丁夢雨,康啟越,張釋義,趙繁榮,張海峰,楊 敏,胡建英*
全國23個城市水源水中鄰苯二甲酸酯代謝物濃度調(diào)查
丁夢雨1,康啟越1,張釋義1,趙繁榮1,張海峰2,楊 敏2,胡建英1*
(1.北京大學城市與環(huán)境學院,地表過程分析與模擬教育部重點實驗室,北京 100871;2.中國科學院生態(tài)環(huán)境研究中心,環(huán)境水質(zhì)學國家重點實驗室,北京 100085)
采用UPLC-MS/MS 方法對中國 23 個城市的90個自來水廠141個水源水樣中5 種常用PAEs的8種代謝產(chǎn)物進行檢測.結(jié)果發(fā)現(xiàn),所有自來水水源水中均檢出了MPAEs,鄰苯二甲酸單正丁酯(MnBP)檢出濃度最高,為74.7ng/L.水源水中鄰苯二甲酸單乙酯(MEP),鄰苯二甲酸單異丁酯(MiBP)和MnBP濃度與鄰苯二甲酸二乙酯(DEP),鄰苯二甲酸二異丁酯(DiBP)和鄰苯二甲酸二正丁酯(DnBP)濃度分別呈顯著相關(guān),表明兩者可能是同源.鄰苯二甲酸二(2-乙基己基)酯(DEHP)二級代謝產(chǎn)物所占DEHP一級、二級代謝產(chǎn)物濃度和 (∑DEHP)為4.0% ± 5.6%,和天然水體中DEHP的微生物降解結(jié)果類似,水源水中的MPAEs可能來自PAEs在自然水體中的微生物降解.
鄰苯二甲酸雙酯(PAEs);鄰苯二甲酸單酯(MPAEs);飲用水水源水
鄰苯二甲酸酯(PAEs)是一種被廣泛使用的增塑劑,多用于PVC塑料、化妝品和兒童玩具等產(chǎn)品中[1]. PAEs和高分子材料以非共價鍵相連,因此容易釋放到環(huán)境中[2],國內(nèi)外眾多研究表明水源水中廣泛存在PAEs[3-10].據(jù)報道,我國2016年鄰苯二甲酸酯類增塑劑生產(chǎn)量為200萬t,占全部增塑劑產(chǎn)量的60%[11].我國制定了鄰苯二甲酸二丁酯(DBP)和鄰苯二甲酸二(2-乙基己基)酯(DEHP)的地表水環(huán)境標準限值分別為3μg/L和8μg/L[12].
作為一種典型的內(nèi)分泌干擾物,PAEs能導致精液質(zhì)量下降、精子凋亡、自然流產(chǎn)、兒童肥胖、過敏癥狀、哮喘、高血壓、注意力表現(xiàn)差和DNA損傷等[13-17].PAEs在體內(nèi)快速代謝為鄰苯二甲酸單酯(MPAEs),且其毒性被認為主要是由MPAEs造成的[18].動物實驗表明暴露MPAEs會引起多種毒性,如鄰苯二甲酸單(2-乙基己基)酯(MEHP)能抑制人類絨毛外滋養(yǎng)細胞侵蝕[19],降低卵母細胞的發(fā)育能力[20]、導致排卵停止[21]、誘導免疫系統(tǒng)細胞凋亡[22]等.此外,鄰苯二甲酸單正丁酯(MnBP)還能損害人類精子的功能[23].
PAEs通過人體代謝產(chǎn)生的MPAEs最終通過生活污水排入自然水體,因此水體中可能殘留這些代謝產(chǎn)物.此外,自然水體中的微生物也能降解PAEs而生成MPAEs[24],目前已在河流、湖泊、海水、生活廢水等水環(huán)境中檢出MPAEs[9,24-27],但是未有文獻報道水源水中是否存在MPAEs.由于飲用水是人類暴露污染物質(zhì)的一個主要途徑之一,考慮到MPAEs的毒性,所以有必要對全國水源水中MPAEs的濃度進行全面的調(diào)查,獲得其濃度水平及其空間分布.
本研究對我國23個城市的90個自來水廠水源水中5種常用PAEs(DMP, DEP, DiBP, DnBP和DEHP)的8種代謝產(chǎn)物(MMP, MEP, MiBP, MnBP, MEHP, MEHHP, MEOHP和MECPP)進行了監(jiān)測,研究了其時空變化.為了比較,同時檢測了水源水中上述5種PAEs的濃度水平.水源水中均檢出MPAEs,這一結(jié)果為我國水源地MPAEs的風險評估提供暴露信息.
2015年5月~2018年1月于全國23個城市的90個自來水廠水源地采集141個水源水樣品,采樣點分布如圖1所示,采樣情況見表1.為了去除余氯,采樣時在水樣中添加L-抗壞血酸.
圖1 全國自來水廠水源水中PAEs (a)和MPAEs (b)濃度空間分布
表1 采樣城市、時間及其不同城市的PAEs和MPAEs總濃度水平
續(xù)表1
5種PAEs,包括鄰苯二甲酸二甲酯(DMP),鄰苯二甲酸二乙酯(DEP),鄰苯二甲酸二異丁酯(DiBP), DnBP和DEHP的標準品和氘代同位素內(nèi)標均購于Labor Dr. Ehrenstorfer (Augsburg,德國), 8種MPAEs標樣:鄰苯二甲酸單甲酯(MMP),鄰苯二甲酸單乙酯(MEP),鄰苯二甲酸單異丁酯(MiBP),MnBP, MEHP購買自AccuStandard (New Haven, CT,美國),鄰苯二甲酸單(2-乙基-5-羥基己基)酯(MEHHP)和鄰苯二甲酸單(2-乙基-5-羰基己基)酯(MEOHP)購于TRC (Toronto, 加拿大),鄰苯二甲酸單(2-乙基-5-羧基戊基)酯(MECPP)購于Cambridge Isotope Laboratories (Andover, MA,美國).6種同位素取代的內(nèi)標MMP-13C4, MEP-13C4,MnBP-13C4, MEHP-13C4, MEHHP-13C4和MECPP-13C4均購于劍橋同位素實驗室(Andover, MA,美國).
甲醇和乙腈(LC/MS級),正己烷(農(nóng)藥級)均購于費希爾化工(New Jersey,美國).乙醚(農(nóng)藥級)購于霍尼韋爾實驗室,氫氧化銨(28%)來自阿爾法伊薩爾(Heysham,英國),甲酸(HPLC級)和乙酸(HPLC級)來自迪克瑪技術(shù)公司(California,美國),超純水經(jīng)Milli-Q超純水裝置(Millipore,Bedford,MA,USA)制備(電導率>18.2MΩ·cm).所用材料包括HLB固相萃取柱(200mg/6CC,Waters,美國),MAX固相萃取柱(150mg/6CC,Waters,美國),0.45μm玻璃纖維濾膜(Waters,美國).
用預先在450℃烘焙4h的玻璃纖維濾膜過濾水源水后,取1L用來分析PAEs,加入5種PAEs同位素內(nèi)標各125ng,用事先活化過的Waters HLB固相萃取柱進行富集.HLB固相萃取柱活化條件為10mL乙醚,5mL甲醇,5mL超純水活化,流速控制在5~10mL/min.水樣全部通過后,用高純氮氣流吹干HLB柱,然后用5mL乙醚:甲醇(/95:5)溶液進行洗脫.最后洗脫液用高純氮氣吹至近干后溶于0.5mL正己烷.
取0.5L用來分析MPAEs,加入6種同位素內(nèi)標各12.5ng,用Waters MAX固相萃取柱進行富集.MAX固相萃取柱依次用10mL甲醇預淋洗,5mL超純水活化,水樣全部通過后,用5mL超純水、5mL 5%氫氧化銨和5mL甲醇淋洗MAX柱,用5mL甲酸:甲醇(/5:95)溶液進行洗脫.洗脫液用高純氮氣吹至近干后溶于0.5mL甲醇.樣本進入儀器定量分析前保存于-20℃[24].由于PAEs在環(huán)境中無處不在,為了消除過程空白,前處理過程中沒有使用塑料或橡膠容器;整個實驗過程中使用了農(nóng)藥級或LC-MS級的有機溶劑,高純度氮氣(>99.999%),所使用玻璃器皿在馬弗爐中400℃烘烤4h以上.
本研究采用美國安捷倫科技有限公司的Agilent 6890N氣相色譜-5975C質(zhì)譜聯(lián)用儀器對PAEs進行分析.采用Waters ACQUITY UPLCTM儀器(Waters, Milford, MA,美國)與 Waters Micromass串聯(lián)四級桿質(zhì)譜聯(lián)用儀對MPAEs進行分析.具體分析條件和參數(shù)采用本實驗室之前報道過的方法[24].
本研究中對于樣品中目標物質(zhì)的定性主要依據(jù):(1)與標樣相比保留時間相差在2%以內(nèi);(2)與標樣相比,2個選擇離子峰面積之比相差在20%以內(nèi).目標物質(zhì)的定量選用豐度最高及背景干擾最小的MRM 選擇離子,同時用內(nèi)標校正前處理和基質(zhì)干擾引起的損失,并用以消除儀器波動的影響.為了評估空白和基質(zhì)效應,每一組樣品跟隨1個過程空白,2個基質(zhì)加標樣品作為質(zhì)量控制. DMP, DEP, DiBP, DnBP和DEHP的檢出限分別為5, 2, 3, 7和8ng/L,5種物質(zhì)的回收率分別為101、102、94、97和71%. MMP, MEP, MiBP, MnBP, MEHP, MEOHP, MEHHP和MECPP的檢出限分別為3, 0.6, 1, 2, 3, 0.01, 0.01和0.01ng/L,10種物質(zhì)的回收率為82%、84%、89%、94%、95%、84%、85%和96%.
由表2可見,全國141個自來水廠水源水水樣中的DiBP, DEHP, DMP, DnBP和DEP5檢出率分別為91.5%, 87.9%, 87.2%, 84.4%和81.6%.其中DnBP濃度最高,平均濃度為(425.1±1225)ng/L (
表2 全國水源水中檢出的鄰苯二甲酸酯及其代謝物的檢出率和濃度水平
注:LOD為檢出限.
由表2可見,水源水中MEHP, MnBP, MiBP, MMP和MEP這5種一級代謝產(chǎn)物的檢出率分別為94.3%, 92.9%, 88.7%, 88.7%和58.2%,其中MnBP濃度最高,平均濃度為(74.7±372)ng/L.每種一級代謝產(chǎn)物的濃度都低于所對應的PAEs.水源水中MMP和MiBP濃度符合對數(shù)正態(tài)分布(>0.05),幾何平均濃度分別為(6.01±4.12)ng/L和(4.47±4.27)ng/L.使用ProUCL軟件對其余3種物質(zhì)的濃度數(shù)據(jù)處理后進行對數(shù)正態(tài)分布檢驗,MEP和MEHP的濃度符合對數(shù)正態(tài)分布(>0.05),幾何平均濃度分別為(0.720±6.25)ng/L和(10.1±2.41)ng/L.水源水中五種MPAEs濃度均高于加拿大海水濃度(MMP:0.42~20.1ng/L; MEP: 4.41~38.8ng/L; MnBP: 50.9~107.8ng/L; MEHP: 45.5~57.2ng/L)[25];除MEHP外,其余物質(zhì)的濃度均高于日本Tama河流水體濃度(MnBP:
PAEs在人體內(nèi)能夠很快代謝成為MPAEs, 因此MPAEs會通過生活污水的排放進入水環(huán)境中;另外,在自然水體中也會通過微生物降解生成MPAEs.為了進一步探究MPAEs的可能來源,研究了水源水中PAEs和MPAEs濃度相關(guān)性,其中DEP和MEP (=0.52,<0.01), DiBP和MiBP(=0.68,<0.01), DnBP和MnBP(=0.85,<0.01)均顯著正相關(guān)(圖2a-c).表明這3種MPAEs可能來自生活污水的排放或者是微生物降解產(chǎn)物.考慮到水源地得到嚴格保護,所以PAEs在自然水體中的微生物降解可能是MPAEs的重要來源.結(jié)合前面二次代謝物占∑DEHP的比例結(jié)果,推測水源水中MPAEs的來源可能是環(huán)境中PAEs的生物降解.
MPAEs是PAEs的生物活性物質(zhì),且已有動物實驗表明,低濃度MEHP (20~1000nmol/L)會影響牛卵母細胞的發(fā)育,20nM MEHP能夠降低卵母細胞的發(fā)育能力[20]; MEHP能影響線粒體膜電位,促進活性氧的產(chǎn)生和半胱天冬酶的激活,在環(huán)境濃度下誘導免疫系統(tǒng)細胞凋亡[22].因此人群可能通過飲用水途徑暴露這些具有潛在生殖和免疫毒性的PAEs代謝產(chǎn)物而引起潛在健康風險.
由圖1(b)所見,山東濱州水源水中五種單酯(MMP, MEP, MiBP, MnBP和MEHP)的總濃度(∑MPAEs)最高,為995ng/L,保定其次(560ng/L),哈爾濱的總濃度最低(12.8ng/L).同樣,濱州采集的地下水樣本中∑MPAEs濃度高達1712ng/L,特別是MnBP,濃度為1703ng/L,這與濱州地下水中高濃度DnBP的檢出情況相似.從全國分布來看,除深圳之外,PAEs和MPAEs的分布情況相似.通過對城市之間PAEs和MPAEs的相關(guān)性研究發(fā)現(xiàn),除MEHP和DEHP外,MMP和DMP(=0.69,<0.01),MEP和DEP (=0.81,<0.01),MiBP和DiBP(=0.58,<0.01). MnBP和DnBP(=0.93,<0.01)均顯著相關(guān),進一步表明MPAEs的空間分布與PAEs的空間分布類似.
對哈爾濱、濟南、蘭州、南京、天津、無錫和株洲這7個城市的水源水分豐水期(5~10月)和枯水期(12月~次年3月)進行采樣,MPAEs濃度季節(jié)性變化如圖3所示.通常枯水期污染物濃度被認為高于豐水期的.對于MPAEs,天津枯水期∑MPAEs高于豐水期,但是其他城市豐水期∑MPAEs濃度和枯水期的相仿.這可能和水源類型有關(guān),天津是水庫水水源,而其他城市是河流水水源.
圖3 水源水中MPAEs濃度的季節(jié)變化
枯水期:12月-次年3月;豐水期:5月-10月
3.1 全國自來水廠水源水141個樣本中都檢出了MPAEs, MnBP濃度最高,算術(shù)均值為74.7ng/L,水源水中MPAEs風險有待進一步評估.
3.2 水源水中MEP, MiBP和MnBP濃度與DEP, DiBP和DnBP濃度分別呈顯著相關(guān),表明兩者可能是同源.
3.3 DEHP二級代謝產(chǎn)物所占∑DEHP比例較低,認為水源水中的MPAEs,其可能來自PAEs的微生物降解.
3.4 對于天津水庫性水源,枯水期水源水MPAEs濃度遠高于豐水期,而其他6個以河流作為水源的城市,其濃度不受季節(jié)變化.
[1] Wen Z, Huang X, Gao D, et al. Phthalate esters in surface water of Songhua River watershed associated with land use types, Northeast China [J]. Environmental Science and Pollution Research, 2017,25(8):1-11.
[2] Schettler T. Human exposure to phthalates via consumer products [J]. International Journal of Andrology, 2006,29(1):134-139.
[3] Liu X, Shi J, Bo T, et al. Occurrence of phthalic acid esters in source waters: a nationwide survey in China during the period of 2009~2012 [J]. Environmental Pollution, 2014,184:262-270.
[4] Loraine G A, Pettigrove M E. Seasonal Variations in Concentrations of Pharmaceuticals and Personal Care Products in Drinking Water and Reclaimed Wastewater in Southern California [J]. Environmental Science & Technology, 2006,40(3):687-695.
[5] Mackintosh C E, Maldonado J A, Ikonomou M G, et al. Sorption of Phthalate Esters and PCBs in a Marine Ecosystem [J]. Environmental Science & Technology, 2006,40(11):3481-3488.
[6] Net S, Dumoulin D, El-Osmani R, et al. Case study of PAHs, Me-PAHs, PCBs,Phthalates and pesticides contamination in the Somme River water, France [J]. International Journal of Environmental Research, 2014,8(4):1159-1170.
[7] Selvaraj K K, Sundaramoorthy G, Ravichandran P K, et al. Phthalate esters in water and sediments of the Kaveri River, India: environmental levels and ecotoxicological evaluations [J]. Environmental Geochemistry and Health, 2015,37(1):83-96.
[8] Sibali L L, Okonkwo J O, Mccrindle R I. Determination of selected phthalate esters compounds in water and sediments by capillary gas chromatography and flame ionization detector [J]. Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering, 2013,48(11):1365-1377.
[9] Suzuki T, Yaguchi K, Suzuki S, et al. Monitoring of phthalic acid monoesters in river water by solid-phase extraction and GC-MS determination [J]. Environmental Science & Technology, 2001,35(18): 3757-3763.
[10] Vethaak A D, Lahr J, Schrap S M, et al. An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of the Netherlands [J]. Chemosphere, 2005,59(4):511- 524.
[11] 中國產(chǎn)業(yè)信息網(wǎng).2018年中國增塑劑行業(yè)發(fā)展現(xiàn)狀及發(fā)展前景分析 [EB/OL].https://www.chyxx.com/industry/201806/653004.html,2018- 06-26/2019-03-03. China Industrial Information Network. Analysis of development status and prospect of plasticizer industry in China, 2018 [EB/OL]. https: //www.chyxx.com/industry/201806/653004.html.2018-06-26/2019-03- 03.
[12] GB 3838-2002 地表水環(huán)境質(zhì)量標準 [S]. GB 3838-2002 Environmental Quality Standard for Surface Water. [S].
[13] Arbuckle T E, Davis K, Boylan K, et al. Processed data for CHMS 2007–2009: Bisphenol A, phthalates and lead and learning and behavioral problems in Canadian children 6–19years of age [J]. Data in Brief, 2016,8:784-802.
[14] Bloom M S, Whitcomb B W, Chen Z, et al. Associations between urinary phthalate concentrations and semen quality parameters in a general population [J]. Human Reproduction, 2015,30(11):2654-57.
[15] Huen K, Calafat A M, Bradman A, et al. Maternal phthalate exposure during pregnancy is associated with DNA methylation of LINE-1and Alu repetitive elements in Mexican-American children [J]. Environmental Research, 2016,148:55-62.
[16] Mu D, Gao F M, Fan Z L, et al. Levels of phthalate metabolites in urine of pregnant women and risk of clinical pregnancy loss [J]. Environmental Science & Technology, 2015,49(17):10651-10657.
[17] Wang Y X, Zeng Q, Sun Y, et al. Phthalate exposure in association with serum hormone levels, sperm DNA damage and spermatozoa apoptosis: A cross-sectional study in China [J]. Environmental Research, 2016,150:557-565.
[18] Mittermeier A, V?lkel W, Fromme H. Kinetics of the phthalate metabolites mono-2-ethylhexyl phthalate (MEHP) and mono-n-butyl phthalate (MnBP) in male subjects after a single oral dose [J]. Toxicology Letters, 2016,252:22-28.
[19] Gao F M, Hu W X, Li Y, et al. Mono-2-ethylhexyl phthalate inhibits human extravillous trophoblast invasion via the PPARγ pathway [J]. Toxicology and Applied Pharmacology, 2017,327:23-29.
[20] Kalo D, Roth Z. Low level of mono(2-ethylhexyl) phthalate reduces oocyte developmental competence in association with impaired gene expression [J]. Toxicology, 2017,377:38-48.
[21] Lovekamp-Swan T, Davis B J. Mechanisms of Phthalate Ester Toxicity in the Female Reproductive System [J]. Environmental Health Perspectives, 2002,111(2):139-145.
[22] Rosado-Berrios C A, Christian Vélez, Zayas B. Mitochondrial permeability and toxicity of diethylhexyl and monoethylhexyl phthalates on TK6human lymphoblasts cells [J]. Toxicology in Vitro, 2011,25(8):2010-2016.
[23] Xie F C, Chen X D, Weng S Q, et al. Effects of two environmental endocrine disruptors di-n-butyl phthalate (DBP) and mono-n-butyl phthalate (MBP) on human sperm functions in vitro [J]. Reproductive Toxicology, 2019,83:1–7.
[24] Jiang J Q, Mu D, Ding M Y, et al. Simultaneous determination of primary and secondary phthalate monoesters in the Taihu Lake: Exploration of sources [J]. Chemosphere, 2018,202:17-24.
[25] Blair J D, Ikonomou M G, Kelly B C, et al. Ultra-Trace Determination of Phthalate Ester Metabolites in Seawater, Sediments, and Biota from an Urbanized Marine Inlet by LC/ESI-MS/MS [J]. Environmental Science & Technology, 2009,43(16):6262-6268.
[26] González-Marino I, Rodil R, Barrio I, et al. Wastewater-Based Epidemiology as a New Tool for Estimating Population Exposure to Phthalate Plasticizers [J]. Environmental Science & Technology, 2017, 51(7):3902-3910.
[27] Du P, Zhu Z L, Huang H M, et al. Estimating population exposure to phthalate esters in major Chinese cities through wastewater-based epidemiology [J]. Science of The Total Environment, 2018,643: 1602-1609.
[28] 賀 濤,白小艦,陳 雋,等.飲用水源地塑化劑類污染物環(huán)境健康風險評估[J]. 中國環(huán)境科學, 2013,33(1):26-31. He T, Bai X J, Chen J, et al. Environmental health risk assessment of plasticizer contaminants in drinking water source [J]. China Environmental Science, 2013,33(1):26-31.
[29] Colacino J A, Haris T R, Schecter A. Dietary Intake Is Associated with Phthalate Body Burden in a Nationally Representative Sample [J]. Environmental Health Perspectives, 2010,118(7):998-1003.
National survey of phthalate metabolites in drinking source water of 23 cities in China.
DING Meng-yu1, KANG Qi-yue1, ZHANG Shi-yi1, ZHAO Fan-rong1, ZHANG Hai-feng2, YANG Min2, HU Jian-ying1*
(1.Laboratory for Earth Surface Proess, Ministy of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China;2.State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085)., 2019,39(10):4205~4211
Eight metabolites of 5 PAEs were determined in 141 drinking source water samples from 90 drinking water supply plants of 23 cities in China using UPLC-MS/MS method. MPAEs were detected in all drinking source water samples, and the average concentration of mono-n-butyl phthalate (MnBP) was the highest (74.7ng/L) among target MPAEs. The concentrations of monoethyl phthalate (MEP), mono-iso-butyl phthalate (MiBP) and MnBP in source water were significantly correlated with those of diethyl phthalate (DEP), di-iso-butyl phthalate (DiBP) and di-n-butyl phthalate (DnBP), respectively, suggesting common source for MPAEs and their corresponding PAEs. The percentage of secondary metabolites relative to∑DEHP (total concentrations of primary and secondary metabolites of DEHP) (4.0% ± 5.6%) in source water was comparable to that from the microbiological degradation of DEHP in aqueous environment, suggesting that these metabolites in drinking source water were mainly from the microbiological degradation of PAEs in aqueous environment.
phthalates (PAEs);mono phthalates (MPAEs);drinking source water
X832
A
1000-6923(2019)10-4205-07
丁夢雨(1994-),女,浙江紹興人,北京大學城市與環(huán)境學院碩士研究生,主要從事飲用水和人體中鄰苯二甲酸類物質(zhì)的濃度調(diào)查及風險評估.
2019-03-10
科技部政府間國際科技創(chuàng)新合作項目(2016YFE0117800);水體污染控制與治理科技重大專項(2018ZX07502001)
* 責任作者, 教授, hujy@urban.pku.edu.cn