亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類隨機(jī)微分方程的均方漸近概周期溫和解

        2019-10-30 02:14:39姚慧麗張悅嬌

        姚慧麗 張悅嬌

        摘 要:均方概周期型函數(shù)理論在隨機(jī)微分方程中的應(yīng)用越來(lái)越引起數(shù)學(xué)工作者的關(guān)注,其中隨機(jī)微分方程的均方漸近概周期解比均方概周期解的應(yīng)用范圍更加廣泛。利用Banach不動(dòng)點(diǎn)定理、線性算子解析半群理論及均方漸近概周期隨機(jī)過(guò)程的概念和基本性質(zhì),研究了實(shí)可分的Hilbert空間上的一類隨機(jī)微分方程的均方漸近概周期溫和解的存在性和唯一性。

        關(guān)鍵詞:均方漸近概周期溫和解;隨機(jī)微分方程;Banach不動(dòng)點(diǎn)定理;線性算子解析半群

        DOI:10.15938/j.jhust.2019.04.024

        中圖分類號(hào): O175

        文獻(xiàn)標(biāo)志碼: A

        文章編號(hào): 1007-2683(2019)04-0143-06

        Abstract:The application of the theory of square-mean almost periodic type functions to stochastic differential equations has attracted more and more attention by researchers.The square-mean asymptotically almost periodic solutions of stochastic differential equations have a wider range of applications than square-mean almost periodic solutions.In this paper,the existence and uniqueness of the square-mean asymptotically almost periodic mild solutions of a class of stochastic differential equations in real separable Hilbert spaces are discussed, using the Banach fixed point theorem,analytic semigroup theory of linear operators and the concept and basic properties of the square-mean asymptotically almost periodic stochastic processes.

        Keywords:square-mean asymptotically almost periodic mild solutions;stochastic differential equations; Banach fixed point theorem; analytic semigroup theory of linear operators

        0 引 言

        在1925-1926年間,丹麥數(shù)學(xué)家BOHR H提出并建立了概周期函數(shù)理論[1-2]。隨后,BOCHNER、NEVMANN、ZHANG CHUANYI等對(duì)該理論進(jìn)行推廣[3-5],并將其應(yīng)用于物理、生物和力學(xué)等諸多領(lǐng)域[6-10]。2007年BEZANDRY和DIAGANA提出了均方概周期隨機(jī)過(guò)程[11],并應(yīng)用于微分方程解的求解中[12-13]。2011年曹俊飛給出了均方漸近概周期隨機(jī)過(guò)程的概念[14],之后,一些文獻(xiàn)中對(duì)隨機(jī)微分方程的均方漸近概周期溫和解的存在性和唯一性進(jìn)行了研究,并取得了一定的成果[15-17]。文[18]研究了一類中立型隨機(jī)泛函微分方程的均方概周期解的存在唯一性,方程如下:

        參 考 文 獻(xiàn):

        [1] BOHR H.Zur Theorie Der Fastperiodischen [J].Acta.Math., 1925, 45:19.

        [2] BOHR H.Almost Periodic Functions[M].Chelsea:New York, 1951.

        [3] BOCHNER H.Abstrakte Fastperiodische Funktionen[J].Acta.Math., 1933, 61(1):149.

        [4] BOCHNER H,NEUMANN J V.Almost Periodic Functions in Groups[J].Trans. Amer. Math.Soc., 1935, 37(1):21.

        [5] ZHANG Chuanyi.Almost Periodic Type Functions and Ergodicity[M].Beijing:Science Press, 2003.

        [6] BEZANDRY P H,DIAGANA T.Existence of Quadratic-Mean Almost Periodic Solutions to Some Stochastic Hyperbolic Differential Equations[J].Electronic Journal of Differential? Equations, 2009, 111.

        [7] ZHAO Zhihan,CHANG Yongkui,LI Wensheng.Asymptotically Almost Periodic,Almost Periodic and Pseudo Almost Periodic Mild Solutions for Neutral Differential Equations[J].Nonlinear Analysis.Real World Applications, 2010, 4(11):3037.

        [8] JOS Paulo C.DOS Santos,SANDRO M.GUZZO,MARCOS N.RABELO.Asymptotically Almost Periodic Solutions for Abstract Partial Neutral Integro-Differential Equations[J].Advances in Difference Equations, 2010, 1(210):26.

        [9]TOUFIK Guendouzi,KHADEM Mehdi.Almost Periodic Mild Solutions for Stochastic Delay Functional. Differential Equations Driven by a Fractional Brownian Motion[J].Romanian Journal of Mathematics and Computer Science, 2014, 1(4):12.

        [10]ZHANG Aiping.Pseudo Almost Periodic Solutions for SICNNs with Oscillating Leakage Coefficients and Complex Deviating Arguments[J].Neural Processing Letters, 2017, 45(1):183.

        [11]BEZANDRY P H,DIAGANA T.Existence of Almost Periodic Solutions to Some StochasticDifferential Equations[J].Applicable Analysis, 2007, 86(7):819.

        [12]XIA Zhihan.Pseudo Almost Periodicity of Fractional Integro-Differential Equations with Impulsive Effects in Banach Spaces[J].Czechoslovak Mathematical Journal, 2017, 1(67).

        [13]KERBOUA,MOURAD. Quadratic Mean Almost Periodic Mild Solutions to a Fractional Stochastic Differential Equation in Hilbert Spaces[J].Nonlinear Evol.Equ.Appl.,2016(4):123.

        [14]CAO Junfei,YANG Qigui,HUANG Zaitang,et al.Asymptotically Almost Periodic Solutions of Stochastic Functional Differential Equations[J].Applied Mathematics and Computation, 2011, 5(218):1499.

        [15]姚慧麗,王建偉.一類隨機(jī)微分方程的均方漸近概周期解[J].哈爾濱理工大學(xué)學(xué)報(bào),2014, 19(6):118.

        [16]SAKTHIVEL R,REVATHI J,MAHMUDOV N I.Asymptotic Stability of Fractional Stochastic Neutral Differential Equation with Infinite Delays[J].Abstract and Applied Analysis, 2013.

        [17] LIU Aimin,LIU Yongjian,LIU Qun.Asymptotically Almost Periodic Solutions for a Class of a Stochastic Functional Differential Equations[J].ABSTRACT AND APPLIED ANALYSIS,2014.

        [18]CHANG Yongkui,MA Ruyun,ZHAO Zhihan.Almost Periodic Solutions to a Stochastic? Differential Equation in Hilbert Space[J].Results in Mathematics, 2013, 63(1/2):435.

        [19]PAZY A.Semigroups of Linear Operators and Applications to Partial Differential Equations[J].Springer-Verlag,New York, 1983.

        [20]BEZANDRY P,DIAGANA T. Almost Periodic Stochastic Processes[M].New York:Springer,April.,2011:1.

        (編輯:溫澤宇)

        国产成人综合久久亚洲精品| 精品国产女主播一区在线观看| 久久国产精品不只是精品| 777久久| 在线小黄片视频免费播放| 福利利视频在线观看免费| 国产熟妇与子伦hd| 国产激情久久久久久熟女老人av| 三年片大全在线观看免费观看大全| 亚洲不卡av不卡一区二区| 亚洲AV秘 无码一区二p区三区| 性感人妻av在线播放| 国产在线视频91九色| 被黑人猛烈30分钟视频| 91精品福利一区二区| 97人妻蜜臀中文字幕| 激情精品一区二区三区| 色综合久久无码五十路人妻 | 伊人久久大香线蕉在观看| 午夜婷婷国产麻豆精品| 综合图区亚洲另类偷窥| 国产97在线 | 中文| 免费精品美女久久久久久久久久| 黄页免费人成网址大全| 国产亚洲欧洲aⅴ综合一区| 欧美丰满熟妇aaaaa片| 国产目拍亚洲精品一区二区| 蜜桃在线观看免费高清完整版| 老女人下面毛茸茸的视频| 99re6在线视频精品免费下载| 久久精品国产亚洲av麻豆图片| 97久久超碰国产精品2021| 老熟妇Av| 一本到亚洲av日韩av在线天堂| 无码av中文一区二区三区桃花岛| 四虎影库久免费视频| 无码日日模日日碰夜夜爽| 亚洲精品女人天堂av麻| 国产精品二区一区二区aⅴ污介绍| 国产第一页屁屁影院| 美女精品国产一区二区三区|