呂剛 張賢
Abstract:In order to weaken the transverse end effect and increase the electromagnetic thrust, the ladder-type secondary was proposed as a new topology of linear motors. Based on the theory of electromagnetic field, the finite element analysis method was used to establish the finite element model of linear induction motor with two types of ladder-type secondary. In the transient field, the variation of the thrust and normal force amplitude and the fluctuation of force of linear induction motors with the two types of ladder-type secondary under different slot combinations were analyzed, besides, the eddy current distribution and the transverse air gap magnetic field distribution in ladder-type secondary and flat secondary were analyzed and compared. Considering the influence of the normal force, the net thrust characteristics of linear motor with the ladder-type secondaries were calculated under suitable slot combination,in the meantime the variation curves of the electromagnetic thrust and the normal force of two types of ladder-type secondary with the velocity were obtained. Through the above finite element analysis, it provides a theoretical reference for the optimization design of linear induction motor.
Keywords:linear induction motor; ladder-type secondary; the finite element analysis ; the transverse air gap magnetic field; thrust
0 引 言
隨著直線電機輪軌車輛以及中低速磁懸浮列車等城市軌道交通工具的快速發(fā)展,其核心部件——直線感應(yīng)電機的應(yīng)用越來越廣泛,相比傳統(tǒng)輪軌機車采用的旋轉(zhuǎn)電機,直線感應(yīng)電機具有噪聲小,爬坡能力強,工程造價低等眾多優(yōu)勢[1]。應(yīng)用于低速磁浮列車的直線感應(yīng)電機不僅產(chǎn)生驅(qū)動列車的推力,還產(chǎn)生影響懸浮系統(tǒng)的法向力[2]。然而采用直線電機的城軌交通中也存在固有的缺點,因為次級感應(yīng)板在直線電機車輛系統(tǒng)中沿線路鋪設(shè),成本較大;同時整體感應(yīng)板的使用以及較大的氣隙導致直線感應(yīng)牽引電機的效率和功率因數(shù)較低。本文主要研究在控制制造成本的前提下,通過格柵型次級感應(yīng)板來提升直線感應(yīng)電機的各項電磁性能,主要考查對象為籠型格柵次級和梯型格柵次級。
文獻[3]提出“等效電磁極距”的概念考慮電機的縱向端部效應(yīng),給出不同極數(shù)時極距的修正系數(shù)。文獻[4]對次級復合感應(yīng)板的單邊直線感應(yīng)電機氣隙磁密的分析,得到了適合解耦控制用的直線感應(yīng)電機動態(tài)數(shù)學模型和推力和法向力的解析表達式。文獻[5-7]提出籠型次級單邊直線感應(yīng)電機結(jié)構(gòu),可以提高電機推力等性能。文獻[8]對5種不同的籠型次級進行了二維有限元分析,比較了次級不同鋁槽型直線感應(yīng)電機的推力、法向力特性。文獻[9]提出了一種直線電機軌道交通用柵形直線電機次級裝置,包括導磁鐵心、導電體以及安裝支架,直觀的介紹了籠型次級結(jié)構(gòu)。文獻[10-11]中提出了梯型次級結(jié)構(gòu)并對梯型次級直線電機的電磁推力進行了研究,但是在有效區(qū)域內(nèi)的橫向邊端效應(yīng)依然存在。文獻[12]對梯型雙邊直線感應(yīng)電機的特性進行了詳細的研究分析,并推導了雙邊直線電機梯型次級電阻漏感計算公式,并與平板型直線電機的性能進行了對比分析。文獻[13]用解析法計算了梯型次級直線感應(yīng)電機電磁場和推力,分析了次級導體數(shù)、導體之間間距對特性的影響,并計算了相關(guān)參數(shù),但沒有考慮次級導體之間的連接電阻和漏感。目前國內(nèi)外研究均沒有對格柵型次級結(jié)構(gòu)進行綜合研究,大多研究單一籠型或者梯型次級對電機性能的影響,缺乏對籠型和梯型次級的對比分析。
本文將主要對籠型次級和梯型次級兩類格柵型次級直線感應(yīng)電機的渦流分布、橫向氣隙磁場、電磁力的特性進行對比分析,在相同的電機初級下對相同外形尺寸的兩類格柵型次級的直線電機進行有限元仿真,主要研究格柵型次級的槽配合對電機的電磁力特性的影響,以及供電頻率的變化對單邊格柵型次級直線感應(yīng)電機的電磁力特性的影響。
1 格柵型次級直線感應(yīng)電機的結(jié)構(gòu)
如圖1所示,單邊直線感應(yīng)電機主要由初級和次級構(gòu)成,初級包括鐵心和三相繞組如圖1(a)所示,次級包括鋁板和鐵板。格柵型次級結(jié)構(gòu)如圖1(b)~圖1(c) 所示。
3 結(jié) 論
本文對格柵型次級直線感應(yīng)電機進行研究,首先介紹了格柵型次級直線感應(yīng)電機的基本結(jié)構(gòu),然后主要研究了兩類格柵型次級——籠型次級和梯型次級的產(chǎn)生的電磁力特性的差異??偨Y(jié)如下:
1)格柵型次級直線感應(yīng)電機可以規(guī)范次級渦流路徑,減少次級有效區(qū)域內(nèi)的縱向電流分量,削弱橫向邊端效應(yīng),規(guī)范橫向氣隙磁場,提高電機推力。
2)兩類格柵型次級結(jié)構(gòu)在槽配合一定的情況下,梯型次級直線牽引感應(yīng)電機產(chǎn)生的電磁力相對平穩(wěn),籠型次級結(jié)構(gòu)產(chǎn)生的電磁力波動較大;梯型次級受槽配合影響較小,而籠型次級結(jié)構(gòu)受槽配合影響較大,籠型次級推力總大于梯型次級。
3)隨著運行速度的升高,兩類格柵型次級結(jié)構(gòu)的直線感應(yīng)電機產(chǎn)生的推力、法向力隨頻率的變化趨勢相同。格柵型次級電機產(chǎn)生的凈推力高于平板型次級電機。
4)兩類格柵型次級結(jié)構(gòu)應(yīng)用在城軌交通中能夠提升地鐵性能,考慮次級制造工藝及成本,梯型次級成本較之籠型次級要低,適合長距離的軌道鋪設(shè),因此梯型次級更加適合城市軌道交通中的應(yīng)用。
參 考 文 獻:
[1] 呂剛.城市軌道交通車輛概論[M].北京:北京交通大學出版社,2011:187-189.
[2] LU Qinfen,LI Yanxin,YE Yunyue, et al. Investigation of forces in linear induction motor under different slip frequency for low-speed maglev application[J]. IEEE Transactions on Energy Conversion, 2013,28(1):145.
[3] 司紀凱,艾立旺,韓俊波,等.直線感應(yīng)電機空載速度特性分析[J].電機與控制學報,2014,18(07):37.
SI Jikai, AI Liwang, HAN Junbo, et al. Characteristic analysis of no-load speed of linear induction motor[J]. Electric Machines and Control, 2014,18(07):37.
[4] 史黎明,何晉偉,王珂,等.直線感應(yīng)電機間接磁場定向懸浮牽引聯(lián)合控制[J].電機與控制學報,2009,13(02):179.
SHI Liming, HE Jinwei, WANG Ke, et al. Combined control of levitation and propulsion for linear induction motor based on IFO method[J]. Electric Machines and Control,2009,13(02):179.
[5] OBERRETL T K.Einseiti g'er Linearmotor mit Kfi g'im Sekundrteil[J]. Archiv Für Elektrotechnik, 1974, 56(6):305.
[6] GIERAS J F. Simplified theory of double-sided linear induction motor with squirrel-cage elastic secondary[J]. IEE Proceedings,Part B:Electric Power Applications, 1983,130(6):424.
[7] KOSEKI T, SONE S, YOKOI T, et al. Investigation of secondary slot pitches of a cage-type linear induction motor[J]. IEEE Transactions on Magnetics, 1993, 29(6): 2944.
[8] LEE B J , KOO D H , CHO Y H . Investigation of linear induction motor according to secondary conductor structure[J]. IEEE Transactions on Magnetics, 2009, 45(6):2839.
[9] 葉云岳,盧琴芬,張高圣. 直線電機軌道交通用柵形直線電機次級裝置:中國, CN104348328A [P].2015-02-11.
[10] YAMAGUCHI T, ITO M, MATSUI K. A novel improvement strategy for the thrust of linear induction motor using modified ladder slits[C]//IEEE Industry Applications Society Meeting, Oct. 5, 1997, New Orleans, LA, USA.1997:373-377.
[11] YAMAGUCHI T , ITO M , MATSUI K . Improvement of thrust of linear induction motor using modified ladder slits[C]// Power Conversion Conference-Nagaoka Proceedings of the IEEE, Aug. 6, 1997, Nagaoka, Japan. 1997:563-566.
[12] 張志華,史黎明,李耀華.柵格次級雙邊直線感應(yīng)電機特性[J]. 電工技術(shù)學報, 2014, 29(3):103.
ZHANG Zhihua, SHI Liming, LI Yaohua. Characteristics of double sided linear induction motor with ladder slit type secondary[J]. Transactions of China Electrotechnical Society, 2014,29(3):103.
[13] YOON S B,JUNG I S,KIM K C,et al. Analysis and optimal design of the slit type low speed linear induction motor[C]// Electric Machines and Drives Conference Record, May 18, 1997, Milwaukee, WI, USA. 1997: TB2/8. 1-TB2/8. 3.
[14] 陳世坤.電機與設(shè)計(第二版)[M].北京:機械工業(yè)出版社,2012: 240-246.
[15] 呂剛,范瑜,馬云雙. 直線感應(yīng)電機推力和法向力的解析計算與分析[J].電機與控制學報,2010,14(03):77.
LV Gang, FAN Yu, MA Yunshuang. Characteristic analysis of linear induction traction motor for urban rail transit[J]. Electric Machines and Control, 2010,14(03):77.
(編輯:劉琳琳)