公 艷
包含臨界Sobolev-Hardy指數的奇異橢圓方程的Neumann問題
公 艷
山東農業(yè)大學信息科學與工程學院, 山東 泰安 271018
在0??W的情況下,解決了一類包含臨界Sobolev-Hardy指數的奇異橢圓方程解的存在性,它與0?W是不同的.根據筆者已證的一個廣義存在性定理,得到了這類奇異橢圓方程的一個正解的存在性結論.
Sobolev-Hardy指數; 橢圓方程; Neumann問題
筆者在文獻[10]中在0??W的情況下討論方程:
那么方程(1)至少存在滿足()≤的非常數解.
現在我們來考慮方程
引理2.1在(A)的假設條件下,得到如下一些估計:
其余三個估計同理,略.
且
因此
由(13),(14)得
借助式(15)可得
結論成立.
定理2.1假設(A)成立,若0<<*成立,則方程(5)至少存在一個正解.
證明: 由文獻[10]中方法可推斷存在足夠小的>0,滿足inf‖‖=()>0=(0),又因為?+∞時,
所以存在0>0滿足║0║>且(0)<0,由山路引理知存在序列{u}?1(?),滿足?∞時,(u)?,′(u)?0.
根據定義知滿足()條件,u有一收斂的子序列不妨仍記為u,滿足u?在1(?)中,根據文獻[1]中所得結論可知為的臨界點,即方程有一非負解,由強極大值原理知>0,證畢.
[1] Comte M, Knaap M. Existence of Solutions of Elliptic Involving Critical Sobolev Exponents with Neumann Boundary Conditions in General Domains[J]. Differential Integral Equations, 1991(4):1133-1146
[2] Cao D, Noussair ES. The Effect of Geometry of the Domain Boundary in an Elliptic Neumann Problem[J]. Adv. Differential Equations, 2001,6(8):931-958
[3] Cherrier P. Meilleures Constants Dans les in Egalites Relatives Aux Espaces de Sobolev[J]. Bull. Sei. Math. 2eSerie, 1984,108:225-262
[4] Pierotti D, Terracini S. On a Neumann Problem with Critical Exponent and Critical Nonlinearity on the Boundary[J]. Comm. Partial Differential Equations, 1995,20:1155-1157
[5] Comte M, Knaap MC. Solutions of Elliptic Equations Involving Critical Sobolev Exponents with Neumann Boundary Conditions[J]. Manuscripta Math., 1990,69:43-70
[6] Cerami G, Fortunato D, Struwe M. Bifurcation and multiplicity results for nonlinear elliptic problems involving critical sobolev expinents[J]. Annales de l'I.H.P. Analyse non linéaire, 1984,1(5):341-350
[7] Ghoussoub N., Yuan C.Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents[J]. Transactions of the American Mathematical Society, 2000,12(12):5703-5743
[8] 胡愛蓮,張正杰.含有Sobolev-Hardy臨界指標的奇異橢圓方程Neumann問題無窮多解的存在性[J].數學物理學 報,2007,27A(6):1025-1034
[9] 王剛剛.具有臨界指數的奇異橢圓方程Neumann邊值問題正解的存在性[D].上海:上海交通大學,2013
[10] 公艷.包含臨界Sobolev-Hardy指數的奇異橢圓方程的Neumann問題[J].吉首大學學報(自然科學版),2009,30(5):26-29
Neumann Problems of Singular Elliptic Equations Envolving Critical Sobolev-Hardy Exponents
GONG Yan
271018,
The existence of positive solution for singular elliptic equations is studied, including Hardy Sobolev critical exponent in the condition of 0??W. It is different from 0?W. According to the general existence theorem proved by the author, obtain the existence of positive solutions for singular elliptic equations.
Singularity index; elliptic equation; Neumann problem
O175.25
A
1000-2324(2019)05-0913-05
10.3969/j.issn.1000-2324.2019.05.039
2019-03-20
2019-04-10
公艷(1980-),女,碩士研究生,講師,研究方向:非線性泛函分析. E-mail:gongyan@sdau.edu.cn