孫秀軍, 王 雷, 桑宏強(qiáng)
Petrel-II 200水下滑翔機(jī)動(dòng)力學(xué)建模及仿真
孫秀軍1,2,3, 王 雷1, 桑宏強(qiáng)4
(1. 河北工業(yè)大學(xué) 機(jī)械工程學(xué)院, 天津, 300130; 2. 中國海洋大學(xué) 物理海洋教育部重點(diǎn)實(shí)驗(yàn)室, 山東 青島, 266100; 3. 青島海洋科學(xué)與技術(shù)試點(diǎn)國家實(shí)驗(yàn)室 海洋動(dòng)力過程與氣候功能實(shí)驗(yàn)室, 山東 青島, 266237; 4. 天津工業(yè)大學(xué) 機(jī)械工程學(xué)院, 天津, 300387)
國內(nèi)對(duì)水下滑翔機(jī)動(dòng)力學(xué)行為的研究多針對(duì)深海型及橫滾轉(zhuǎn)向機(jī)制, 而對(duì)淺海型、尾舵轉(zhuǎn)向類型研究較少?;诖? 文中以Petrel-II 200淺海型水下滑翔機(jī)作為模型進(jìn)行動(dòng)力學(xué)建模及運(yùn)動(dòng)仿真分析, 并引入海流等干擾因素, 為淺海型水下滑翔機(jī)的運(yùn)動(dòng)形式提供參考。根據(jù)Petrel-II 200三維模型中各質(zhì)量的相對(duì)運(yùn)動(dòng)關(guān)系將其質(zhì)心簡化為由多個(gè)質(zhì)點(diǎn)組成的多剛體系統(tǒng), 構(gòu)造質(zhì)心與質(zhì)點(diǎn)之間的關(guān)系式; 基于動(dòng)量及動(dòng)量矩定理對(duì)Petrel-II 200進(jìn)行動(dòng)力學(xué)分析, 對(duì)水下滑翔機(jī)所受重力、驅(qū)動(dòng)浮力以及水動(dòng)力進(jìn)行體坐標(biāo)系轉(zhuǎn)換, 并推算出完整的動(dòng)力學(xué)方程, 明確了升阻比與回轉(zhuǎn)半徑表達(dá)式; 通過選取水下滑翔機(jī)物理、水動(dòng)力學(xué)參數(shù), 對(duì)鋸齒、螺旋等典型運(yùn)動(dòng)進(jìn)行仿真試驗(yàn)。該仿真結(jié)果驗(yàn)證了動(dòng)力學(xué)模型的準(zhǔn)確性和可靠性, 為后續(xù)Petrel-II 200水下滑翔機(jī)的運(yùn)動(dòng)性能優(yōu)化和控制算法設(shè)計(jì)提供了良好的仿真平臺(tái)。
水下滑翔機(jī); 動(dòng)力學(xué)建模; 動(dòng)力學(xué)方程; 運(yùn)動(dòng)仿真
水下滑翔機(jī)是一款不需要外掛推進(jìn)系統(tǒng)的自主航行觀測設(shè)備, 因其耗能低、跨度大等優(yōu)點(diǎn), 可用來實(shí)現(xiàn)長期海洋觀測。針對(duì)水下滑翔機(jī)下潛深度及應(yīng)用場合不同可將之劃分為深海型與淺海型, 兩者各有特點(diǎn)、優(yōu)勢互補(bǔ), 具有不同的海洋觀測應(yīng)用范圍。深海型水下滑翔機(jī)工作于水下幾千米的環(huán)境, 通過微小浮力變化及內(nèi)置姿態(tài)調(diào)節(jié)機(jī)構(gòu)實(shí)現(xiàn)滑翔運(yùn)動(dòng), 單次剖面測量耗能較少, 續(xù)航能力強(qiáng), 是目前較為常見、研究較多的一類。
為了對(duì)近淺海及其溫躍層的海洋動(dòng)力、水質(zhì)生態(tài)以及海洋聲學(xué)等進(jìn)行深入地觀測研究, 美國Woods Hole海洋研究所研制了Slocum 200淺海型水下滑翔機(jī),相比于Spray、Seaglider等通過旋轉(zhuǎn)內(nèi)部質(zhì)量模塊來改變整體姿態(tài), 從而進(jìn)行螺旋轉(zhuǎn)向的深海型水下滑翔機(jī), 淺海型水下滑翔機(jī)采用尾舵轉(zhuǎn)向機(jī)構(gòu)進(jìn)行螺旋回轉(zhuǎn), 省去了由橫滾調(diào)節(jié)至合適姿態(tài)所需時(shí)間, 在較短的下潛深度內(nèi)快速完成回轉(zhuǎn)操作, 使其具有較高的機(jī)動(dòng)性[1]。另外, 淺海型水下滑翔機(jī)相對(duì)于深海型設(shè)計(jì)有更大的浮力調(diào)節(jié)量, 有較快的滑翔速度來克服部分海流的干擾。2012年初, 天津大學(xué)、中國海洋大學(xué)、天津工業(yè)大學(xué)等單位, 共同研制了200 m額定潛深的Petrel-II 200水下滑翔機(jī), 如今已完成樣機(jī)試制并開展海上應(yīng)用。
為了對(duì)Petrel-II 200水下滑翔機(jī)進(jìn)行優(yōu)化設(shè)計(jì)指導(dǎo)及性能評(píng)估, 需要進(jìn)行動(dòng)力學(xué)建模與參數(shù)識(shí)別。目前, 世界各國對(duì)水下滑翔機(jī)的動(dòng)力學(xué)研究已取得顯著的成果。Leonard[2-3]通過控制水下滑翔機(jī)樣機(jī)模型的重心位置得到了相應(yīng)的滑翔軌跡, 利用幾何關(guān)系及動(dòng)力學(xué)理論對(duì)水下滑翔機(jī)進(jìn)行了動(dòng)力學(xué)分析, 開創(chuàng)了水下滑翔機(jī)理論研究的先河; 俞建成[4]、王長濤[5]和Zhang[6]等, 基于牛頓-歐拉方程建立了水下滑翔機(jī)系統(tǒng)的動(dòng)力學(xué)模型, 利用水動(dòng)力軟件進(jìn)行了運(yùn)動(dòng)參數(shù)辨識(shí); 王樹新[7]、武建國[8]、孫秀軍[9-11]、Niu[12]和王延輝[13]等, 利用浮基多剛體理論和魚雷水動(dòng)力模型建立了水下滑翔機(jī)的動(dòng)力學(xué)方程, 并利用吉布斯-阿佩爾方程對(duì)非線性動(dòng)力學(xué)方程的精確性做了進(jìn)一步的提升[13]; 溫浩然等[14]對(duì)水下滑翔機(jī)的優(yōu)化設(shè)計(jì)、研制進(jìn)行了深入研究。
但上述成果多針對(duì)深海型、橫滾轉(zhuǎn)向的水下滑翔機(jī)進(jìn)行動(dòng)力學(xué)行為研究, 而對(duì)淺海型、尾舵轉(zhuǎn)向的水下滑翔機(jī)動(dòng)力學(xué)行為研究較少。基于此, 文中以Petrel-II 200淺海型水下滑翔機(jī)作為模型進(jìn)行動(dòng)力學(xué)建模及運(yùn)動(dòng)仿真分析, 并引入了海流的干擾因素, 為淺海型水下滑翔機(jī)的運(yùn)動(dòng)形式提供參考。
根據(jù)文獻(xiàn)[15], 建立Petrel-II 200大地坐標(biāo)系(地系)、體坐標(biāo)系(體系)與速度坐標(biāo)系(速系), 如圖1所示。體系與水下滑翔機(jī)機(jī)體固連, 以排水浮心作為體系坐標(biāo)原點(diǎn),軸沿機(jī)身縱軸向前,軸重合于機(jī)翼平面向右,軸指向機(jī)身腹部, 文中其他參數(shù)定義參見表1。
體系到地系的轉(zhuǎn)換矩陣
同理, 速度坐標(biāo)系到體坐標(biāo)系的轉(zhuǎn)換矩陣
表1 Petrel-II 200運(yùn)動(dòng)參數(shù)
體系下的姿態(tài)可以描述為
聯(lián)立式(1)、式(4)、式(5)和式(6)可得Petrel-II 200的運(yùn)動(dòng)學(xué)方程為
1-導(dǎo)流罩 2-浮力調(diào)節(jié)模塊 3-電子羅盤 4-液壓系統(tǒng) 5-前艙段 6-俯仰調(diào)節(jié)模塊 7-壓艙塊 8-中艙段 9-外接接口 10-機(jī)翼 11-信號(hào)電源管理電路 12-尾部配重電源 13-后艙段 14-傳感器模塊 15-尾部導(dǎo)流罩 16-尾舵系統(tǒng)
圖3 質(zhì)量模型簡化示意圖
質(zhì)心處的矢徑
質(zhì)心與質(zhì)點(diǎn)系的坐標(biāo)關(guān)系為
根據(jù)運(yùn)動(dòng)學(xué)理論, 水下滑翔機(jī)質(zhì)心相對(duì)于浮心的運(yùn)動(dòng)速度為
由剛體的轉(zhuǎn)動(dòng)定律可知, 質(zhì)心處的角動(dòng)量
式中: J表示質(zhì)心對(duì)體系各軸的轉(zhuǎn)動(dòng)慣量, 且=,,。
水下滑翔機(jī)在水中運(yùn)動(dòng)時(shí)會(huì)受到凈浮力、水動(dòng)力和水動(dòng)力矩的作用, 其中水動(dòng)力又分為粘性水動(dòng)力和慣性水動(dòng)力, 對(duì)體坐標(biāo)系下質(zhì)心處進(jìn)行受力分析, 有
Petrel-II 200做橫向運(yùn)動(dòng)或轉(zhuǎn)動(dòng)時(shí), 由加速運(yùn)動(dòng)引起的慣性水動(dòng)力與加速度、角加速度成線性關(guān)系, 根據(jù)勢流理論, 在流體中產(chǎn)生的附加質(zhì)量為
根據(jù)動(dòng)量及動(dòng)量矩定理可知, 水下滑翔機(jī)質(zhì)心處動(dòng)量與角動(dòng)量隨時(shí)間的變化率與質(zhì)心所受合外力與合外力矩有以下關(guān)系
聯(lián)立式(8)~(20)可得Petrel-II 200的動(dòng)力學(xué)方程
如圖4所示, 水下滑翔機(jī)進(jìn)行鋸齒形操作時(shí)只做垂向剖面運(yùn)動(dòng), 不做橫向運(yùn)動(dòng), 水下滑翔機(jī)的速度大小為
圖4 鋸齒形滑翔運(yùn)動(dòng)受力演示
機(jī)身所受阻力與運(yùn)動(dòng)方向相反, 升力垂直于阻力, 其大小與攻角的關(guān)系式為[16]
水下滑翔機(jī)回轉(zhuǎn)性能與外形尺寸、航行速度、尾舵升力和整體阻力相關(guān), 見圖5。尾舵面積是影響舵力的重要參數(shù), 一般采用挪威船級(jí)社(det norske veritas, DNV)范式計(jì)算公式進(jìn)行估算[8]
圖5 Petrel-II 200外形尺寸
圖6 Petrel-II 200回轉(zhuǎn)受力圖
假設(shè)來流與航速之間的夾角為0, 利用藤井公式計(jì)算舵力與轉(zhuǎn)向力矩為
由于機(jī)體是規(guī)則回轉(zhuǎn)體, 定軸轉(zhuǎn)動(dòng)所受水阻力及水阻力矩為
當(dāng)水下滑翔機(jī)處于穩(wěn)定回轉(zhuǎn)狀態(tài)時(shí), 在地系中繞軸回轉(zhuǎn), 水阻力矩與回轉(zhuǎn)力矩平衡, 聯(lián)立式(27)~(31)可得水下滑翔機(jī)的回轉(zhuǎn)半徑表達(dá)式
水下滑翔機(jī)在工作過程中大部分時(shí)間處于穩(wěn)態(tài)運(yùn)動(dòng), 除了固定的幾何參數(shù)不變外, 機(jī)體的轉(zhuǎn)動(dòng)慣量凈排水量等物理參數(shù)也幾乎不變, 在運(yùn)動(dòng)仿真中可看作常量, 見表2。
表2 Petrel-II 200幾何物理參數(shù)
利用計(jì)算流體動(dòng)力學(xué)(computational fluid dynamics, CFD)軟件計(jì)算得出Petrel-II 200在穩(wěn)態(tài)運(yùn)動(dòng)下的水動(dòng)力系數(shù), 附加質(zhì)量的計(jì)算方法參考文獻(xiàn)[15], 見表3。
鋸齒形剖面與螺旋回轉(zhuǎn)運(yùn)動(dòng)是Petrel-II 200的主要運(yùn)動(dòng)方式, 幾乎囊括了內(nèi)部調(diào)節(jié)模塊所有的工作過程, 故對(duì)其進(jìn)行針對(duì)性仿真研究。
表3 Petrel-II 200水動(dòng)力系數(shù)及附加質(zhì)量
表4列出了2種運(yùn)動(dòng)模式的控制變量變化范圍, Petrel-II 200將以此作為輸入, 通過Matlab軟件應(yīng)用Runge-Kutta法[9]進(jìn)行迭代計(jì)算, 輸出運(yùn)動(dòng)軌跡、運(yùn)動(dòng)參數(shù)與迭代次數(shù)之間的變化曲線。
表4 2種運(yùn)動(dòng)模式控制參數(shù)變化范圍
Petrel-II 200通過浮力及俯仰調(diào)節(jié)模塊的周期性變化, 借助水對(duì)機(jī)翼的作用力進(jìn)行斜上及斜下滑翔。從圖中可看出Petrel-II 200的仿真軌跡呈鋸齒形, 在地系下的縱向位移均勻增加, 使得縱向速度保持恒定, 豎向位移的周期變化使得俯仰角、攻角和豎向速度也周期性的改變方向; 另外, 在拐點(diǎn)處俯仰角出現(xiàn)震蕩現(xiàn)象, 對(duì)應(yīng)的速度與角速度也發(fā)生局部驟變, 這是由于浮力與俯仰調(diào)節(jié)模塊因調(diào)節(jié)速率不同產(chǎn)生的耦合作用現(xiàn)象, 一段時(shí)間后將恢復(fù)穩(wěn)定。
圖7 鋸齒形剖面運(yùn)動(dòng)仿真曲線
從圖8中可看出, 轉(zhuǎn)舵30°后, Petrel-II 200在俯仰與浮力模塊調(diào)節(jié)至合適的位置前會(huì)因耦合作用產(chǎn)生震動(dòng), 速度與角度會(huì)受一定影響。待運(yùn)動(dòng)狀態(tài)穩(wěn)定后, 滑翔軌跡呈勻速螺旋回轉(zhuǎn)下降,橫縱位移、速度、角速度、攻角及俯仰角均保持恒定, 只有偏航角周期性變化、下潛深度均勻增加。
圖8 螺旋回轉(zhuǎn)運(yùn)動(dòng)仿真曲線
圖9 俯仰角、攻角與升阻比隨控制變量變化曲線
圖10 海流干擾下的運(yùn)動(dòng)軌跡
文中采用動(dòng)力學(xué)理論對(duì)淺海型、尾舵轉(zhuǎn)向的Petrel-II 200進(jìn)行動(dòng)力學(xué)建模, 推導(dǎo)出動(dòng)力學(xué)方程, 初步探索了控制變量與水下滑翔機(jī)位姿及回轉(zhuǎn)性能之間的關(guān)系, 并對(duì)有代表性的特殊運(yùn)動(dòng)進(jìn)行了運(yùn)動(dòng)仿真, 其仿真所得滑行軌跡和運(yùn)動(dòng)參數(shù)變化與理想和海流干擾下的運(yùn)動(dòng)模式相符, 驗(yàn)證了動(dòng)力學(xué)方程推導(dǎo)的正確性, 為該平臺(tái)的運(yùn)動(dòng)機(jī)理解析、運(yùn)動(dòng)性能提升和控制算法設(shè)計(jì)給出了理論依據(jù)。目前, 海流對(duì)Petr- el-II 200的運(yùn)動(dòng)性能還有很大的影響, 下一步將探討如何抵消海流對(duì)水下滑翔機(jī)產(chǎn)生的干擾, 優(yōu)化平臺(tái)的運(yùn)動(dòng)性能。
[1] Rudnick D L, Davis R E, Eriksen C C, et al. Underwater Gliders for Ocean Research[J]. Marine Technology Soci- ety Journal, 2004, 38(2): 73-84.
[2] Leonard N E. Control Synthesis and Adaptation for an Underactuated Autonomous Underwater vehicle[J]. IEEE Journal of Oceanic Engineering, 1994, 20(3): 211-220.
[3] Leonard N E. Periodic Forcing, Dynamics and Control of Underactuated Spacecraft and Underwater Vehicles[C]// Decision and Control, 1995. New Orleans, LA, USA: IEEE, 1996: 3980-3985.
[4] 俞建成, 張奇峰, 吳利紅, 等. 水下滑翔機(jī)器人運(yùn)動(dòng)調(diào)節(jié)機(jī)構(gòu)設(shè)計(jì)與運(yùn)動(dòng)性能分析[J]. 機(jī)器人, 2005, 27(5): 390-395.
Yu Jian-cheng, Zhang Qi-feng, Wu Li-hong, et al. Movement Mechanism Design and Motion Performance Analysis of an Underwater Glider[J]. Robot, 2005, 27(5): 390-395.
[5] 王長濤, 俞建成, 吳利紅, 等. 水下滑翔機(jī)器人運(yùn)動(dòng)機(jī)理仿真與實(shí)驗(yàn)[J]. 海洋工程, 2007, 25(1): 64-69.Wang Chang-tao, Yu Jian-cheng, Wu Li-hong, et al. Reseach on Movement Mechanism Simulation and Experiment of Underwater glider[J]. Ocean Engineering, 2007, 25(1): 64-69.
[6] Zhang S, Yu J, Zhang A, et al. Spiraling Motion of Underwater Gliders: Modeling, Analysis, and Experimental Results[J]. Ocean Engineering, 2013, 60(3): 1-13.
[7] 王樹新, 劉方, 邵帥, 等. 混合驅(qū)動(dòng)水下滑翔機(jī)動(dòng)力學(xué)建模與海試研究[J]. 機(jī)械工程學(xué)報(bào), 2014, 50(2): 19-27.Wang Shu-xin, Liu Fang, Shao Shuai, et al. Dynamic Modeling of Hybrid Underwater Glider Based on the Theory of Differential Geometry and Sea Trails[J]. Journal of Mechanical Engineering, 2014, 50(2): 19-27.
[8] 武建國. 混合驅(qū)動(dòng)水下滑翔機(jī)系統(tǒng)設(shè)計(jì)與性能分析[D]. 天津: 天津大學(xué), 2010.
[9] 孫秀軍. 混合驅(qū)動(dòng)水下滑翔機(jī)動(dòng)力學(xué)建模及運(yùn)動(dòng)控制研究[D]. 天津: 天津大學(xué), 2011.
[10] Wang S X, Sun X J, Wu J G, et al. Motion Characteristic Analysis of a Hybrid-driven Underwater Glider[C]//Oce- ans. Sydney, NSW, Australia: IEEE, 2010: 1-9.
[11] Wang S X, Sun X J, Wang Y H, et al. Dynamic Modeling and Motion Aimulation for a Winged Hybriddriven Underwater Glider[J]. China Ocean Engineering, 2011, 25(1): 97-112.
[12] Niu W D, Wang S X, Wang Y H, et al. Stability Analysis of Hybrid-driven Underwater Glider[J]. China Ocean En- gineering, 2017, 31(5): 528-538.
[13] 王延輝. 水下滑翔機(jī)動(dòng)力學(xué)行為與魯棒控制策略研究[D]. 天津: 天津大學(xué), 2007.
[14] 溫浩然, 魏納新, 劉飛. 水下滑翔機(jī)的研究現(xiàn)狀與面臨的挑戰(zhàn)[J]. 船舶工程, 2015(1): 1-6.Wen Hao-ran, Wei Na-xin, Liu Fei. Research of Current Situation and Future Challenges of Underwater Glider[J]. Ship Engineering, 2015(1): 1-6.
[15] 李天森. 魚雷操縱性[M]. 第2版. 北京: 國防工業(yè)出版社, 2007.
[16] Graver J G. Underwater Gliders: Dynamics, Control and Design[D]. Princeton: Princeton University, 2005.
Dynamic Modeling and Simulation of Underwater Glider Petrel-II 200
SUN Xiu-jun1,2,3, WANG Lei1, SANG Hong-qiang4
(1. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China; 2. Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; 3. Laboratory of Marine Dynamics and Climate Function, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China; 4. School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387, China)
In China, the researches on dynamic behavior of underwater glider mostly focuses on deep-sea type and horizontally rolling mechanism, but less on shallow-sea type and tail rudder steering type. This paper takes shallow-sea underwater glider Petrel-II 200 as a model to conduct dynamic modeling and motion simulation, and adds some disturbing factors such as ocean current for the purpose of providing reference for motion form of shallow-sea underwater glider. According to the relative motion relationship of each mass in the Petrel-II 200 three-dimensional model, the centroid is simplified to a multi-rigid body system composed of multiple particles, and the relationship between the centroid and the particle is constructed. Based on the theorems of momentum and momentum moment, the dynamics of Petrel-II 200 is analyzed. The gravity, driving buoyancy and hydrodynamics of the underwater glider are transformed into body coordinate system. The complete dynamic equation is deduced, and the expressions of lift-to-drag ratio and radius of rotation are defined. By choosing the physical and hydrodynamic parameters of the underwater glider, simulation experiments of typical motions, such as sawtooth and spiral motions, are carried out. The simulation results validate the accuracy and reliability of the dynamic model, and provide a good simulation platform for the following underwater glider Petrel-II 200 motion performance optimization and control algorithm design.
underwater glider; dynamic model; kinetic equation; motion simulation
TJ630; U674.941; O352
A
2096-3920(2019)05-0480-08
10.11993/j.issn.2096-3920.2019.05.002
孫秀軍, 王雷, 桑宏強(qiáng). Petrel-II 200水下滑翔機(jī)動(dòng)力學(xué)建模及仿真[J]. 水下無人系統(tǒng)學(xué)報(bào), 2019, 27(5): 480-487.
2018-10-25;
2018-12-10.
國家重點(diǎn)研發(fā)計(jì)劃重點(diǎn)專項(xiàng)(2017YFC0305902); 青島海洋科學(xué)與技術(shù)國家實(shí)驗(yàn)室“問海計(jì)劃:項(xiàng)目(2017WHZ ZB0101); 天津市自然科學(xué)基金重點(diǎn)基金(18JCZDJC40100).
孫秀軍(1981-), 男, 教授, 主要研究方向?yàn)楹Q笠苿?dòng)觀測平臺(tái)技術(shù).
(責(zé)任編輯: 楊力軍)