田成 袁岸龍
[摘要] 微生物群由共生細(xì)菌和其他宿主上皮屏障中存在的微生物組成。微生物群從局部維持穩(wěn)態(tài)到系統(tǒng)地調(diào)節(jié)機(jī)體代謝、造血、炎癥、免疫等生理功能都有著重要作用。微生物群還參與上皮屏障和無菌組織中癌癥的發(fā)生、發(fā)展和傳播。胃腸道微生物不僅參與了癌癥的發(fā)生,而且參與了癌癥預(yù)防和化療的效果。現(xiàn)就胃腸道微生態(tài)與腫瘤及其藥物化療的相關(guān)研究作一綜述。
[關(guān)鍵詞] 微生物群;胃癌;結(jié)腸癌;化療;效果
[中圖分類號] R573.6? ? ? ? ? [文獻(xiàn)標(biāo)識碼] A? ? ? ? ? [文章編號] 1673-7210(2019)06(a)-0037-05
Research progress of gastrointestinal flora and tumor chemotherapy drugs
TIAN Cheng1? ?YUAN Anlong2
1.School of Medicine, Wuhan University of Science and Technology, Hubei Province, Wuhan? ?430065, China; 2.Department of Gastroenterology, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Hubei Province, Xiaogan? ?432000, China
[Abstract] The microbiome consists of symbiotic bacteria and other microorganisms present in host epithelial barriers. Microflora plays an important role in maintaining local homeostasis and systematically regulating physiological functions such as metabolism, hematopoiesis, inflammation and immunity. Microbiota are also involved in the occurrence, development and spread of cancer in epithelial barriers and sterile tissues. Gastrointestinal microbes are involved not only in cancer, but also in cancer prevention and chemotherapy. This article reviews the relationship between gastrointestinal microecology and tumor and chemotherapy.
[Key words] Microbiota; Stomach neoplasms; Colonic neoplasms; Chemotherapy; Effects
人體定居著約1013個微生物,它們的數(shù)目接近人體全部細(xì)胞數(shù),被稱為“被遺忘的器官”[1]。腸道菌群、免疫細(xì)胞和黏膜屏障之間的不斷交流維持著腸上皮的穩(wěn)態(tài)平衡,結(jié)構(gòu)完整且機(jī)能良好的腸上皮維系著身體的健康。微生物群從局部維持穩(wěn)態(tài)到系統(tǒng)地調(diào)節(jié)機(jī)體代謝、造血、炎癥、免疫等生理功能均有著重要作用[2-3]。有研究[4-5]已證實(shí)藥物與腸道微生物之間可相互影響,藥物可改變腸道微環(huán)境、微生物的代謝及影響腸道菌群的生長,而腸道微生物群也影響著藥物的效果反應(yīng)。本綜述就胃腸微生物群對胃腸腫瘤及化療相關(guān)反應(yīng)及可能機(jī)制研究進(jìn)展作出概述。
1 腸道菌群與結(jié)直腸癌
結(jié)腸直腸癌(CRC)是排名第三的最常被診斷的惡性腫瘤,也是癌癥相關(guān)死亡率的第三大原因[6]。結(jié)直腸癌通常是由多種癌變基因突變從而使健康上皮細(xì)胞向腺瘤和癌變的發(fā)展,隨著宏基因組學(xué)技術(shù)的進(jìn)步,發(fā)現(xiàn)腸道微生物群的穩(wěn)態(tài)失調(diào)可以促進(jìn)慢性炎癥和致癌代謝物的產(chǎn)生,進(jìn)一步可導(dǎo)致腫瘤發(fā)生[7]。研究[8]證實(shí),結(jié)腸癌人群與健康人群腸道微生物構(gòu)成存在差異,表現(xiàn)出明顯菌群穩(wěn)態(tài)失衡。證明了核梭桿菌(Fn)、大腸埃希菌(E.coli)和脆弱類桿菌(Bacteroides fragilis)在CRC的發(fā)生發(fā)展中有著重要作用。
1.1 核梭桿菌與結(jié)直腸癌
Flanagan等[9]研究顯示Fn不僅與高級不典型增生、結(jié)腸癌有關(guān),還與患者預(yù)后相關(guān)。同樣有研究[10]表明Fn的豐富度與結(jié)腸癌的生存率相關(guān),并且在惡性(CRC56%)中的檢出率更高,Yang等[11]通過用Fn感染CRC細(xì)胞,發(fā)現(xiàn)其增加了腫瘤的增殖速率、侵襲活性以及在小鼠中誘導(dǎo)異種移植腫瘤的可能性。這種細(xì)菌促進(jìn)癌變的機(jī)制之一是通過與毒力因子FadA黏附素結(jié)合來激活E-鈣黏蛋白/β-連環(huán)蛋白信號,從而增加致癌基因和炎癥基因的表達(dá)[11]。此外Gur等[12]研究發(fā)現(xiàn)Fn的Fap2蛋白的受體與人類T-細(xì)胞免疫球蛋白和ITIM結(jié)構(gòu)域的結(jié)合促進(jìn)腫瘤逃避自然殺傷(NK)細(xì)胞相關(guān)的細(xì)胞毒性,引起腫瘤細(xì)胞的免疫逃避機(jī)制。Yu等[13]發(fā)現(xiàn)Fn靶向TLR4和MYD88先天免疫信號和特定microRNAs,經(jīng)此激活自噬途徑,改變結(jié)直腸癌化療反應(yīng),同時證實(shí)Fn能整合Toll-like受體、microRNAs和自噬分子網(wǎng)絡(luò),從臨床、生物學(xué)和機(jī)理學(xué)等方面控制結(jié)直腸癌耐藥。
1.2 大腸埃希菌與結(jié)直腸癌
除了Fn以外,大腸埃希菌也被認(rèn)為在結(jié)直腸腫瘤發(fā)生的過程中起重要作用。大腸埃希菌是腸道共生菌,通過E.coli的毒力因子可將其分為4大類,即A、B1、B2和D型,其中B2和D則認(rèn)為致病菌株,其具有黏附/侵入并產(chǎn)生毒素的特性[14]。大腸埃希菌菌株B2型可產(chǎn)生cyclomodulins毒素,能夠產(chǎn)生DNA損傷以及干擾宿主細(xì)胞細(xì)胞周期。此外,致病性大腸埃希菌菌株還可以感染腫瘤浸潤巨噬細(xì)胞、抵抗NK細(xì)胞以及產(chǎn)生活性氧(ROS)誘導(dǎo)COX-2表達(dá)和炎癥,其中ROS可破壞結(jié)腸細(xì)胞DNA并使得染色體不穩(wěn)定,這可能導(dǎo)致結(jié)直腸腫瘤的發(fā)生[14-15]。Arthur等[16]通過PCR和基因測序發(fā)現(xiàn)大腸埃希菌的致病性與基因編碼聚酮合酶(pks)島的變化相關(guān)。pks陽性大腸埃希菌所培養(yǎng)的動物上皮細(xì)胞表現(xiàn)出短暫的DNA損傷應(yīng)答,其DNA損傷修復(fù)和基因突變頻率增加。盡管確切的病理機(jī)制尚不清楚,Cougnoux[17]通過異種移植模型發(fā)現(xiàn),產(chǎn)生基因毒性物質(zhì)Colibactin的大腸埃希菌增強(qiáng)了異種移植的腫瘤生長,這研究表明編碼基因毒素(如colibactin)的pks島可增強(qiáng)腫瘤生長。
1.3 脆弱類桿菌與結(jié)直腸癌
與大腸埃希菌相似,脆弱擬桿菌毒素同樣通過促進(jìn)炎癥來促進(jìn)癌發(fā)生[14]。產(chǎn)腸毒素類脆弱類桿菌(ETBF)是重要的毒素生產(chǎn)細(xì)菌,可能通過調(diào)節(jié)黏膜免疫反應(yīng)和誘導(dǎo)上皮細(xì)胞改變來促進(jìn)結(jié)直腸癌變[18]。ETBF可通過產(chǎn)生脆弱類桿菌毒素,其已被證明可以觸發(fā)細(xì)胞增殖并在體外激活c-Myc的表達(dá),以及加速精胺氧化酶催化作用,由此產(chǎn)生ROS和DNA損傷,增加炎癥和腫瘤發(fā)生[19]。此外BFT可激活Wnt/bcatenin通路以及NF-κB通路,從而導(dǎo)致了大量的白細(xì)胞介素-17(IL-17)的產(chǎn)生,而IL-17就會和它的受體IL-17R結(jié)合,此過程進(jìn)一步激活了NF-κB通路NF-κB通路、STAT3,進(jìn)而促使CXCL1等產(chǎn)生;CXCL1等產(chǎn)生之后就會招募大量的骨髓來源的抑制性細(xì)胞(myeloid-derived suppressor cells,MDSCs)細(xì)胞,其可在腫瘤中起免疫抑制,促進(jìn)腫瘤發(fā)生、侵襲轉(zhuǎn)移和血管生成等作用[20-21]。
1.4 腸道菌群其代謝產(chǎn)物與結(jié)直腸癌
腸道菌群其代謝產(chǎn)物與結(jié)直腸腫瘤的發(fā)生發(fā)展有關(guān),如硫酸鹽、膽汁酸、氧化物等,這些代謝物具有結(jié)合特定腸細(xì)胞表面受體的趨勢,并隨后影響細(xì)胞內(nèi)信號轉(zhuǎn)導(dǎo)。硫酸鹽還原菌產(chǎn)生的硫化氫對腸上皮細(xì)胞有毒性,并且對結(jié)腸細(xì)胞有著顯著的DNA損傷。Huang等[22]發(fā)現(xiàn)腸道中的細(xì)菌產(chǎn)生次級膽汁酸,與宿主初級膽汁酸比較,其結(jié)合并活化宿主核受體的程度更高,次級膽汁酸具有遺傳毒性,可抑制p53抑癌基因的表達(dá)而促進(jìn)結(jié)腸腫瘤發(fā)生。大腸埃希菌脆弱類桿菌等細(xì)菌可產(chǎn)生活性氧物質(zhì),并且通過誘導(dǎo)氧化性DNA損傷增加結(jié)腸癌發(fā)生風(fēng)險[23]。
2 胃內(nèi)菌群
胃癌的發(fā)展是一個多因素的過程,其中遺傳和環(huán)境因素,如年齡、性別、飲食、飲酒和吸煙都可能發(fā)揮作用。傳統(tǒng)上認(rèn)為人類胃內(nèi)環(huán)境因胃酸和其他抗微生物因素的存在并不適合微生物的生長繁殖。隨著胃內(nèi)幽門螺桿菌(H. pylori,Hp)和其他螺桿菌屬的發(fā)現(xiàn),以及隨后的高通量測序等技術(shù)發(fā)展,證實(shí)胃內(nèi)也像腸道一樣,存在特殊的微生態(tài)環(huán)境。胃內(nèi)微生物大約107個,Bik等[24]是首先證實(shí)胃內(nèi)菌群多樣性,主要為厚壁菌門、變形菌門和放線菌門,并表明Hp的存在并不影響胃部的分布,同樣,馬來西亞的一項研究[25]顯示Hp不影響胃癌患者的胃內(nèi)微生物群的多樣性。然而Maldonado-Contreras等[26]研究得到相反的結(jié)果,發(fā)現(xiàn)Hp對于微生物多樣性的影響有著重要作用,在Hp陽性和陰性受試者中檢測到相似的菌門,主要是變形桿菌、厚壁菌、放線菌,但在Hp陽性患者中發(fā)現(xiàn)變形菌門豐度的相對增加以及放線菌、擬桿菌和厚壁菌的豐度減少。關(guān)于Hp對胃腸道內(nèi)微生態(tài)的影響目前仍存在爭議,結(jié)果不一致的原因是可能是不同的微生物分析測序方法、樣本量、Hp檢測結(jié)果的假陽性或假陽性、以及一些環(huán)境因素(如飲食、生活方式)等可能的因素導(dǎo)致研究結(jié)果的差異。Hp一直是胃內(nèi)研究最多的細(xì)菌,但最新的研究[27]表明Hp并不意味著胃中唯一占優(yōu)勢的物種,而且這些非螺桿菌屬物種在胃病中的作用成為新的熱點(diǎn)課題。
2.1 Hp與胃癌
Hp被認(rèn)為是Ⅰ類致癌因素,可刺激免疫應(yīng)答和炎癥,調(diào)節(jié)許多信號傳導(dǎo)途徑并誘導(dǎo)胃酸缺乏,上皮萎縮和發(fā)育不良。目前研究[28]認(rèn)為癌蛋白細(xì)胞毒素相關(guān)基因A(CagA)和空泡毒素A(VacA)是Hp的關(guān)鍵致病因子。這些蛋白質(zhì)可以激活致癌信號轉(zhuǎn)導(dǎo)途徑,例如通過有絲分裂的Ras-細(xì)胞外信號調(diào)節(jié)激酶(ERK)和磷脂酰肌醇3-激酶(PI3K)途徑以改變細(xì)胞增殖、細(xì)胞周期和細(xì)胞死亡。此外,Hp誘導(dǎo)胃上皮細(xì)胞產(chǎn)生ROS,激活這些細(xì)胞內(nèi)的炎癥信號通路,ROS產(chǎn)生增加可導(dǎo)致DNA鏈斷裂,引起基因組不穩(wěn)定和進(jìn)而導(dǎo)致癌變。Hp感染還可引起E-鈣黏蛋白CpG島和腫瘤抑制基因[包括編碼三葉因子2(TFF2)和叉頭框轉(zhuǎn)錄調(diào)節(jié)因子(FOXD3)]的甲基化,導(dǎo)致顯著增加胃腺癌的風(fēng)險[29]。Hp是目前發(fā)現(xiàn)的胃微生態(tài)菌群中與胃癌發(fā)生密切相關(guān)的病原體,Hp毒力因子一直被認(rèn)為是胃癌發(fā)生的重要因素之一。
2.2 胃內(nèi)其他微生物與胃癌
Eun等[30]證實(shí)胃癌、腸上皮化生和慢性胃炎患者的胃微生物群中存在差異,并提示胃共生菌群可能在Hp的致癌性中起一定作用。Lofgren等[31]在胃癌的轉(zhuǎn)基因胰島素-胃泌素(INS-GAS)小鼠模型中,發(fā)現(xiàn)用復(fù)合微生物群定殖的不含Hp的小鼠比無菌小鼠更快地發(fā)展成胃癌,而抗生素延緩微生物群定殖小鼠的胃癌形成進(jìn)展,研究表明共生細(xì)菌可導(dǎo)致胃癌發(fā)生。Wang等[32]研究發(fā)現(xiàn)在胃癌和慢性胃炎之間的微生物群有著相似數(shù)量的細(xì)菌種類,而通過主坐標(biāo)分析(PCoA,一種探測和可視化數(shù)據(jù)的相似性或不相似性的方法)發(fā)現(xiàn)胃癌與慢性胃炎為相反的分散模式,表明胃癌中存在多樣化的微生物群落[32]。在這項研究中,發(fā)現(xiàn)胃癌菌群中富含5種細(xì)菌屬,即乳酸桿菌、未培養(yǎng)的絲毛菌科、埃希菌-志賀菌、硝化螺旋菌和肺炎克雷伯菌[32]。有學(xué)者[33]認(rèn)為胃內(nèi)細(xì)菌可以通過產(chǎn)生硝酸鹽/亞硝酸鹽及其代謝物參與致癌作用,硝酸鹽/亞硝酸鹽代謝中形成的N-亞硝基化合物是重要的致癌物質(zhì),胃內(nèi)細(xì)菌如芽胞梭菌、韋榮球菌、嗜血桿菌、葡萄球菌或奈瑟菌等細(xì)菌可能調(diào)節(jié)炎性反應(yīng)或產(chǎn)生N-亞硝基化合物,從而增加癌癥的風(fēng)險。關(guān)于胃癌與微生態(tài)之間的發(fā)病具體機(jī)制,仍需要進(jìn)一步的研究。
[5]? Gopalakrishnan V,Spencer CN,Nezi L,et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients [J]. Science,2018,359(6371):97-103.
[6]? Siegel RL,Miller KD,Jemal A,et al. Cancer statistics [J]. CA Cancer J Clin,2017,67:7-30
[7]? Sun J,Kato I. Gut microbiota,inflammation and colorectal cancer [J]. Genes Dis,2016,3(2):130-143.
[8]? Viljoen KS,Dakshinamurthy A,Goldberg P,et al. Quantitative profiling of colorectal cancer-associated bacteria reveals associations between fusobacterium spp,enterotoxigenic Bacteroides fragilis(ETBF)and clinicopathological features of colorectal cancer [J]. PLoS One,2015,10(3):119-162.
[9]? Flanagan L,Schmid J,Ebert M,et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development,colorectal cancer and disease outcome [J]. Eur J Clin Microbiol Infect Dis,2014,33(8):1381-1390.
[10]? Mima K,Nishihara R,Qian ZR,et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis [J]. Gut,2016,65(12):1973-1980.
[11]? Yang Y,Weng W,Peng J,et al. Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor-kappaB,and Up-regulating Expression of MicroRNA-21 [J]. Gastroenterology,2017,152(4):851-866.
[12]? Gur C,Ibrahim Y,Isaacson B,et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack [J]. Immunity,2015,42(2):344-355.
[13]? Yu T,Guo F,Yu Y,et al. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy [J]. Cell,2017,170(3):548-563.
[14]? Raisch J,Buc E,Bonnet M,et al. Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation [J]. World J Gastroenterol,2014,20(21):6560-6572.
[15]? Raisch J,Rolhion N,Dubois A,et al. Intracellular colon cancer-associated Escherichia coli promote protumoral activities of human macrophages by inducing sustained COX-2 expression [J]. Lab Invest,2015,95(3):296-307.
[16]? Arthur JC,Gharaibeh RZ,Muhlbauer M,et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer [J]. Nat Commun,2014,5:47-72.
[17]? Cougnoux A,Dalmasso G,Martinez R,et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype [J]. Gut,2014,63(12):1932-1942.
[18]? Belkaid Y,Hand TW. Role of the microbiota in immunity and inflammation [J]. Cell,2014,157(1):121-141.
[19]? Goodwin AC,Destefano Shields CE,Wu S,et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis [J]. Proc Natl Acad Sci USA,2011,108(37):15354-15359.
[20]? Chung L,Thiele OE,Geis AL,et al. Bacteroides fragilis Toxin Coordinates a Pro-carcinogenic Inflammatory Cascade via Targeting of Colonic Epithelial Cells [J]. Cell Host Microbe,2018,23(2):203-214.
[21]? Viljoen KS,Dakshinamurthy A,Goldberg P,et al. Quantitative profiling of colorectal cancer-associated bacteria reveals associations between Fusobacterium spp,enterotoxigenic Bacteroides fragilis(ETBF)and clinicopathological features of colorectal cancer [J]. PLoS One,2015,10(3):119-162.
[22]? Huang JY,Lee SM,Mazmanian SK. The human commensal Bacteroides fragilis binds intestinal mucin [J]. Anaerobe,2011,17(4):137-141.
[23]? Yu YN,F(xiàn)ang JY. Gut Microbiota and Colorectal Cancer [J]. Gastrointest Tumors,2015,2(1):26-32.
[24]? Bik EM,Eckburg PB,Gill SR,et al. Molecular analysis of the bacterial microbiota in the human stomach [J]. Proc Natl Acad Sci USA,2006,103(3):732-737.
[25]? Khosravi Y,Dieye Y,Poh BH,et al. Culturable bacterial microbiota of the stomach of Helicobacter pylori positive and negative gastric disease patients [J]. ScientificWorldJournal,2014,2014:610421.
[26]? Maldonado-Contreras A,Goldfarb KC,Godoy-Vitorino F,et al. Structure of the human gastric bacterial community in relation to Helicobacter pylori status [J]. ISME J,2011, 5(4):574-579.
[27]? Walker MM,Talley NJ. Review article:bacteria and pathogenesis of disease in the upper gastrointestinal tract--beyond the era of Helicobacter pylori [J]. Aliment Pharmacol Ther,2014,39(8):767-779.
[28]? Khatoon J,Rai RP,Prasad KN. Role of Helicobacter pylori in gastric cancer:Updates [J]. World J Gastrointest Oncol,2016,8(2):147-158.
[29]? Sitaraman R. Helicobacter pylori DNA methyltransferases and the epigenetic field effect in cancerization [J]. Front Microbiol,2014,5:115-126.
[30]? Eun CS,Kim BK,Han DS,et al. Differences in gastric mucosal microbiota profiling in patients with chronic gastritis,intestinal metaplasia,and gastric cancer using pyrosequencing methods [J]. Helicobacter,2014,19(6):407-416.
[31]? Lofgren JL,Whary MT,Ge Z,et al. Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia [J]. Gastroenterology,2011,140(1):210-220.
[32]? Wang L,Zhou J,Xin Y,et al. Bacterial overgrowth and diversification of microbiota in gastric cancer [J]. Eur J Gastroenterol Hepatol,2016,28:261-266.
[33]? Winter SE,Winter MG,Xavier MN,et al. Host-derived nitrate boosts growth of E.coli in the inflamed gut [J]. Science,2013,339(6120):708-711.
[34]? Wu H,Esteve E,Tremaroli V,et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes,contributing to the therapeutic effects of the drug [J]. Nat Med,2017,23(7):850-858.
[35]? Alexander JL,Wilson ID,Teare J,et al. Gut microbiota modulation of chemotherapy efficacy and toxicity [J]. Nat Rev Gastroenterol Hepatol,2017,14(6):356-365.
[36]? Haiser HJ,Turnbaugh PJ. Developing a metagenomic view of xenobiotic metabolism [J]. Pharmacol Res,2013,69(1):21-31.
[37]? Lehouritis P,Cummins J,Stanton M,et al. Local bacteria affect the efficacy of chemotherapeutic drugs [J]. Sci Rep,2015,5:145-154.
[38]? Selwyn FP,Cui JY,Klaassen CD. RNA-Seq Quantification of Hepatic Drug Processing Genes in Germ-Free Mice [J]. Drug Metab Dispos,2015,43(10):1572-1580.
[39]? Daillere R,Vetizou M,Waldschmitt N,et al. Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects [J]. Immunity,2016,45(4):931-943.
[40]? Viaud S,Saccheri F,Mignot G,et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide [J]. Science,2013,342(6161):971-976.
[41]? Iida N,Dzutsev A,Stewart CA,et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment [J]. Science,2013,342(6161):967-970.
[42]? Stein A,Voigt W,Jordan K. Chemotherapy-induced diarrhea:pathophysiology,frequency and guideline-based management [J]. Ther Adv Med Oncol,2010,2(1):51-63.
[43] Wallace BD,Wang H,Lane KT,et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme [J]. Science,2010,330(6005):831-835.
[44]? Cario E. Toll-like receptors in the pathogenesis of chemotherapy-induced gastrointestinal toxicity [J]. Curr Opin Support Palliat Care,2016,10(2):157-164.
[45]? Nigro G,Rossi R,Commere PH,et al. The cytosolic bacterial peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut epithelial regeneration [J]. Cell Host Microbe,2014,15(6):792-798.
[46]? Chitapanarux I,Chitapanarux T,Traisathit P,et al. Randomized controlled trial of live lactobacillus acidophilus plus bifidobacterium bifidum in prophylaxis of diarrhea during radiotherapy in cervical cancer patients [J]. Radiat Oncol,2010,5:31-38.
[47]? Wang Y,Luo X,Pan H,et al. Pharmacological inhibition of NADPH oxidase protects against cisplatin induced nephrotoxicity in mice by two step mechanism [J]. Food Chem Toxicol,2015,83:251-260.
(收稿日期:2018-11-01? 本文編輯:封? ?華)