胡燕 尹明智 匡光煉 黃杰 嚴秋香
摘要 采用生物信息學的方法分析已經(jīng)在GenBank上注冊十字花科植物的DFR基因序列及相應氨基酸序列,并對其理化性質(zhì)、結(jié)構(gòu)特征、系統(tǒng)進化關(guān)系等進行預測。結(jié)果表明,十字花科植物的DFR蛋白大部分都有6個外顯子,分子質(zhì)量36 481.89~43 129.21 Da,大多數(shù)蛋白亞細胞定位于葉綠體中;除了BnaDFRA402,其他的DFR蛋白均具有酶活性部位、NADP結(jié)合位點和底物特異結(jié)合位點,這些保守區(qū)域形成了5個motifs;每個DFR蛋白均有多個磷酸化位點,以Ser為主,以Thr和Tyr磷酸化為輔;二級結(jié)構(gòu)均由α-螺旋、β-轉(zhuǎn)角、延伸鏈和無規(guī)則卷曲組成,其中α-螺旋為主要結(jié)構(gòu)元件。
關(guān)鍵詞 十字花科;花青素;DFR蛋白;生物信息學
中圖分類號 S188文獻標識碼 A
文章編號 0517-6611(2019)17-0103-05
Abstract The DFR gene sequences and corresponding amino acid sequences registered on GenBank in Cruciferae plants were analyzed by means of bioinformatics, their physical and chemical properties,structural characteristics and phylogenetic relationships were predicted. The results showed that most of DFR proteins in Cruciferae plants had six exons with molecular weight ranging from 36 481.89 Da to 43 129.21 Da.Most of the protein subcells were located in chloroplasts. Except BnaDFRA402, other DFR proteins had enzymatic activity sites, NADP binding sites and substrate specific binding sites, which formed five motifs. Each DFR protein had multiple phosphorylation sites,in which Ser was the dominant and Thr and Tyr were the minor. The secondary structures were composed of alpha helix, beta turn, extended strand and random coil, and alpha helix was the main structural element.
Key words Cruciferae;Anthocyanin;DFR protein;Bioinformatics
植物花色主要是由類黃酮、類胡蘿卜素和甜菜色素三大色素決定的。花青素是一類十分重要的類黃酮化合物,廣泛分布于各種植物中,其賦予了植物花、葉和果實各種顏色[1],它主要調(diào)控花、葉和果實生成紅色、紫色和藍色?;ㄉ蘸铣蛇^程中,二氫黃酮醇轉(zhuǎn)變成花色苷的反應非常復雜,二氫黃酮醇4-還原酶(dihydroflavonol 4-reductase,DFR)是這一轉(zhuǎn)變中起作用的第一個酶,失去DFR活性的突變體產(chǎn)生象牙色或者白色[2]。DFR是花青素生物合成途徑中的關(guān)鍵酶,是一個重要的調(diào)控點。它以二氫堪非醇(dihydrokaempferol,DHK)、二氫櫟皮黃酮(dihydroquercetin,DHQ)和二氫楊梅黃酮(dihydromyricetin,DHM)為底物,在輔因子NADPH的作用下將4位的羰基還原為羥基,產(chǎn)生相應的不穩(wěn)定無色花青苷元,然后這些無色花青苷元在花色素合酶(anthocyanidin synthase,ANS)和類黃酮3-O-糖基轉(zhuǎn)移酶(flavonoid 3-O-glucosyltransferase,3GT)的催化下分別形成矢車菊素、天竺葵素和翠雀素[3-5]。DFR基因調(diào)控機制的研究對于了解花色素苷生化合成途徑和花朵顯色的分子機制有重要的意義[6]。
目前,DFR基因在很多植物中均已被克隆,由于DFR基因具有底物特異性,利用該特點可以定向改良花的顏色[7]。自1987年Meyer等[8]將玉米DFR基因?qū)氚珷颗C01突變體使花色由白色變?yōu)榈u紅色以來,其在改造花色方面的應用取得了很多進展[9-12]。該研究采用生物信息學的方法,對十字花科植物DFR氨基酸序列的組成成分、理化特性、亞細胞定位、功能結(jié)構(gòu)域等進行預測和推斷,以期為進一步研究十字花科花色素苷生物合成的分子機制以及選育不同花色的植物資源提供基礎資料。
1 材料與方法
1.1 數(shù)據(jù)獲取
以dihydroflavonol 4reductase為信息探針搜索NCBI Gene數(shù)據(jù)庫(https://www.ncbi.nlm.nih.gov/gene/),獲得十字花科植物的基因序列及編碼的相應蛋白質(zhì)序列。
1.2 DFR蛋白質(zhì)序列分析及亞細胞定位
利用ProtParm 在線分析軟件(http://web.expasy.org/protparam)預測各蛋白質(zhì)的相對分子質(zhì)量及等電點信息[13]。使用WoLF PSORT在線分析軟件進行蛋白質(zhì)的亞細胞定位(http://www.genscript.com-/wolf-psort.html)。
技術(shù)的發(fā)展,公共數(shù)據(jù)量日益增加促使生物信息學成為后基因組時代用于預測和研究基因功能的重要方法。該研究應用生物信息學的方法對擬南芥、甘藍型油菜、甘藍、蘿卜等十字花科植物的24個DFR蛋白序列的理化性質(zhì)、結(jié)構(gòu)特征和系統(tǒng)進化關(guān)系等進行預測和分析,結(jié)果表明十字花科的DFR蛋白均具有NAD(P)結(jié)合位點和底物特異結(jié)合位點,且序列較為保守,亞細胞定位主要在葉綠體,磷酸化以Ser為主,以Thr和Tyr磷酸化為輔,但不同種屬的DFR蛋白序列具有一定差異,同一種屬的DFR蛋白并不聚在一起,表明這些DFR在功能上也是有差異的,這些分析為該類基因表達和功能研究提供了參考,也為將來研究油菜花色形成分子機制及利用基因工程技術(shù)創(chuàng)新彩色油菜種質(zhì)資源提供了基礎資料。
參考文獻
[1] 陳大志,周嘉裕,李萍.二氫黃酮醇-4-還原酶的生物信息學分析[J].生物技術(shù)通報,2010(12):206-212.
[2] 楊宏霞,曲柏宏,劉振坤,等.延邊蘋果梨PyDFR基因的克隆及表達分析[J].北方園藝,2015(4):99-103.
[3] 周琳,王雁,任磊,等.牡丹二氫黃酮醇-4-還原酶基因PsDFR1的克隆及表達分析[J].植物生理學報,2011,47(9):885-892.
[4] TANAKA Y,SASAKI N,OHMIYA A.Biosynthesis of plant pigments:Anthocyanins,betalains and carotenoids[J].Plant J,2008,54(4):733-749.
[5] AHMED N U,PARK J I,JUNG H J,et al.Characterization of dihydroflavonol 4reductase(DFR)genes and their association with cold and freezing stress in Brassica rapa[J].Gene,2014,550(1):46-55.
[6] 劉娟,馮群芳,張杰.二氫黃酮醇4-還原酶基因(DFR)與花色的修飾[J].植物生理學通訊,2005,41(6):715-719.
[7] 虎娟,安韶雅,林哲,等.馬藺DFR基因的克隆及生物信息學特征分析[J].北方園藝,2017(24):109-115.
[8] MEYER P,HEIDMANN I,F(xiàn)ORKMANN G,et al.A new petunia flower color generated by transformation of a mutant with a maize gene[J].Nature,1987,330(6149):677-678.
[9] AIDA R,KISHIMOTO S,TANAKA Y,et al.Modification of flower color in torenia(Torenia fournieri Lind.)by genetic transformation[J].Plant Sci,2000,153(1):33-42.
[10] ROSATI C,SIMONEAU P,TREUTTER D,et al.Engineering of flower color in forsythia by expression of two independentlytransformed dihydroflavonol 4reductase and anthocyanidin synthase genes of flavonoid pathway[J].Molecular breeding,2003,12(3):197-208.
[11] FUKUSAKI E I,KAWASAKI K,KAJIYAMA S,et al.Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference[J].J Biotechnol,2004,111(3):229-240.
[12] KATSUMOTO Y,F(xiàn)UKUCHIMIZUTANI M,F(xiàn)UKUI Y,et al.Engineering of the rose flavonoid biosynthetic pathway successfully generated bluehued flowers accumulating delphinidin[J].Plant Cell Physiol,2007,48(11):1589-1600.
[13] GASTEIGER E,GATTIKER A,HOOGLAND C,et al.ExPASy:The proteomics server for indepth protein knowledge and analysis[J].Nucleic Acids Res,2003,31(13):3784-3788.
[14] MARCHLERBAUER A,BO Y,HAN L,et al.CDD/SPARCLE:Functional classification of proteins via subfamily domain architectures[J].Nucleic Acids Res,2017,45:200-203.
[15] BAILEY T L,BODN M,BUSKE F A,et al.MEME SUITE:Tools for motif discovery and searching [J].Nucleic acids research,2009,37:202-208.
[16] BLOM N,GAMMELTOFT S,BRUNAK S.Sequenceand structurebased prediction of eukaryotic protein phosphorylation sites[J].Journal of molecular biology,1999,294(5):1351-1362.
[17] BLOM N,SICHERITZPONTEN T,GUPTA R,et al.Prediction of posttranslational glycolsylation and phosphorylation of proteins from the amino acid sequence[J].Proteomics,2004,4(6):1633-1649.
[18] KUMAR S,STECHER G,TAMURA K.MEGA7:Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets[J].Molecular biology and evolution,2016,33:1870-1874.