郝秦霞 韓曉冰
摘 要:針對城市供暖消耗嚴重,且現(xiàn)有供暖監(jiān)測系統(tǒng)多標準并存、協(xié)議轉(zhuǎn)換、異構(gòu)網(wǎng)絡(luò)接入等問題,設(shè)計了一種基于嵌入式、無線網(wǎng)絡(luò)通信、供暖監(jiān)控技術(shù)以及網(wǎng)絡(luò)層路由協(xié)議優(yōu)化算法的遠程供暖溫控系統(tǒng)。系統(tǒng)首先設(shè)計硬件結(jié)構(gòu),采用終端節(jié)點、協(xié)調(diào)器節(jié)點分別控制,以MSP430F149控制器與CC2530開發(fā)板為基礎(chǔ),增強信號強度,實現(xiàn)智能閥位實時、遠程監(jiān)測與控制;其次對系統(tǒng)信號采樣、數(shù)據(jù)處理程序進行了流程優(yōu)化設(shè)計,完成系統(tǒng)的軟件規(guī)劃;最后系統(tǒng)以動態(tài)規(guī)劃算法為基礎(chǔ),在ZigBee無線傳感網(wǎng)中設(shè)計一種基于最小時延的低功耗路由算法,達到優(yōu)化網(wǎng)絡(luò)層路由協(xié)議目的。最終實現(xiàn)系統(tǒng)供暖溫度實時采集、處理、存儲與上傳等遠程控制功能,達到了節(jié)能減排,減少熱量損耗的目的。
關(guān)鍵詞:嵌入式;ZigBee;路由算法;控制電路;智能供暖
中圖分類號:TP 313 ? 文獻標志碼:A
DOI:10.13800/j.cnki.xakjdxxb.2019.0418 ? 文章編號:1672-9315(2019)04-0693-08
Abstract:Energy consumption for urban heating is becoming ever more serious, and there exist such problems as coexistence of multiple standards, protocol conversion and heterogeneous network access in the existing heating monitoring system.A remote heating temperature control system is designed based on embedded technology, wireless network communication technology, heating monitoring technology and network layer routing protocol optimization algorithm .Firstly, hardware structure has been designed in all of system,controlled by EndDevice node and Coordinator respectively.Development board of CC2530 and controller of MSP430F149 are adopted to achieve intelligent valve Shifting control, enhance signal transmission distance and capacity of wall crossing ability:Secondly, in order to achieve low energy consumption and minimum delay of data transmission in wireless sensor networks (WSN), a low power consumption routing algorithm is proposed based on minimum delay to achieve the goal of optimizing the network layer routing protocol.Finally, we design the process of data collection and forwarding.The system realizes remote control of heating temperature, including real time collection, processing and uploading, by which end users can monitor heating data in real time and intelligently by mobile terminals, Web browsers, etc.The goals of energy saving,emission reduction and heat loss reduction have been achieved.
Key words:embedded system;ZigBee;routing algorithm;control circuit;intelligent heating
0 引 言
隨著人們生活質(zhì)量的提高,人均建筑面積占有率的增加,如何利用新技術(shù)降低供暖而產(chǎn)生的耗能,達到降耗增效,是城市集中供暖的所要面臨的重要問題。目前已有的樓宇供暖傳感監(jiān)測點分布相對分散,有線監(jiān)測系統(tǒng)的布線、維護復(fù)雜,成本高。因而實現(xiàn)智能化、網(wǎng)絡(luò)化的管理便成了至關(guān)重要的問題。
嵌入式系統(tǒng)與無線網(wǎng)絡(luò)技術(shù)的結(jié)合是當(dāng)前智能控制領(lǐng)域發(fā)展的趨勢,這種結(jié)合底層監(jiān)測設(shè)備與無線網(wǎng)絡(luò)連接的應(yīng)用在城市供暖監(jiān)測監(jiān)控中已有一些研究,而如何使城市供暖監(jiān)測監(jiān)控運行最優(yōu)狀態(tài)、耗能最低,以及智能化程度和社會效益最優(yōu)成為急需解決的問題,目前的研究中孫治貴、黎貞發(fā)等嘗試利用物聯(lián)網(wǎng)技術(shù)集成開發(fā)實時監(jiān)測預(yù)警系統(tǒng)[1-2];HARIHARAIV G,MUHAMMET K等提出建模達到供熱控制策略[3-5];CHOU H,AIVTOIIVE C T等提出混合能源熱力系統(tǒng)供熱[6-7];MATTIAS V,文波等采用各類算法以求得負荷預(yù)算[8-10]。但這些分層管理技術(shù)本身存在著協(xié)議不統(tǒng)一、硬件不通用、軟件不兼容、信息不共享等問題,影響了信息控制技術(shù)應(yīng)用整體效益的實現(xiàn),也是嵌入式系統(tǒng)與無線網(wǎng)絡(luò)技術(shù)結(jié)合急需解決的開發(fā)問題。
針對以上問題研究提出了一種基于嵌入式設(shè)備的遠程智能供暖溫控系統(tǒng)。遠程智能供暖溫控系統(tǒng)從硬件設(shè)計、流程設(shè)計、算法優(yōu)化等方面對系統(tǒng)進行了完整的綜合設(shè)計,并對網(wǎng)絡(luò)的組網(wǎng)方式、控制電路硬件設(shè)計與軟件流程、算法均提出優(yōu)化與改進。在硬件系統(tǒng)開發(fā)中,利用ZigBee技術(shù),完成終端節(jié)點控制和協(xié)調(diào)器節(jié)點控制的設(shè)計。利用MSP430F149控制器與CC2530開發(fā)板為核心資源,設(shè)計、構(gòu)建系統(tǒng)硬件電路,閥位控制電路,并增加帶有PA信號的放大器,增強了信號傳輸距離、穿墻能力和控制性能;在軟件設(shè)計中,針對嵌入式網(wǎng)絡(luò)終端節(jié)點與路由節(jié)點間的路由協(xié)議,提出一種基于最小時延的低功耗路由算法,在最小時延路由指標函數(shù)中尋找低功耗路徑。最終實現(xiàn)供暖監(jiān)控數(shù)據(jù)與嵌入式設(shè)備之間的實時動態(tài)交互,實現(xiàn)供暖溫度實時采集、處理、存儲與上傳等遠程控制。用戶可以通過移動終端APP、Web瀏覽器等對熱能數(shù)據(jù)、供暖設(shè)備進行實時遠程監(jiān)控,為遠程供暖溫控系統(tǒng)提供了智能、有效的解決方法,達到了節(jié)能減排、減少熱量損耗的目的。
1 嵌入式遠程供暖溫控系統(tǒng)總體設(shè)計
嵌入式遠程供暖溫控系統(tǒng)的主要功能包括:實時遠程溫度控制,查詢溫度監(jiān)測數(shù)據(jù)、管路流量監(jiān)測數(shù)據(jù),實現(xiàn)智能電磁閥開度控制、用戶供暖流量調(diào)節(jié),傳感器節(jié)點的數(shù)據(jù)存儲在供暖Web服務(wù)器中心。數(shù)據(jù)收集和轉(zhuǎn)發(fā)驅(qū)動程序流程為
首先,制指令經(jīng)由用戶終端設(shè)備發(fā)送至網(wǎng)絡(luò)協(xié)調(diào)器,路由節(jié)點接收命令并轉(zhuǎn)發(fā)至ZigBee終端節(jié)點,控制器經(jīng)采樣電路最終接收的終端節(jié)點指令為目標信號;數(shù)據(jù)采集模塊通過傳感器對各用戶進、回水溫度以及溫度檢測等數(shù)據(jù)進行收集、處理并打包發(fā)送給ZigBee終端節(jié)點,終端節(jié)點通過串口SPI與控制器相連[11];采樣電路收集位移反饋單元的閥位反饋信號,作為真實信號[12]??刂破鲗⒄鎸嵭盘柦?jīng)過修正后與目標信號作差得到誤差信號,根據(jù)電磁閥控制算法生成PWM電控信號,經(jīng)過氣動執(zhí)行單元控制閥芯和閥體,實現(xiàn)流量的精準調(diào)節(jié),完成對室內(nèi)溫度進行控制的目的。
然后,系統(tǒng)采用低功耗中斷請求方式,終端設(shè)備通過ZigBee網(wǎng)絡(luò)實時查看控制器對傳感器監(jiān)測的溫度、流量等的真實信號數(shù)據(jù),作為判斷依據(jù)。
2 嵌入式的遠程供暖溫控系統(tǒng)硬件設(shè)計
2.1 系統(tǒng)硬件結(jié)構(gòu)
網(wǎng)絡(luò)的終端設(shè)計為數(shù)據(jù)采集模塊、控制單元模塊以及無線通信模塊[13]??刂茊卧K是ZigBee終端節(jié)點的核心部件,為了實現(xiàn)低功耗、高性能的設(shè)計目的,控制單元模塊核心單元選用美國TI公司16位RISC結(jié)構(gòu)的超低功耗混合信號處理器MSP430F149單片機[14],其晶振頻率最高時到達25 MHz。MSP430F149單片機處理能力強、運算速度快、超低功耗、片內(nèi)資源豐富、支持ISP、支持超小型封裝的特點。數(shù)據(jù)采集模塊選用系統(tǒng)ZigBee CC2530[15],CC2530是ZigBee應(yīng)用的一個有效解決方案,結(jié)合RF收發(fā)器、8051CPU的優(yōu)良性能,以低成本構(gòu)建網(wǎng)絡(luò)節(jié)點[16],利用各節(jié)點收集各傳感器實時數(shù)據(jù),完成實時通信。
數(shù)據(jù)傳輸模塊包括協(xié)調(diào)器與終端節(jié)點,協(xié)調(diào)器用來收、發(fā)數(shù)據(jù)和指令[17],且外加RFX2401C,以較低的總成本建立較強的無線傳感網(wǎng)絡(luò)[18]。
MSP430F1490單片機與CC2530無線射頻終端節(jié)點模塊使用主從SPI模式相連,MSP430F1490為主模式,CC2530為從模式??刂茊卧K由MSP430F1490、電氣轉(zhuǎn)化單元、氣動執(zhí)行單元、位移反饋單元和電磁閥組成[19]。以電磁閥為主體的電氣轉(zhuǎn)化單元將單片機的電控轉(zhuǎn)換為氣控,控制閥芯和閥體的運動狀態(tài),執(zhí)行對電閥門控制器的實時控制。鍵盤控制和LCD顯示通過串口USART相連與MSP430F149.嵌入式遠程供暖溫控系統(tǒng)硬件架構(gòu)如圖1所示。
2.2 CC2530+RFX2401連接原理電路
ZigBee采取2.4G的頻率,傳輸能力,但強度受限,節(jié)點之間通訊不穩(wěn)定,因而協(xié)調(diào)器節(jié)點選用帶有PA信號增強處理的CC2530+RFX2401C無線射頻模塊,增大網(wǎng)絡(luò)覆蓋范圍,節(jié)省芯片引腳資源。協(xié)議棧為TI公司的ZStack-CC2530-251a[20],CC2530+ RFX2401連接電路在系統(tǒng)中的構(gòu)架原理如圖2所示。CC2530 P1.1連接RFX2401C TXEN;CC2530 P1.4連接RFX2401C RXEN,RXEN為高電平時,TXEN決定數(shù)據(jù)的收發(fā)。通過Packet Sniffer抓取ZigBee數(shù)據(jù)包,并檢測信號強度。在同樣的距離測信號強度,對比增加PA前后信號幅度,得出增加PA后信號強度增大24 dB,通信距離平均增加約60 m.
2.3 MSP430F149的控制電路
MSP430F149單片機作為中央處理單元,對溫度設(shè)定的目標信號、與位移反饋單元反饋的真實信號進行運算。ZigBee CC2530收集的溫度設(shè)定目標信號,啟用HalUARTWrite[21]函數(shù),將MSP430 RXD與CC2530 P0.3 TXD相連,MSP430 TXD與CC2530 P0.2 RXD相連,P0.3用于數(shù)據(jù)發(fā)送,P0.2用于數(shù)據(jù)接收。為了保證硬件電路設(shè)計的通用性,位移反饋單元的真實信號采用單級性電流測量法,通過MCP601芯片實現(xiàn)采樣,信號經(jīng)過單片機內(nèi)部A/D轉(zhuǎn)化器轉(zhuǎn)變成MSP430F149可接收的數(shù)字電壓信號,從而實現(xiàn)雙路信號的數(shù)據(jù)處理。A/D轉(zhuǎn)換采用模擬輸入通道MSP430F149的P60/A0.控制電路如圖3所示。
3 遠程監(jiān)控系統(tǒng)的軟件設(shè)計
軟件設(shè)計上,系統(tǒng)集成開發(fā)環(huán)境選用具有健壯性、持續(xù)性和穩(wěn)定性的IAR Embedded Workbenchfor 8.10[22],并嵌有ZigBee通信模塊。設(shè)計主要包括信號采樣、數(shù)據(jù)處理程序、電磁閥控制算法、終端web監(jiān)控程序的設(shè)計。
3.1 系統(tǒng)流程設(shè)計
協(xié)調(diào)器節(jié)點是整個系統(tǒng)的關(guān)鍵,通電后協(xié)調(diào)器首先執(zhí)行初始化操作,組建ZigBee無線網(wǎng)絡(luò),為網(wǎng)絡(luò)分配一個PANID標識,在組網(wǎng)成功后,接收終端節(jié)點的入網(wǎng)請求,并為其分配網(wǎng)絡(luò)地址、接收數(shù)據(jù)、控制命令等。
終端節(jié)點執(zhí)行初始化操作后檢測ZigBee網(wǎng)絡(luò)是否存在,若存在則申請加入??紤]協(xié)議棧和應(yīng)用程序的實現(xiàn),系統(tǒng)采用低功耗中斷工作模式完成數(shù)據(jù)的采樣處理,并將監(jiān)測數(shù)據(jù)發(fā)送至協(xié)調(diào)器節(jié)點,當(dāng)中斷產(chǎn)生時,啟動A/D,間隔20 ms[23].按鍵中斷完成模式選擇、參數(shù)配置等操作,LCD實時顯示溫度控制數(shù)據(jù)、電磁閥狀態(tài)等參數(shù)。通過主從SPI模式,數(shù)據(jù)由CC2530傳輸至MSP430F149單片機,MSP430F149內(nèi)部ADC對真實數(shù)據(jù)、目標數(shù)據(jù)通過控制算法程序進行處理,求出偏差后利用開度控制算法執(zhí)行模糊PID輸出PWM波驅(qū)動電磁閥,提高溫度控制精度,完成供暖監(jiān)控數(shù)據(jù)與嵌入式設(shè)備之間的實時動態(tài)交互。嵌入式遠程智能供暖溫控系統(tǒng)軟件流程如圖4所示。
3.2 ZigBee網(wǎng)絡(luò)的路由算法的優(yōu)化
為了滿足嵌入式遠程供暖溫控系統(tǒng)的實時性、低功耗需求,則須使ZigBee傳感器網(wǎng)絡(luò)中數(shù)據(jù)傳輸能耗最低、時延最小。在比較自適應(yīng)匯聚路由算法[24](如:DD,LEACH,TEEN,LEGA,MEGA等),最短路徑算法(如:Dijkstra算法、PBM,矩陣算法、貪婪算法、Floyd算法等)后,得出動態(tài)規(guī)劃算法在無線網(wǎng)絡(luò)中具有較高的時效性,在此基礎(chǔ)上提出一種基于最小時延的低功耗路由算法(LDLECR)。
從系統(tǒng)硬件結(jié)構(gòu)圖可看出,協(xié)調(diào)器節(jié)點在整個無線網(wǎng)絡(luò)中只有唯一節(jié)點,路由器節(jié)點與協(xié)調(diào)器直接相連,終端節(jié)點與路由器節(jié)點相連,終端節(jié)點分為傳感器和控制2部分,負責(zé)收集、執(zhí)行數(shù)據(jù),是實現(xiàn)無限局域網(wǎng)內(nèi)低功耗、低時延關(guān)鍵部分。
考慮最小時延的低功耗路由相當(dāng)于最小跳數(shù)和最小能耗路由的結(jié)合,算法步驟
3.2.1 狀態(tài)模型
狀態(tài)模型中將A設(shè)為信號發(fā)出的某個終端節(jié)點,節(jié)點F為路由器節(jié)點。監(jiān)控數(shù)據(jù)由A發(fā)往F.把A到F的每一跳看作一個階段,一個終端節(jié)點只能成為某一階段的狀態(tài)變量,對于處于n個不同階段的節(jié)點分別增加相應(yīng)的(n-1)個虛擬節(jié)點,這樣可使每個終端節(jié)點都可以被明確地劃分在唯一的階段中,同一階段的不同節(jié)點之間不存在通路。狀態(tài)模型如圖5所示。
從圖6可以看出,引入動態(tài)規(guī)劃的LDLECR算法在網(wǎng)絡(luò)傳輸路徑上進行了優(yōu)化,節(jié)點的能耗與PBM,DD相比具有較大幅度的減小,與PBM,DD相比,節(jié)點能耗分別減小了62%和37%.從圖7可以看出,LDLECR算法的時延最小,LDLEC算法是從最小跳數(shù)的路徑集合中選擇合適的節(jié)點作為傳輸路徑,因而具有更小時延。與PBM,DD相比,時延分別減小了70%和44%.仿真結(jié)果表明,LDLECR算法在節(jié)點能耗、網(wǎng)絡(luò)時延方面較優(yōu)于PBM,DD路由算法。
5 嵌入式遠程智能供暖溫控系統(tǒng)功能分析
系統(tǒng)設(shè)計采用2種模式調(diào)控:①溫度調(diào)控:用戶根據(jù)所需自行調(diào)節(jié)溫度;②情景調(diào)控:根據(jù)場景的不同設(shè)置相應(yīng)的控制命令,如睡眠模式、早起模式、離開模式等。客戶端以Web,APP等方式對系統(tǒng)進行設(shè)定,實現(xiàn)查詢實時、歷史數(shù)據(jù)并發(fā)送控制命令,從而達到對供暖設(shè)備的監(jiān)控。Web實時監(jiān)測畫面如圖9所示。
APP監(jiān)控查詢供暖狀態(tài)如圖10所示。圖9顯示W(wǎng)eb實時監(jiān)控用戶室內(nèi)、外溫度,進、回水溫度,以及電磁閥開度狀態(tài),圖10顯示APP查詢供暖數(shù)據(jù)。APP查詢2019年1月的供暖流量數(shù)據(jù),通過熱流量分析圖可看出1月14日、21日、27日,室外溫度分別1,0.5,1 ℃,但流量均值為0;1月3日與1月13日室外溫度相近,但流量均值相差較大;8日、29日室外溫度均值相差7.5 ℃,但流量均值相同。達到了遠程、實時按需取量,按量計費,節(jié)能減耗的目的。
6 結(jié) 論
1)系統(tǒng)中數(shù)據(jù)收集和轉(zhuǎn)發(fā)流程采用低功耗中斷請求方式,控制器將真實信號經(jīng)過修正后與目標信號作差得到誤差信號,經(jīng)過電磁閥控制算法生成PWM電控信號,通過氣動執(zhí)行單元控制閥芯和閥體,實現(xiàn)流量的精準調(diào)節(jié)。
2)利用HalUARTWrite函數(shù)將MSP430 RXD與CC2530 P 0.3 TXD相連,MSP430 TXD與CC2530 P 0.2 RXD相連,位移反饋單元的真實信號采用單級性電流測量法,最終轉(zhuǎn)化為數(shù)字電壓信號,實現(xiàn)雙路信號的數(shù)據(jù)處理。
3)引入動態(tài)規(guī)劃的LDLECR算法在網(wǎng)絡(luò)傳輸路徑上進行了優(yōu)化,從最小跳數(shù)的路徑集合中選擇合適的節(jié)點作為傳輸路徑。通過NS 2.35仿真環(huán)境的對比,結(jié)果表明LDLECR在能耗、網(wǎng)絡(luò)時延方面取得了較優(yōu)結(jié)果。
參考文獻(References):
[1] 孫治貴,王元勝,張 祿,等.北方設(shè)施農(nóng)業(yè)氣象災(zāi)害監(jiān)測預(yù)警智能服務(wù)系統(tǒng)設(shè)計與實現(xiàn)[J].農(nóng)業(yè)工程學(xué)報,2018,34(23):149-156.
SUN Zhi gui,WANG Yuan sheng,ZHANG Lu,et al.Design and realization of intelligent service system for monitoring and warning of meteorological disasters in facility agriculture in North China[J].Transactions of the Chinese Society of Agricultural Engineering,2018,34(23):149-156.
[2]黎貞發(fā),王 鐵,宮志宏,等.基于物聯(lián)網(wǎng)的日光溫室低溫災(zāi)害監(jiān)測預(yù)警技術(shù)及應(yīng)用[J].農(nóng)業(yè)工程學(xué)報,2013,29(4):229-236.
LI Zhen fa,WANG Tie,GONG Zhi hong,et al.Forewarning technology and application for monitoring low temperature disaster in solar greenhouses based on Internet of Things[J].Transactions of the Chinese Society of Agricultural Engineering,2013,29(4):229-236.
[3]Muhammet K.Determination of energy saving and optimum insulation thicknesses of the heating piping systems for different insulation materials[J].Energy and Buildings,2014(69):278-284.
[4]Hariharaiv G,Dragoljub K.Economic optimization of combined cycle district heating systems[J].Sustainable Energy Technologies and Assessments,2014(7):91-100.
[5]隋修武,余保付,葛 輝,等.基于Kingview的熱網(wǎng)遠程智能監(jiān)控策略研究[J].應(yīng)用科學(xué)學(xué)報,2016,34(3):352-360.
SUI Xiu wu,YU Bao fu,GE Hui,et al.Remote intelligent monitoring strategy of heat supply network based on Kingview[J].Journal of Applied Sciences Electronics and Information Engineering,2016,34(3):352-360.
[6]Aivtoiive C T.Conception et optimisation de systemes nergetiques hybrides pour communautes durables[D].Montreal:Ecole Polytechnique,2012.
[7]Chou H.Optimization interior area thermal resistance model toanalyze the heat transfer characteristics of the insulation pipe with arbitrary shape[J].Energy Conversion and Management,2007(44):2915-2939.
[8]Mattias V,Jan D.A method for the simulation and optimization of district heating systems with meshed Networks[J].Energy Conversion and Management,2014(89):555-567.
[9]Hariharaiv G,Dragoljub K.Economic optimization of combined cycle district heating systems[J].Sustainable Energy Technologies and Assessments,2014(7):91-100.
[10]文 波,孟令軍,張曉春,等.基于增量式PID算法的水溫自動控制器設(shè)計[J].儀表技術(shù)與傳感器,2015(12):113-116.
WEN Bo,MENG Ling jun,ZHANG Xiao chun,et al.Design of water temperature automatic controller based on incremental PID algorithm[J].Instrument Technique and Sensor,2015(12):113-116.
[11]郭少敏,石軍鋒.基于Android和ZigBee的嵌入式Web服務(wù)器設(shè)計[J].現(xiàn)代電子技術(shù),2018,41(8):100-103.
GUO Shao min,SHI Jun feng.Design of embedded Web server based on Android and ZigBee[J].Modern Electronics Technique,2018,41(8):100-103.
[12]劉 靜.基于ZigBee無線傳感器網(wǎng)絡(luò)的遠程數(shù)據(jù)監(jiān)測的設(shè)計[J].現(xiàn)代電子技術(shù),2016,39(14):131-138.
LIU Jing.Design of remote data monitoring based on ZigBee wireless sensor network[J].Modern Electronics Technique,2016,39(14):131-138.
[13]李美花,閆衛(wèi)平,王 穎,等.微傳感器陣列多通道數(shù)據(jù)采集和處理系統(tǒng)[J].電子測量與儀器學(xué)報,2016,30(2):311-317.
LI Mei hua,YAN Wei ping,WANG Ying,et al.Multi channel data acquisition and processing system based on micro sensor array[J].Journal of Electronic Measurement and Instrumentation,2016,30(2):311-317.
[14]陳樹成,楊志勇,王建佳.基于MSP430和CC2530的溫室大棚數(shù)據(jù)采集系統(tǒng)設(shè)計[J].電子設(shè)計工程,2014,22(5):168-174.
CHEN Shu cheng,YANG Zhi yong,WANG Jian jia.Design of greenhouse data acquisition system based on MSP430 and CC2530[J].Electronic Design Engineering,2014,22(5):168-174.
[15]馬賽飛,馬尚昌,劉鈞.基于CC2530F256的智能變送器模塊的研制[J].儀表技術(shù)與傳感器,2016(8):32-35.
MA Sai fei,MA Shang chang,LIU Jun.Design of smart transmitter module based on CC2530F256[J].Instrument Technique and Sensor,2016(8):32-35.
[16]GAO Jun xiang,DU Hai qing.Design of greenhouse surveillance system based on embedded Web server technology[J].Procedia engineering,2011,23(11):374-379.
[17]Wanc L,Dou H,Louz,et al.Encapsuled nanoreactors(Au@SnO2):a new sensing material for chemical sensors[J].Nanoscale,2013(5):2686-2691.
[18]Goiffon V,Estribcau M,Marcclot,et al.Radiation effects in pinned photodiode CMOS image sensors:Pixel performance degradation due to total ionizing dose[J].IEEE Transactions on Nuclear Science,2012,59(6):2878-2887.
[19]朱天宇,董全林,劉 日.基于MSP430的智能閥門定位器研制[J].現(xiàn)代電子技術(shù),2018,41(12):1-5.
ZHU Tian yu,DONG Quan lin,LIU Ri.Research on intelligent valve positioner based on MSP430[J].Modern Electronics Technique,2018,41(12):1-5.
[20]周宏偉,徐 實,王忠奕,等.眾核處理器訪存鏈路接口的FPGA驗證[J].國防科技大學(xué)學(xué)報,2018,40(3):176-181.
ZHOU Hong wei,XU Shi,WANC Zhong yi,et al.FPGA verification for memory link interface of many core processor[J].Journal of National University of Defense Technology,2018,40(3):176-181.
[21]趙樹恩,張沙沙.基于ZigBee技術(shù)的交通信號燈辨識系統(tǒng)設(shè)計[J].計算機測量與控制,2014,22(12):4067-4068.
ZHAO Shu en,ZHANG Sha sha.Design of traffic lights identification system based on ZigBee[J].Computer Measurement & Control,2014,22(12):4067-4068.
[22] Li M H,Yan W P,Zhu H CH,et al.Synthesis and gas sensing properties of biomorphic SnO2 derived from loofah sponge and eggshell embrane[J].Journal of Materials Science:Mater Electron,2015(26):9561-9570.
[23]Chain K,Kuo W C.A new digital signature scheme based on chaotic maps[J].Nonlinear Dynamics,2013,74(4):1003-1012.
[24]朱尚聰,呂紅芳,吉書瑤.基于能量均衡的ZigBee路由優(yōu)化算法[J].微電子學(xué)與計算機,2018,35(4):140-143.
ZHU Shang cong,LV Hong fang,JI Shu yao.An improved ZigBee routing algorithm based on enegy balance[J].Microelectronics & Computer,2018,35(4):140-143.
[25]Taehong Kim,Seong Hoon Kim,Jinyoung Yang,et al.Neighbor table based shortcut tree routing in ZigBee wireless networks[J].IEEE Transactions on Paralleland Distributed Systems,2014,25(3):706-716.