行狀態(tài)。選取報警前后從12月10日16:30到12月21日2:30共250小時的數(shù)據(jù),將其輸入訓(xùn)練好的改進的SAE狀態(tài)監(jiān)測器與傳統(tǒng)的SAE狀態(tài)監(jiān)測器,得到實時重構(gòu)誤差曲線,并通過滑動時間窗計算重構(gòu)誤差的統(tǒng)計指標及健康度。
根據(jù)圖4可知,傳統(tǒng)SAE的重構(gòu)誤差在12月18日之后有明顯升高趨勢,而由于改進SAE的重構(gòu)誤差偏小,對異常數(shù)據(jù)也相對敏感,所以重構(gòu)誤差在12月17日已經(jīng)有上升趨勢,在12月19日SCADA系統(tǒng)才推送發(fā)電機報警信息,此時對應(yīng)重構(gòu)誤差為0.4。若采用靜態(tài)閾值的方法,只有將閾值設(shè)置為0.4以下才可在系統(tǒng)報警前檢測出故障趨勢,但是在線重構(gòu)誤差存在噪聲,閾值設(shè)定較困難。
Figure 4 Online reconstruction error of generator 圖4 發(fā)電機的在線重構(gòu)誤差
從圖5中可以看出,改進SAE得到的健康度指標在12月14日雖然被重構(gòu)誤差的噪聲影響,但都維持在60%以上。在12月16日20:00改進SAE的發(fā)電機健康度低于60%,并且隨著時間推移,健康度下降,則可認為風機發(fā)電機存在故障,當健康度下降到8%,SCADA系統(tǒng)才推送發(fā)電機后軸承過熱報警。
Figure 5 Online health assessment of generator圖5 發(fā)電機的在線健康度
相比于改進SAE,傳統(tǒng)SAE的健康度在機組停機后才不斷下降,這主要是因為傳統(tǒng)SAE得到的重構(gòu)誤差較大,對于數(shù)據(jù)之間的異常不能很好地識別。由此可看出,本文的健康評估模型能夠準確地監(jiān)測發(fā)電機部件的運行狀態(tài),相比于現(xiàn)有SCADA系統(tǒng)能較早地識別發(fā)電機劣化趨勢。本文所提出的健康度為量化指標,風場的運維人員可根據(jù)健康度走勢靈活安排預(yù)防性維護任務(wù),提高風場運營效率。
本文對傳統(tǒng)SAE模型進行改進并應(yīng)用于風電機組發(fā)電機的健康評估,首先對SCADA數(shù)據(jù)進行處理得到純凈的風機運行數(shù)據(jù)。然后對改進的SAE模型進行訓(xùn)練與測試,得到基準重構(gòu)誤差并計算出發(fā)電機正常運行的基準指標。最后計算滑動時間窗中在線重構(gòu)誤差的指標,與基準指標進行差異性比對,通過3種差異性指標的概率化處理與融合得到發(fā)電機的健康度。利用實際風場的數(shù)據(jù)進行驗證,結(jié)果表明,本文提出的風電機組發(fā)電機健康評估模型可準確地跟蹤發(fā)電機運行狀況的變化,并能以概率化的指標反映發(fā)電機在故障早期的劣化趨勢。與傳統(tǒng)SAE相比,改進SAE能夠?qū)W習到風電高維數(shù)據(jù)中更多的隱含特征,對數(shù)據(jù)之間的異常更加敏感。與SCADA系統(tǒng)的故障報警相比,本文的健康評估模型更加靈敏直觀,能夠在故障發(fā)生前檢測出故障趨勢。