周奇艷,錢(qián)?勇,馬立坤,呂興才
基于小火焰生成流型模型的噴霧燃燒數(shù)值計(jì)算
周奇艷1,錢(qián)?勇1,馬立坤2,呂興才1
(1. 上海交通大學(xué)機(jī)械與動(dòng)力工程學(xué)院,上海 200240;2. 國(guó)防科技大學(xué)空天科學(xué)學(xué)院,長(zhǎng)沙 410073)
基于OpenFOAM開(kāi)發(fā)了小火焰生成流型模型,并針對(duì)ECN(engine combustion network)Spray H(正庚烷噴霧燃燒)進(jìn)行了數(shù)值模擬,研究了該模型對(duì)噴霧燃燒數(shù)值模擬的適用性.結(jié)果表明,該模型能夠很好地捕捉著火延遲等特征參數(shù).同時(shí)對(duì)比了基于OH質(zhì)量分?jǐn)?shù)和溫升兩種火焰浮起長(zhǎng)度定義,結(jié)果顯示前者對(duì)取值更不敏感,且能與實(shí)驗(yàn)更好地吻合.此外,深入分析了著火位置和燃燒發(fā)展歷程,結(jié)果表明,在氧體積分?jǐn)?shù)8%和12%工況,著火點(diǎn)的當(dāng)量比均在0.8左右.對(duì)于氧體積分?jǐn)?shù)15%工況,反應(yīng)進(jìn)度變量集中生成的區(qū)域?qū)?yīng)于溫度峰值,燃燒最迅速區(qū)域的當(dāng)量比略大于1.
小火焰生成流型(FGM);噴霧燃燒;OpenFOAM
世界范圍的能源危機(jī)與環(huán)境污染使得柴油機(jī)高效清潔燃燒成為當(dāng)前國(guó)際研究熱點(diǎn).為了進(jìn)一步降低排放和油耗,必須對(duì)柴油機(jī)缸內(nèi)的噴霧燃燒過(guò)程進(jìn)行更深入的研究.計(jì)算流體力學(xué)(CFD)模擬可以深入探究噴霧燃燒所涉及的氣相流體動(dòng)力學(xué)、液相噴霧動(dòng)力學(xué)和氣相化學(xué)動(dòng)力學(xué)等子過(guò)程,是目前理解噴霧燃燒機(jī)理和過(guò)程的重要工具.
近年來(lái),各國(guó)學(xué)者針對(duì)噴霧燃燒的數(shù)值計(jì)算進(jìn)行了大量的研究工作[1-2],主要使用的湍流燃燒模型可以分為兩大類(lèi):第一類(lèi),直接求解組分輸運(yùn)方程,其反應(yīng)源項(xiàng)由求解ODE方程組獲得;第二類(lèi),詳細(xì)化學(xué)建表法,即通過(guò)查表的方式將燃燒計(jì)算與流動(dòng)過(guò)程解耦,大大降低了計(jì)算成本.小火焰生成流型(FGM)[3]便是基于詳細(xì)化學(xué)建表法,假設(shè)化學(xué)反應(yīng)時(shí)間尺度要遠(yuǎn)遠(yuǎn)小于湍流脈動(dòng)時(shí)間尺度,從而對(duì)燃燒化學(xué)反應(yīng)過(guò)程以及湍流脈動(dòng)過(guò)程進(jìn)行單獨(dú)求解,通過(guò)假設(shè)概率密度函數(shù)(PDF)來(lái)考慮燃燒與流動(dòng)的相互作用,大幅度提高數(shù)值計(jì)算效率.
筆者基于開(kāi)源計(jì)算流體力學(xué)庫(kù)OpenFOAM[4],開(kāi)發(fā)小火焰生成流型模型,對(duì)ECN[5]不同氧濃度下正庚烷噴霧燃燒過(guò)程(Spray H)進(jìn)行數(shù)值計(jì)算,研究小火焰生成流型在噴霧燃燒中的應(yīng)用,并深入分析高溫高壓工況下噴霧燃燒自點(diǎn)火區(qū)域和燃燒過(guò)程的發(fā)展歷程.
通過(guò)ICEM-CFD對(duì)定容燃燒彈進(jìn)行建模和計(jì)算網(wǎng)格劃分,其網(wǎng)格尺寸徑向?yàn)?.5mm,軸向?yàn)?mm.選取RANS-模型計(jì)算湍流流場(chǎng),Reitz-Diwakar模型和Standard Evaporation Model來(lái)分別模擬燃油噴霧的破碎和蒸發(fā)過(guò)程,其中Reitz Diwakar模型的系數(shù)分別是:bag=6,b=0.785,strip=0.5,s=10.噴油速率基于實(shí)驗(yàn)測(cè)量修正得出,噴霧氣液相貫穿距的計(jì)算結(jié)果如圖1所示.可以看出,本研究所選用的計(jì)算模型及參數(shù)設(shè)置能夠很好地捕捉定容彈內(nèi)氣相及液相噴霧貫穿距,模擬主導(dǎo)燃燒的噴霧蒸發(fā)霧化過(guò)程.本研究所選的計(jì)算工況點(diǎn)見(jiàn)表1.
圖1?噴霧氣液相貫穿距
表1?計(jì)算工況
Tab.1?Operating conditions
1.2.1?火焰面數(shù)據(jù)庫(kù)構(gòu)建
以一維對(duì)沖火焰和非穩(wěn)態(tài)火焰作為構(gòu)造火焰面數(shù)據(jù)庫(kù)的基礎(chǔ),在選定的當(dāng)量標(biāo)量耗散率下,從混合狀態(tài)沿非穩(wěn)態(tài)火焰發(fā)展歷程,達(dá)到穩(wěn)態(tài)火焰狀態(tài).隨后從該穩(wěn)態(tài)火焰,沿標(biāo)量耗散率遞減方向,求解穩(wěn)態(tài)火焰面方程,從而分別建立以混合分?jǐn)?shù)和時(shí)間為變量的非穩(wěn)態(tài)火焰面數(shù)據(jù)庫(kù)及以混合分?jǐn)?shù)和當(dāng)量標(biāo)量耗散率為變量的穩(wěn)態(tài)火焰面數(shù)據(jù)庫(kù).穩(wěn)態(tài)和非穩(wěn)態(tài)火焰面方程均利用FlameMaster[6]進(jìn)行求解,正庚烷機(jī)理包含了44個(gè)組分和114個(gè)反應(yīng)[7],混合分?jǐn)?shù)使用Bilger等[8]的定義:
1.2.2?坐標(biāo)轉(zhuǎn)換及PDF積分
火焰面數(shù)據(jù)庫(kù)需要轉(zhuǎn)換到混合分?jǐn)?shù)和反應(yīng)進(jìn)度變量空間,本研究中反應(yīng)進(jìn)度變量的定義如下:
此外,在FGM模型中,需要通過(guò)PDF積分來(lái)考慮流場(chǎng)與燃燒反應(yīng)的相互作用,假設(shè)和統(tǒng)計(jì)獨(dú)立,可得積分公式如下:
圖2 混合分?jǐn)?shù)和反應(yīng)進(jìn)度變量空間的火焰面數(shù)據(jù)庫(kù)
1.2.3?額外輸運(yùn)方程
基于OpenFOAM開(kāi)發(fā)的小火焰生成流型模型及適用于噴霧燃燒模擬的求解器,需要額外對(duì)以下輸運(yùn)方程進(jìn)行求解:
(6)
圖3給出了不同氧體積分?jǐn)?shù)下小火焰生成流型模型對(duì)定容燃燒彈中著火延遲的計(jì)算結(jié)果.本研究中數(shù)值計(jì)算的著火延遲的定義為噴油開(kāi)始時(shí)刻到溫度升高率最大值之間的時(shí)間間隔.如圖3所示,小火焰生成流型模型能夠很好地捕捉著火延遲隨氧體積分?jǐn)?shù)的變化趨勢(shì),在氧體積分?jǐn)?shù)高于10%的工況下,實(shí)驗(yàn)值與計(jì)算值吻合得很好.
圖3?著火延遲預(yù)測(cè)
實(shí)驗(yàn)中火焰浮起長(zhǎng)度定義為激發(fā)態(tài)OH基(OH*)達(dá)到最大值50%的位置,由于目前數(shù)值計(jì)算不能獲得OH*,因而計(jì)算中對(duì)火焰浮起長(zhǎng)度的定義還沒(méi)有統(tǒng)一的方式.Wehrfritz等[13]定義其為OH質(zhì)量分?jǐn)?shù)達(dá)到最大值2%的位置,Bekdemir等[14]使用OH質(zhì)量分?jǐn)?shù)為2.5×10-4作為標(biāo)準(zhǔn),Desantes等[15]還對(duì)比了2%和14% OH峰值以及溫度升高400K這3種定義方式.本研究將使用固定OH質(zhì)量分?jǐn)?shù)及溫升兩種定義方式,并對(duì)火焰浮起長(zhǎng)度計(jì)算結(jié)果進(jìn)行對(duì)比.
圖4給出了不同定義方式下火焰浮起長(zhǎng)度計(jì)算值與實(shí)驗(yàn)值的對(duì)比.圖4(a)對(duì)比了基于OH質(zhì)量分?jǐn)?shù)定義下不同取值的結(jié)果.由圖可知,對(duì)于氧體積分?jǐn)?shù)大于10%的工況,該定義的計(jì)算結(jié)果與實(shí)驗(yàn)值吻合得很好,且該定義方式對(duì)于OH質(zhì)量分?jǐn)?shù)取值敏感性較?。珜?duì)于氧體積分?jǐn)?shù)為8%的工況,3個(gè)OH質(zhì)量分?jǐn)?shù)取值的計(jì)算結(jié)果均高估了火焰浮起長(zhǎng)度,這是因?yàn)檠躞w積分?jǐn)?shù)下降,缸內(nèi)的惰性氣體質(zhì)量分?jǐn)?shù)較大,燃燒反應(yīng)活性基被稀釋?zhuān)琌H質(zhì)量分?jǐn)?shù)出現(xiàn)大幅度降低,導(dǎo)致該定義的火焰浮起長(zhǎng)度過(guò)高.圖4(b)是基于溫度升高幅度定義下,不同取值的結(jié)果對(duì)比.對(duì)于25K、50K、100K 3個(gè)溫升,火焰浮起長(zhǎng)度隨氧體積分?jǐn)?shù)變化趨勢(shì)基本一致,且溫升取值越大,火焰浮起長(zhǎng)度也相應(yīng)增大.相比于OH質(zhì)量分?jǐn)?shù)定義,該定義對(duì)溫升值更加敏感,同時(shí)其結(jié)果只在特定較窄的工況范圍內(nèi)與實(shí)驗(yàn)吻合.
圖4?不同定義下的火焰浮起長(zhǎng)度
圖5(a)和(b)分別是氧體積分?jǐn)?shù)為8%和12%時(shí),著火時(shí)刻O(píng)H在混合分?jǐn)?shù)和溫度空間的分布.在著火時(shí)刻,氧體積分?jǐn)?shù)為8%與12%時(shí),OH質(zhì)量分?jǐn)?shù)有著量級(jí)上的差別,這也進(jìn)一步解釋了圖4(a)中氧體積分?jǐn)?shù)8%時(shí)火焰浮起長(zhǎng)度計(jì)算值過(guò)高的現(xiàn)象.此外,對(duì)比圖5(b)可以看出,氧體積分?jǐn)?shù)較低時(shí),著火點(diǎn)的混合分?jǐn)?shù)相對(duì)較低.為進(jìn)一步分析,圖6給出了當(dāng)量比與混合分?jǐn)?shù)的對(duì)應(yīng)關(guān)系,且在圖中標(biāo)出了氧體積分?jǐn)?shù)為8%和12%時(shí),OH峰值所對(duì)應(yīng)混合分?jǐn)?shù).由圖6可知,在這兩個(gè)工況下,著火點(diǎn)對(duì)應(yīng)的當(dāng)量比都處于0.8附近.
圖5?OH基在混合分?jǐn)?shù)與溫度空間分布
圖6?當(dāng)量比與混合分?jǐn)?shù)對(duì)應(yīng)關(guān)系
圖7和圖8分別是從著火時(shí)刻開(kāi)始,反應(yīng)進(jìn)度變量生成率與溫度分布隨時(shí)間的變化.對(duì)比圖7和8可知,反應(yīng)進(jìn)度變量集中生成區(qū)域?qū)?yīng)于溫度峰值,該混合分?jǐn)?shù)對(duì)應(yīng)當(dāng)量比在1左右(如圖6所示),且隨燃燒反應(yīng)進(jìn)一步加劇,溫度峰值迅速升高,但峰值所對(duì)應(yīng)的當(dāng)量比或混合分?jǐn)?shù)基本不變.此外,值得一提的是,反應(yīng)進(jìn)度變量生成率峰值所對(duì)應(yīng)的當(dāng)量比略大于1(如圖6所示),即混合氣在當(dāng)量比偏濃區(qū)域燃燒反應(yīng)最迅速.
圖7?反應(yīng)進(jìn)度變量生成率分布
圖8?混合分?jǐn)?shù)空間的溫度分布變化
(1)本文作者采用了小火焰生成流型模型對(duì)ECN Spray H進(jìn)行了數(shù)值模擬,計(jì)算獲得的著火延遲結(jié)果與實(shí)驗(yàn)吻合較好.
(2)對(duì)比了基于OH質(zhì)量分?jǐn)?shù)和溫升兩種火焰浮起長(zhǎng)度定義,結(jié)果顯示基于OH質(zhì)量分?jǐn)?shù)定義對(duì)取值更不敏感,且能與實(shí)驗(yàn)有更高的吻合度.
(3) 深入分析了著火位置和燃燒發(fā)展歷程,結(jié)果表明在氧體積分?jǐn)?shù)為8%和12%工況,著火均發(fā)生在當(dāng)量比為0.8左右的區(qū)域.對(duì)于氧體積分?jǐn)?shù)15%的工況,反應(yīng)進(jìn)度變量集中生成區(qū)域?qū)?yīng)于溫度的峰值,相應(yīng)的當(dāng)量比在1左右,而反應(yīng)進(jìn)度變量生成率峰值,即燃燒最迅速位置,則是當(dāng)量比略大于1區(qū)域.
[1] Dhuchakallaya I,Watkins A P. Application of spray combustion simulation in DI diesel engine[J].,2010,87(4):1427-1432.
[2] Gutheil E,Sirignano W. Counterflow spray combustion modeling with detailed transport and detailed chemistry [J].,1998,113(1):92-105.
[3] Albrecht B A,Zahirovic S,Bastiaans R J M,et al. A premixed flamelet?PDF model for biomass combustion in a grate furnace[J].,2008,22(3):1570-1580.
[4] The OpenFOAM Foundation. OpenFOAM v230 User Guide[EB/OL]. https://cfd.direct/openfoam/user-guide,2014-12-10.
[5] Engine Combustion Network. Engine Combustion Network Database[EB/OL]. http://www.sandia.gov/ecn/,2018-05-16.
[6] Pitsch H. FlameMaster. A C++ Computer Program for 0D Combustion and 1D Laminar Flame Calculations[EB/OL]. https://www.itv.rwthaachen.de/index.php-?id=flamemaster,2017-06-06.
[7] Liu S,Hewson J C,Chen J H,et al. Effects of strain rate on high-pressure nonpremixed n-heptane autoignition in counterflow[J].,2004,137(3):320-339.
[8] Bilger R,St?rner S,Kee R. On reduced mechanisms for methane air combustion in nonpremixed flames [J].,1990,80(2):135-149.
[9] Egüz U,Ayyapureddi S,Bekdemir C,et al. Manifold resolution study of the FGM method for an igniting diesel spray[J].,2013,113(6):228-238.
[10] Baba Y,Kurose R. Analysis and flamelet modelling for spray combustion[J].,2008,612:45-79.
[11] Rittler A,Proch F,Kempf A M. LES of the Sydney piloted spray flame series with the PFGM/ATF approach and different sub-filter models[J].,2015,162(4):1575-1598.
[12] Pera C,Réveillon J,Vervisch L,et al. Modeling subgrid scale mixture fraction variance in LES of evaporating spray[J].,2006,146(4):635-648.
[13] Wehrfritz A,Kaario O,Vuorinen V,et al. Large eddy simulation of n-dodecane spray flames using flamelet generated manifolds[J].,2016,167:113-131.
[14] Bekdemir C,Somers L,De Goey L,et al. Predicting diesel combustion characteristics with large-eddy simulations including tabulated chemical kinetics[J].,2013,34(2):3067-3074.
[15] Desantes J M,García-Oliver J M,Novella R,et al. Application of an unsteady flamelet model in a RANS framework for spray A simulation[J].2017,117:50-64.
Numerical Study of Spray Combustion Using Flamelet Generated Manifold Model
Zhou Qiyan1,Qian Yong1,Ma Likun2,Lü Xingcai1
(1. School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;2. School of Aerospace Science,National University of Defense Technology,Changsha 410073,China)
A flamelet generated manifold(FGM)model is developed in the framework of OpenFOAM.Well-documented (engine combustion network ECN)n-heptane spray combustion known as Spray H is simulated to assess the applicability of FGM model in spray combustion modelling.The results show that the FGM model can precisely capture ignition delay.The comparison of lift-off length based on two different criteria,namely OH mass fraction and temperature rise,indicates that the OH-based definition is less sensitive to threshold value and is in better agreement with the experimental results.In addition,an in-depth analysis of ignition location and combustion process was conducted,showing that ignition happens with the equivalence ratio around 0.8 under both 8% and 12% oxygen concentration.The concentrated production of progress variable corresponds to the temperature peak,and the fastest combustion occurs in the slightly fuel rich zone,where the equivalence ratio is marginally greater than 1.
flamelet generated manifold(FGM);spray combustion;OpenFOAM
TK11
A
1006-8740(2020)01-0032-05
10.11715/rskxjs.R201903007
2019-03-05.
國(guó)家杰出青年科學(xué)基金資助項(xiàng)目(51425602).
周奇艷(1994—??),女,博士研究生,zhou_qy@sjtu.edu.cn.
呂興才,男,博士,教授,lyuxc@sjtu.edu.cn.