王帥 薛河 崔英浩
摘 要:準(zhǔn)確的材料力學(xué)參數(shù)是結(jié)構(gòu)完整性分析與評(píng)價(jià)的重要基礎(chǔ),冷加工硬化現(xiàn)象會(huì)造成材料力學(xué)性能參數(shù)的改變,而受冷加工硬化作用力學(xué)性能發(fā)生變化的局部區(qū)域往往是需要進(jìn)行結(jié)構(gòu)完整性分析的關(guān)鍵部位。為獲取不同冷加工硬化量下材料的力學(xué)性能,文中采用數(shù)值模擬和力學(xué)試驗(yàn)相結(jié)合的方法,以常用的金屬材料304奧氏體不銹鋼為研究對(duì)象,通過(guò)單軸拉伸試驗(yàn)獲得了10%,20%,30%,40%等4種不同冷加工條件下的工程應(yīng)力應(yīng)變數(shù)據(jù);利用線彈塑性硬化模型,結(jié)合ABAQUS軟件建立了獲取冷加工硬化后材料力學(xué)性能的數(shù)值模擬方法,分析了不同冷加工硬化量下304奧氏體不銹鋼力學(xué)性能的變化規(guī)律。結(jié)果表明,線彈塑性硬化模型在一定范圍內(nèi)能夠較好地反映304奧氏體不銹鋼受冷加工硬化作用后的力學(xué)行為,隨著冷加工硬化量的不斷增大,304奧氏體不銹鋼的屈服應(yīng)力大幅度升高,同時(shí),冷加工硬化對(duì)304奧氏體不銹鋼折減系數(shù)的影響相對(duì)較小。提出的方法可以用于重要工程結(jié)構(gòu)中關(guān)鍵部位的結(jié)構(gòu)完整性分析。
關(guān)鍵詞:材料力學(xué)性能;彈塑性有限元模擬;冷加工;304奧氏體不銹鋼;力學(xué)試驗(yàn)
中圖分類號(hào):TG 113.2 ? 文獻(xiàn)標(biāo)志碼:A
DOI:10.13800/j.cnki.xakjdxxb.2019.0416 ? 文章編號(hào):1672-9315(2019)04-0681-07
Abstract:The accurate mechanical parameters of materials are of great significance to analyze and evaluate the structural integrity analysis and evaluation.The cold work hardening phenomenon will cause the change of the material mechanical property parameters,and the local areas where the mechanical properties are changed by the cold work hardening are often the key part for the structural integrity analysis.In order to obtain the mechanical properties of materials under different cold working conditions,the numerical simulation and mechanical testing methods were comparatively used in this paper.The 304 austenitic stainless steel was used in this research,and engineering stress and strain data under 10%,20%,30% and 40% cold worked conditions were obtained through the uniaxial tensile test.Combining the linear elastoplastic hardening model and the ABAQUS software,a numerical simulation method for obtaining the mechanical properties of the cold worked materials was established.The variation of the mechanical properties of the 304 austenitic stainless steel under different cold work conditions was analyzed.The results show that the linear elastic plastic hardening model can better reflect the mechanical behavior of the material after cold working.With the increase of the amount of cold work hardening,the yield stress of 304 austenitic stainless steel increased greatly while the effect of cold work hardening on the reduction factor of 304 austenitic stainless steel is relatively small.The method proposed in this paper can be used to analyze the structural integrity of key parts of important engineering structures.
Key words:mechanical properties of materials;elastic plastic FEM simulation;cold working;304 austenitic stainless steel;mechanical experiment
0 引 言
結(jié)構(gòu)完整性分析是關(guān)鍵機(jī)械結(jié)構(gòu)安全服役的重要保證之一,而準(zhǔn)確測(cè)量實(shí)際工程結(jié)構(gòu)中的材料力學(xué)參數(shù),是分析實(shí)際工程結(jié)構(gòu)完整性的重要基礎(chǔ)依據(jù)。當(dāng)金屬材料發(fā)生變形時(shí),滑移面及晶界上產(chǎn)生大量位錯(cuò),脆性碳化物等破碎后沿流變方向分布,導(dǎo)致金屬變形抗力和硬度隨變形增加,產(chǎn)生冷加工硬化現(xiàn)象。焊接過(guò)程中的不均勻加熱和冷卻會(huì)導(dǎo)致母材中產(chǎn)生一定的冷加工硬化現(xiàn)象,管道的冷彎工藝也會(huì)使彎頭部位的材料性能發(fā)生變化。由于冷加工硬化會(huì)改變材料力學(xué)性能參數(shù),導(dǎo)致工程結(jié)構(gòu)中力學(xué)性能的不均勻,造成結(jié)構(gòu)中微裂紋的萌生、擴(kuò)展直至結(jié)構(gòu)失效[1-3]。目前冷加工硬化對(duì)于材料局部力學(xué)參數(shù)的影響難以通過(guò)實(shí)驗(yàn)手段來(lái)獲取,鑒于材料的單軸拉伸試驗(yàn)相對(duì)容易實(shí)現(xiàn)的特點(diǎn),利用單軸拉伸試驗(yàn)結(jié)合彈塑性有限元獲取不同冷加工量下的304奧氏體不銹鋼力學(xué)性能參數(shù),是一種較為簡(jiǎn)單易行的方法。
304奧氏體不銹鋼經(jīng)過(guò)冷加工后具有明顯的硬化現(xiàn)象[4-7]。20世紀(jì)60年代,Armijo等學(xué)者已經(jīng)對(duì)304奧氏體不銹鋼的冷加工硬化現(xiàn)象進(jìn)行了研究[8-10],隨著技術(shù)的不斷進(jìn)步,人們對(duì)不銹鋼冷加工硬化現(xiàn)象的研究取得了較大進(jìn)展。Ludwigson等闡述了冷加工過(guò)程中,間隙元素C和N對(duì)應(yīng)變誘發(fā)馬氏體相變的影響[11];Soussan對(duì)316L和316LN不銹鋼在變形中的單滑移和晶面滑移以及多滑移的出現(xiàn)作了研究,結(jié)果表明可以使用修正的Ludwik模型表征316L和316LN不銹鋼的加工硬化現(xiàn)象[12];王松濤等對(duì)高氮奧氏體不銹鋼與316L不銹鋼的冷變形行為展開(kāi)了研究,分析了2種鋼的冷變形方式以及形變誘導(dǎo)馬氏體相變,其研究結(jié)果表明Ludwigson模型可以對(duì)高氮不銹鋼的真應(yīng)力-真應(yīng)變曲線進(jìn)行描述,高氮不銹鋼的加工硬化指數(shù)隨著冷加工量的增加而不斷降低[13-14];宋仁伯通過(guò)修正的Ludwik模型對(duì)流變應(yīng)力數(shù)據(jù)進(jìn)行非線性擬合,獲得了316L不銹鋼的真應(yīng)力-應(yīng)變模型和加工硬化模型,其研究結(jié)果表明316L不銹鋼冷變形流變應(yīng)力分為強(qiáng)加工硬化、穩(wěn)加工硬化和弱加工硬化3個(gè)階段[15]。Ghosh等通過(guò)立體顯微鏡、光學(xué)顯微鏡與原子力顯微鏡觀察對(duì)冷加工后的奧氏體不銹鋼中存在高密度的滑移帶產(chǎn)生的腐蝕隧道進(jìn)行了研究,結(jié)果表明冷加工造成的腐蝕隧道與腐蝕環(huán)境協(xié)同作用提高了材料應(yīng)力腐蝕開(kāi)裂(SCC)的敏感性[16];侯小振等研究了冷加工對(duì)316L不銹鋼力學(xué)行為和組織的影響,分析了不同變形后力學(xué)性能及硬度的變化機(jī)制,結(jié)果表明,冷變形使材料的強(qiáng)度和硬度得到大幅度提高,但塑性有所降低[17]。韓飛通過(guò)組織分析研究了冷加工條件下304奧氏體不銹鋼的相變過(guò)程,研究結(jié)果顯示,同種冷加工方式下,變形量越大,馬氏體相變量越高[18]。林高用等選用SUS304-2B不銹鋼材料進(jìn)行了單軸拉伸試驗(yàn),試驗(yàn)結(jié)果表明該材料在冷加工之后強(qiáng)度顯著增加,而塑性降低[19]。王霞等對(duì)304不銹鋼進(jìn)行了壓縮變形實(shí)驗(yàn),得到了不同變形速率下的真應(yīng)力-應(yīng)變曲線,并對(duì)變形前后試樣的金相圖進(jìn)行了分析,結(jié)果表明冷變形使晶粒內(nèi)部產(chǎn)生亞晶界,并進(jìn)一步發(fā)展為晶界,使晶界明顯增多且晶粒趨于均勻化,細(xì)化,存在細(xì)晶強(qiáng)化作用[20]。許淳淳在不同溫度下對(duì)AISI304不銹鋼進(jìn)行不同方式、不同程度冷加工,用鐵素體測(cè)量?jī)x測(cè)定馬氏體相變量,結(jié)果表明冷加工形變會(huì)誘發(fā)奧氏體組織向馬氏體組織轉(zhuǎn)變,隨著冷加工形變的加強(qiáng),馬氏體相變?cè)黾覽21]。劉偉等研究了應(yīng)變速率對(duì)奧氏體不銹鋼應(yīng)變誘發(fā)馬氏體轉(zhuǎn)變和力學(xué)行為的影響,結(jié)果表明冷加工后奧氏體不銹鋼組織主要是奧氏體和大量增殖發(fā)生滑移的位錯(cuò)和機(jī)械孿晶[22-23]。
目前,奧氏體不銹鋼冷加工硬化方面的研究主要集中于冷加工變形對(duì)材料微觀組織轉(zhuǎn)變以及材料力學(xué)性能的影響方面,在不同冷加工量下材料具體性能參數(shù)的獲取方面,研究相對(duì)較少。文中利用微機(jī)控制電液伺服拉伸試驗(yàn)機(jī)以及ABAQUS有限元分析軟件,以304奧氏體不銹鋼為研究對(duì)象,通過(guò)單軸拉伸后卸載的方式使材料發(fā)生塑性變形,從而實(shí)現(xiàn)材料的冷加工硬化,并基于線彈塑性硬化模型分析了不同冷加工量下304奧氏體不銹鋼的力學(xué)性能參數(shù)變化情況,通過(guò)材料單軸拉伸試驗(yàn)結(jié)合彈塑性有限元方法推算出材料的力學(xué)性能參數(shù)。
1 試驗(yàn)過(guò)程
1.1 試驗(yàn)材料及方法
試驗(yàn)采用山西太鋼不銹鋼股份有限公司提供的304奧氏體不銹鋼薄板,執(zhí)行標(biāo)準(zhǔn)GB/T24511-2009,材料交貨前經(jīng)退火、酸洗及精整處理,試樣厚度為2 mm,其化學(xué)成分見(jiàn)表1.采用線切割加工如圖1所示的板狀拉伸試樣。
1.2 304不銹鋼拉伸試樣單軸拉伸試驗(yàn)
為保證單軸拉伸試驗(yàn)的數(shù)據(jù)可靠性,選用同一批次的4枚板狀拉伸試樣,利用PLD 50KN型微機(jī)控制電液伺服拉伸試驗(yàn)機(jī)上將試樣分別拉伸2,4,6,8 mm(預(yù)變形量10%,20%,30%,40%)后卸載,獲得具有不同冷加工量的試樣,再將預(yù)制后的試樣重新拉伸直至試樣斷裂,以比較冷加工硬化后材料的力學(xué)性能。板狀試樣的拉伸過(guò)程如圖2所示。
2.2 有限元模型
以板狀拉伸試樣為研究對(duì)象,根據(jù)板狀試樣的幾何尺寸,繪制幾何模型,分別在試樣上設(shè)置固定孔與加載孔,以保證加載條件與物理實(shí)驗(yàn)一致,模擬計(jì)算時(shí)對(duì)左側(cè)的固定孔進(jìn)行全約束,通過(guò)右側(cè)加載孔的水平右移模擬試樣的拉伸過(guò)程,對(duì)試樣施加5 mm的水平位移量保證材料達(dá)到屈服狀態(tài)。
試樣標(biāo)距段網(wǎng)格采用六面體結(jié)構(gòu)化網(wǎng)格,其余部分采用六面體掃略網(wǎng)格,由于試樣標(biāo)距段位置處會(huì)出現(xiàn)較大的應(yīng)力梯度,所以對(duì)標(biāo)距段進(jìn)行適當(dāng)?shù)木W(wǎng)格細(xì)化,以便獲得準(zhǔn)確的拉伸數(shù)據(jù),網(wǎng)格過(guò)渡良好,無(wú)畸變。單元類型選擇八節(jié)點(diǎn)三維實(shí)體單元(C3D8),單元數(shù)為2 988.有限元網(wǎng)格模型如圖4所示。
3.1 單軸拉伸試驗(yàn)結(jié)果
通過(guò)拉伸試驗(yàn)機(jī)可獲得不同冷加工量下304奧氏體不銹鋼拉伸試樣工程應(yīng)力應(yīng)變隨時(shí)間變化的關(guān)系曲線,如圖5所示。
3.2 數(shù)值模擬結(jié)果
為獲取不同冷加工量下304奧氏體不銹鋼的力學(xué)性能參數(shù),選取線彈性塑性硬化關(guān)系作為材料真實(shí)應(yīng)力-應(yīng)變曲線簡(jiǎn)化模型,利用ABAQUS有限元軟件對(duì)單軸拉伸試驗(yàn)進(jìn)行數(shù)值模擬,并通過(guò)在模型中不斷調(diào)節(jié)屈服應(yīng)力σ0,折減系數(shù)δ 2個(gè)參數(shù)值來(lái)控制數(shù)值模擬結(jié)果,利用數(shù)值模擬獲取試樣標(biāo)距段真實(shí)應(yīng)力-應(yīng)變曲線后,與單軸拉伸試驗(yàn)得到的真實(shí)應(yīng)力-應(yīng)變曲線進(jìn)行比對(duì),當(dāng)拉伸試樣與數(shù)值模擬結(jié)果較為吻合時(shí),認(rèn)為數(shù)值模擬過(guò)程中所輸入的屈服應(yīng)力σ0,折減系數(shù)δ等參數(shù)值近似等于該冷加工條件下304奧氏體不銹鋼的力學(xué)性能參數(shù)。
當(dāng)數(shù)值模擬的真實(shí)應(yīng)力-應(yīng)變曲線與拉伸試驗(yàn)真實(shí)應(yīng)力-應(yīng)變曲線較為吻合時(shí)得到如圖7所示的對(duì)比圖。最終獲取的不同冷加工量下304奧氏體不銹鋼材料的力學(xué)性能參數(shù)見(jiàn)表3.
從表3可知,隨著冷加工量的不斷增加,材料的屈服應(yīng)力σ0不斷增加。同時(shí),折減系數(shù)δ的變化幅值不大,平均值=0.010 8.
4 結(jié) 論
1)線彈塑性硬化模型在一定范圍內(nèi)能夠較好的反映冷加工作用后304奧氏體不銹鋼的力學(xué)行為。
2)當(dāng)冷變形量小于40%時(shí),304奧氏體不銹鋼的屈服應(yīng)力隨著冷加工量的增大而較大幅度的升高,同時(shí),冷加工硬化對(duì)304奧氏體不銹鋼的折減系數(shù)影響不大。
3)當(dāng)冷變形量小于40%時(shí),304奧氏體不銹鋼冷加工量與材料屈服應(yīng)力的關(guān)系符合線性關(guān)系。
參考文獻(xiàn)(References):
[1] Guo S,Han E H,Wang H,et al.Life prediction for stress corrosion behavior of 316L stainless steel elbow of nuclear power plant[J].Acta Metallurgica Sinica,2017,53(4):455-464.
[2]李永強(qiáng),薛 河.核電關(guān)鍵結(jié)構(gòu)材料應(yīng)力腐蝕裂紋裂尖微觀力學(xué)特性分析[J].西安科技大學(xué)學(xué)報(bào), 2016,36(3):380-384.
LI Yong qiang,XUE He.Micro mechanical state at SCC tip in nuclear key structure materials[J].Journal of Xi’an University of Science and Technology,2016,36(3):380-384.
[3]楊宏亮,薛 河,倪陳強(qiáng).冷加工對(duì)316L不銹鋼裂尖力學(xué)特性的影響[J].西安科技大學(xué)學(xué)報(bào),2018,38(3):484-489.
YANG Hong linag,XUE He,NI Chen qiang.Effect of cold working on mechanical properties at crack tip of 316L stainless steel[J].Journal of Xi’an University of Science and Technology,2018,38(3):484-489.
[4]周翠蘭,劉紅梅,白晉鋼,等.冷軋變形量對(duì)304不銹鋼力學(xué)性能的影響[J].鋼鐵,2012,47(10):70-75.
ZHOU Cui lan,LIU Hong mei,BAI Jin gang,et al.Effects of the cold rolled reduction on the mechanical properties of 304 austenitic stainless steel sheets[J].Iron and Steel,2012,47(10):70-75.
[5]Fernando P A,Lesley P R,Rangel R P.Annealing of cold worked austenitic stainless steels[J].The Iron and Steel Institute of Japan International,2003,43(2):135-143.
[6]Sharma S,Kumar B R,Kashyap B P,et al.Effect of stored strain energy heterogeneity on microstructure evolution of 90% cold rolled AISI 304L stainless steel during interrupted annealing treatment[J].Materials Characterization,2018,140(6):72-85.
[7]薛 河,崔英浩,趙凌燕,等.壓水堆一回路環(huán)境中304不銹鋼的蠕變特性分析[J].西安科技大學(xué)學(xué)報(bào),2018,38(1):156-161.
XUE He,CUI Ying hao,ZHAO Ling yan,et al.Creep characteristics analysis of 304 stainless steel in pressured water reactor primary circuit[J].Journal of Xi’an University of Science and Technology,2018,38(1):156-161.
[8]Armijo J S,Low J R,Wolff U E.Radiation effects on the mechanical properties and microstructure of type-304 stainless steel[J].Nuclear Science & Engineering,1965,1(5):462-477.
[9]Kusaka K,Ikushima K.279 Effect of alloying elements on the magnetic permeability of type 304 stainless steel after cold working[J].Tetsu to Hagane,1966,52(10):1660-1662.
[10]Maekawa T,Kagawa M,Nakajima N.Effect of cold working on stress corrosion cracking of stainless steel[J].Materials Transactions Jim,1964,5(4):219-224.
[11]Ludwigson D C,Berger J A.Plastic behaviour of metastable austenitic stainless steels[J].The Journal of the Iron and Steel Institute,1969,207(1):63-69.
[12]Soussan A,Degallaix S,Magnin T.Work hardening behaviour of nitrogenalloyed austenitic stainless steels[J].Materials Science & Engineering A,1991,142(2):169-176.
[13]王松濤.高氮奧氏體不銹鋼的力學(xué)行為及氮的作用機(jī)理[D].沈陽(yáng):中國(guó)科學(xué)院金屬研究所,2008.
WANG Song tao.Mechanical behaviors and mechanisms of nitrogen effect of high nitrogen austenitic stainless steels[D].Shenyang:Institute of metal research,Chinese Academy of Sciences,2008.
[14]Wang S,Yang K,Shan Y,et al.Study of cold deformation behaviors of a high nitrogen austenitic stainless steel and 316l stainless steel[J].Acta Metallurgica Sinica,2007,43(2):171-176.
[15]宋仁伯,項(xiàng)建英,侯東坡.316L不銹鋼冷變形加工硬化機(jī)制及組織特征[J].北京科技大學(xué)學(xué)報(bào),2013,35(1):55-60.
SONG Ren bo,XIANG Jian ying,HOU Dong po.Microstructure characteristics and work hardening mechanism of 316L austenitic stainless steel during cold deformation[J].Journal of University of Science & Technology Beijing,2013,35(1):55-60.
[16]Ghosh S,Kain V.Effect of surface machining and cold working on the ambient temperature chloride stress corrosion cracking susceptibility of AISI 304L stainless steel[J].Materials Science & Engineering A,2010,527(3):679-683.
[17]侯小振,鄭文杰,宋志剛,等.冷加工對(duì)316L不銹鋼力學(xué)行為和組織的影響[J].鋼鐵研究學(xué)報(bào),2013,25(7):53-57.
HOU Xiao zhen,ZHENG Wen jie,SONG Zhi gang,et al.Effect of cold work on structure and mechanical behavior of 316L stainless steel[J].Journal of Iron & Steel Research,2013,25(7):53-57.
[18]韓 飛,林高用,彭小敏,等.SUS304-2B不銹鋼薄板退火工藝研究[J].熱加工工藝,2004(4):25-27.
HAN Fei,LIN Gao yong,PENG Xiao min,et al.Study on annealing processing of SUS304-2B austenitic stainless steel[J].Hot Working Technology,2004(4):25-27.
[19]林高用,韓 飛,余均武,等.SUS304-2B不銹鋼薄板加工硬化及退火軟化的試驗(yàn)研究[J].金屬熱處理,2004,29(3):8-11.
LING Gao yong,HAN Fei,YU Jun wu,et al.Work hardening and annealing softening of SUS304-2B austenitic stainless steel[J].Heat Treatment of Metals,2004,29(3):8-11.
[20]王 霞,張寶紅,程 眉,等.304不銹鋼冷變形形變強(qiáng)化的研究[J].熱加工工藝,2014(19):19-21.
WANG Xia,ZHANG Bao hong,CHENG Mei,et al.Study on cold deformation strengthening of 304 stainless steel[J].Hot Working Technology,2014(19):19-21.
[21]許淳淳,張新生,胡 鋼.AISI304不銹鋼在冷加工過(guò)程中的微觀組織變化[J].北京化工大學(xué)學(xué)報(bào),2002,29(6):27-31.
XU Chun chun,ZHANG Xin sheng,HU Gang.Microstructure change of AISI304 stainless steel in the course of cold working[J].Journal of Beijing University of Chemical Technology,2002,29(6):27-31.
[22]Liu W,Lin Z B,Wang X,et al.Effect of strain rate on strain induced α’ martensite transformation and mechanical response of austenitic stainless steels[J].Acta Metallurgica Sinica,2009,45(3):285-291.
[23]劉 偉,何 俊,周立濤,等.冷軋奧氏體不銹鋼的應(yīng)變硬化行為及其焊接性能[J].鐵道學(xué)報(bào),2007,29(5):117-121.
LIU Wei,HE Jun,ZHOU Li tao,et al.Work hardening behaviors of austenitic cold rolling stainless steels and their resistance spot welding properties[J].Journal of the China Railway Society,2007,29(5):117-121.
[24]Dowling N E.Mechanical behavior of materials:engineeering methods for deformation,fracture,and fatigue[M].London:Pearson,2012.
[25]Choung J,Nam W,Lee D,et al.Failure strain formulation via average stress triaxiality of an EH36 high strength steel[J].Ocean Engineering,2014,91:218-226.