亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        秸稈坯塊成型工藝參數及保水性試驗研究

        2019-08-19 02:44:36宮元娟劉德軍白雪衛(wèi)
        農業(yè)工程學報 2019年12期
        關鍵詞:壓縮力混料砂土

        宮元娟,鄧 楠,劉德軍,白雪衛(wèi),邱 碩

        秸稈坯塊成型工藝參數及保水性試驗研究

        宮元娟,鄧 楠,劉德軍,白雪衛(wèi),邱 碩※

        (沈陽農業(yè)大學工程學院,沈陽 110161)

        為探究玉米秸稈、豆粕和聚丙烯酸鈉混合制備農用保水劑的生產工藝,以最大壓縮力、混料水分、壓縮速度、豆粕質量分數和聚丙烯酸鈉質量分數為試驗因素,以成型坯塊的松弛密度為評價指標進行二次回歸旋轉組合試驗,優(yōu)化工藝參數組合并試驗驗證,在松弛密度的最優(yōu)范圍內分析其對坯塊保水性能的影響。試驗結果表明:坯塊的松弛密度為460~540 kg/m3的條件下,得出最大壓縮力為16~20.59 kN,混料水分為8.84%~12.96%,壓縮速度為95.56~155.51 mm/min,豆粕質量分數為16.08%~24.02%,聚丙烯酸鈉質量分數為4.91%~7.15%的最佳成型工藝參數;坯塊的保水效果隨松弛密度的增大而逐漸增強,有砂土時釋水量隨時間變化符合對數模型,無砂土時則符合線性模型,擬合方程的回歸系數均大于0.9,成型坯塊保水性的分析可靠,可為復合型農用保水劑的應用提供參考。

        秸稈;優(yōu)化;模型;坯塊;成型工藝;松弛密度;保水性

        0 引 言

        遼西北干旱與半干旱地區(qū)土壤沙化嚴重、養(yǎng)分含量少,耕地利用率低,不利于農作物生長[1],亟需改良沙化土壤保水性和養(yǎng)分結構的新技術[2-3]。傳統農用保水劑可分為樹脂類、淀粉類和纖維素類3種,改善土壤水分狀況的效果良好[4-5]。其中秸稈為原料的纖維素類保水劑,既可顯著抑制水分流失,又兼具原料來源廣、制備成本低、降解性好的優(yōu)勢,已成為近年研究的熱點[6-8]。

        秸稈是重要的生物質資源,但質地分散、能量密度低、儲存與運輸困難等特點制約其規(guī)?;?、高值化利用[9],因此壓縮成型勢在必行[10-15]。生物質成型產品的物理特性受混料狀況(如組成與配比、水分等)、成型工藝(如溫度、壓力等)和粘結劑種類等因素影響[16-20]。李偉振等[21]將玉米秸稈、木屑與木鈉熱壓成型,發(fā)現溫度和混料水分、混料水分和壓力對松弛密度起顯著交互作用。Muazu等[22]將淀粉作為粘結劑加入稻殼和玉米棒混料中,可強迫顆粒膨脹,成型磚的松弛密度降低。Jackson等[23]將盲草、柳枝稷、玉米秸稈與小麥秸稈壓縮成型,發(fā)現混料水分對成型顆粒耐久性影響較大。冷壓成型技術不破壞生物質內部結構,已用于生產高密度、低能耗的成型顆粒[24]。秸稈類纖維素保水劑的開發(fā),需實現干旱環(huán)境下對沙化土壤釋水與釋肥的雙重功效,秸稈單原料成型已無法滿足需求,基于外源添加物的秸稈坯塊研究仍需深入。本文在玉米秸稈中添加豆粕和聚丙烯酸鈉作為營養(yǎng)物質與粘結劑,研究冷壓方式下三者混合成型的最優(yōu)工藝參數組合;模擬遼西北地區(qū)的土壤狀況與氣候條件,分析成型坯塊松弛密度對其保水性能的影響規(guī)律,為豐富秸稈資源的利用途徑、旱地農業(yè)區(qū)保水技術的發(fā)展提供參考依據。

        1 材料與方法

        1.1 試驗材料與設備

        玉米秸稈采自沈陽農業(yè)大學試驗基地,2018年10月收獲后粉碎至粒度小于4 mm,自然晾干后平均水分小于4%。黃色豆粕粉中蛋白質的質量分數為40%~48%,可提高作物品質,熟化土壤、殺滅或抑制土壤有害菌,實現均衡供肥[25-26]。粘結劑選用高吸水性的聚丙烯酸鈉,白色固體粉末,可提高制品穩(wěn)定性和耐老化性。三者按一定比例混配,定量噴壺均勻噴水調制不同水分的樣本后,恒溫箱內21 ℃密封儲存24 h。參考文獻[27]選擇砂土粒徑小于2 mm,細度模數為3.7~1.6。

        壓縮設備選用濟南試金集團有限公司出品的WDW-200電子式萬能試驗機,最大壓縮力為200 kN,壓縮速度范圍為1~500 mm/min,成型通用模具內徑為50 mm,高度為80 mm,底板可承受的最大壓力為25 kN,試驗設備示意圖見圖1。測定混料水分設備采用北京市永光明醫(yī)療儀器有限公司的101型電熱鼓風干燥箱,以及深圳市冠亞電子科技有限公司的SFY-60遠紅外快速水分測定儀。

        1.試驗機開關 2.機架 3.橫梁 4.夾頭 5.頂桿 6.套筒 7.底座

        1.Test equipment switch 2.Frame 3.Beam 4.Chuck 5.Ejector pin 6.Sleeve 7.Base

        注:圖中5、6、7構成壓縮模具。

        Note: 5,6 and 7 constitute compression mold in this picture.

        圖1 壓縮試驗設備示意圖

        Fig.1 Schematic diagram of compression test equipment

        1.2 試驗設計

        1.2.1 坯塊成型

        將混料裝入壓縮模具,設定試驗機的最大壓縮力及壓縮速度,壓成坯塊后從模具中擠出,室溫保存,待松弛48 h后測量其質量、直徑及高度、以松弛密度[28]作為成型效果的評價指標,可體現成型坯塊松弛后的穩(wěn)定性,計算公式如式(1)所示。

        式中RDS為坯塊的松弛密度(kg/m3);,,分別為坯塊的質量(kg)、直徑(m)和高度(m)。

        以最大壓縮力、混料水分、壓縮速度、豆粕質量分數和聚丙烯酸鈉質量分數為試驗因素,采用五元二次回歸正交旋轉組合設計,根據單因素試驗結果,將各因素按其水平及取值范圍進行編碼,因素水平編碼表見表1。

        表1 因素水平編碼表

        注:坯塊中包含玉米秸稈、豆粕和聚丙烯酸鈉。

        Note: The block includes corn straw, soybean meal and sodium polyacrylate.

        1.2.2 坯塊保水性能試驗

        保水性微觀上可表征物質內親水分子與水分子之間的相互作用強度,宏觀上可反映物料在外界環(huán)境(如溫度、介質)變化時保持水分的能力[29]。為探究成型坯塊在干旱區(qū)的保水效果,通過干燥箱模擬干旱環(huán)境,以箱內溫度(20、50 ℃)模擬土壤釋水的常溫和極高溫條件。試驗采用坯塊在有無砂土介質的2種釋水情況來評價其保水性[30],記錄數據并進行回歸分析。為避免砂土樣本間差異影響試驗結果,各樣本均過標準土篩并風干,保證初始質量與水分的差異可忽略,每組試驗重復3次,釋水量取平均值。

        有砂土釋水:室溫下特定密度坯塊在盛水燒杯中吸水至飽和后,置于盛砂土的有機玻璃盒(100 mm ×100 mm×80 mm)內。記錄坯塊-砂土的初始質量1,再將其移入預設溫度的干燥箱,每隔1 h取出稱質量W1,釋水量1按公式(2)計算。

        式中1為坯塊-砂土的釋水量,g;1為坯塊-砂土初始質量,g;W1為第(+1)次取樣時坯塊-砂土的質量,g;1,2,…,10。

        無砂土釋水:室溫下特定密度坯塊在盛水燒杯中吸水至飽和,記錄初始質量2,再將其放入預設溫度的干燥箱,每隔1 h取出稱質量W1,釋水量2按公式(3)計算。

        式中2為坯塊的釋水量,g;2為坯塊初始質量,g;W1為第(+1)次取樣時坯塊的質量,g;1,2,…,10。

        1.3 試驗數據分析

        采用Excel 2010對單因素試驗數據進行方差分析,利用Design Expert 8.0和Excel 2010處理二次回歸正交旋轉組合試驗及成型坯塊的保水性試驗數據。

        2 結果與分析

        2.1 回歸模型的建立與分析

        根據設計方案進行試驗,結果見表2。各成型坯塊穩(wěn)定后的質量為19.24~22.08 g,高度為1.7~2.7 cm,直徑變化小于0.02%忽略不計,取5 cm,松弛密度為395.76~586.06 kg/m3。圖2為各因素變化影響坯塊品質的部分試驗樣品,豆粕質量分數與壓縮速度對坯塊表面形態(tài)影響顯著,其中圖2a坯塊的豆粕質量分數較大,表面較圖 2b更光滑;圖2d坯塊壓縮速度較大,表面較圖2c更粗糙。對松弛密度進行回歸分析,建立回歸模型,結果見表3。

        回歸方程模型=14.78>0.01(20,38)=2.37,<0.000 1,回歸模型極顯著;此模型的回歸系數2為0.886 1,失擬=1.29<0.05(22,16)=2.26,=0.301 5>0.05,表明目標函數與各因素之間相關性良好,模型預測松弛密度的效果較好。因素1245對松弛密度的影響顯著,影響順序為:最大壓縮力(1)>混料水分(2)>聚丙烯酸鈉質量分數(5)>豆粕質量分數(4)。交互項121314152334對松弛密度的影響均顯著,足夠支撐5個響應變量,模型的預測和優(yōu)化合理。剔除不顯著項后的模型回歸方程為

        表2 成型坯塊松弛密度的試驗設計及結果

        圖2 部分成型坯塊的試驗樣品圖

        Fig.2 Test sample pictures of several formed blocks

        表3 松弛密度的回歸方差分析

        2.2 試驗因素的交互作用分析

        松弛密度越大,成型坯塊越穩(wěn)定;松弛密度越小,成型坯塊會出現裂痕且易松散,需借助抗破壞試驗和吸水試驗確定松弛密度的優(yōu)化區(qū)間。

        首先進行抗破壞試驗,將成型坯塊側放在WDW-200電子萬能試驗機平臺上,懸梁夾緊壓頭等速向下運動。松弛密度大于540 kg/m3時,坯塊抗破壞強度已達1 000 N,能耗較大;松弛密度小于460 kg/m3時,坯塊松軟易變形,故松弛密度在460~540 kg/m3時,坯塊的抗破壞強度在600~1 000 N,抗破壞能力較好。其次進行吸水試驗,發(fā)現上述所選密度范圍的坯塊吸水迅速且不松散。因此,坯塊松弛密度的優(yōu)化范圍可設為460~540 kg/m3。

        利用Design Expert 8.0繪制等高線圖,對交叉項121314152334的交互作用予以分析,結果見圖3。

        注:圖中等高線值為松弛密度,kg·m-3。

        由圖3a可知,當松弛密度一定時,混料水分隨著最大壓縮力增大而減少,說明壓縮過程中適宜水分可增大分子間作用力,具有粘結與潤滑作用,所以混料水分應相應的增加[21]。由圖3b可知,當松弛密度在460~500 kg/m3之間且一定時,壓縮速度隨著最大壓縮力的增大而減?。划斔沙诿芏仍?20~540 kg/m3之間且一定時,壓縮速度隨著最大壓縮力的增大而增大。由圖3c可知,當松弛密度在460~500 kg/m3之間且一定時,壓縮速度隨著混料水分的增加而減??;當松弛密度在520~540 kg/m3之間且一定時,壓縮速度隨著混料水分的增加而增大。由圖3d可知,當松弛密度在460~500 kg/m3之間且一定時,豆粕質量分數隨著最大壓縮力的增大而減??;當松弛密度在520~540 kg/m3之間且一定時,豆粕質量分數隨著最大壓縮力的增大而增大。由圖3e可知,當松弛密度在460~500 kg/m3之間且一定時,豆粕質量分數隨著壓縮速度的增大而增大;當松弛密度在520~540 kg/m3之間且一定時,豆粕質量分數隨壓縮速度的增大而減小。由圖3f可知,當松弛密度在460~480 kg/m3之間且一定時,聚丙烯酸鈉質量分數隨著最大壓縮力的增大而減??;當松弛密度在500~540 kg/m3之間且一定時,隨著聚丙烯酸鈉質量分數的增大,最大壓縮力先減小后增大。

        2.3 成型參數優(yōu)化

        以松弛密度(460~540 kg/m3)為試驗指標的優(yōu)化區(qū)間,通過軟件Design Expert 8.0對回歸模型進行分析計算,得出最佳工藝參數為:最大壓縮力為16~20.59 kN,混料水分為8.84%~12.96%,壓縮速度為95.56~155.51 mm/min,豆粕質量分數為16.08%~24.02%,聚丙烯酸鈉質量分數為4.91%~7.15%。

        2.4 驗證試驗

        為驗證二次回歸模型預測的準確性,隨機選取一組優(yōu)化組合(最大壓縮力為16 kN,混料水分為11%,壓縮速度為130 mm/min,豆粕質量分數為20%,聚丙烯酸鈉質量分數為6%),設定10次重復試驗取數據平均值,結果如表4所示。

        在優(yōu)化試驗條件下,滿足秸稈壓縮坯塊的松弛密度在460~540 kg/m3之間,試驗值與預測值之間的相對誤差為1.03%,吻合度良好,模型具有較好的可靠性,對秸稈冷壓成型工藝具有參考意義。

        表4 試驗驗證結果

        2.5 保水性能分析

        分別制備松弛密度為460、480、500、520、540 kg/m3的成型坯塊,有砂土和無砂土2種試驗條件下坯塊釋水量變化見圖4。

        由圖4可知,在同一溫度下,釋水量隨烘干時間增加而增大,但隨松弛密度增大而減小,是因為松弛密度增大的同時孔隙度減小,坯塊對水分有更大的束縛力,所以大密度坯塊的保水效果整體好于小密度坯塊。利用Excel軟件分析,坯塊-砂土的釋水量(1)變化規(guī)律可近似用烘干時間的對數函數擬合,如圖4a所示,在填充的砂土與秸稈坯塊雙重作用下,整體孔隙度減小,釋水量緩慢降低趨于平衡,所以擬合的對數關系更明顯。在坯塊的釋水量(2)與烘干時間的方程擬合中,線性擬合的回歸系數(2>0.98)均大于對數擬合的回歸系數(2>0.96),所以線性關系更明顯,如圖4b所示,松弛密度越大,擬合直線斜率越小,說明釋水越慢,保水能力越強。二者擬合方程和回歸系數見表5,各回歸系數2均大于0.9,擬合程度較好。

        綜上所述,成型坯塊的保水性能與其松弛密度關系密切,同一溫度下有砂土介質時釋水較無砂土介質時釋水緩慢,且釋水量小于后者,成型坯塊用于砂土中的保水效果較好。

        a. 坯塊-砂土a. Block-sandb. 坯塊b. Block

        表5 釋水量擬合方程

        3 結 論

        1)成型坯塊的最佳工藝參數組合為:最大壓縮力為16~20.59 kN,混料水分為8.84%~12.96%,壓縮速度為95.56~155.51 mm/min,豆粕質量分數為16.08%~24.02%,聚丙烯酸鈉質量分數為4.91%~7.15%。

        2)在成型坯塊的松弛密度為460~540 kg/m3的條件下得出最優(yōu)工藝參數范圍,滿足實際生產中低能耗與高標準的要求?;貧w模型的試驗值與預測值間的相對誤差為1.03%,模型可靠,對冷壓成型工藝具有參考意義。

        3)隨松弛密度的增大,成型坯塊的保水效果逐漸增強。有砂土時釋水量與烘干時間近似呈對數關系,無砂土時釋水量與烘干時間近似呈線性關系。各擬合方程的回歸系數2均大于0.9,數據可靠,為成型坯塊的保水利用提供參考。

        [1] 苗恒錄,李澤坤,徐冰,等. 保水劑在干旱沙區(qū)作物應用中的研究進展[J]. 北方農業(yè)學報,2018,46(1):85-89. Miao Henglu, Li Zekun, Xu Bing, et al. Research progress on the application of super absorbent polymer in crops in arid sandy area[J]. Journal of Northern Agriculture, 2018, 46(1): 85-89. (in Chinese with English abstract)

        [2] 李寶新. 遼西北半干旱地區(qū)農作物節(jié)水灌溉主要技術[J]. 現代農村科技,2014(9):43-44.

        [3] 李晨,蘇曉蕾,張妍,等. 干旱半干旱地區(qū)城市節(jié)水景觀營造策略[J]. 中國城市林業(yè),2016,14(5):64-67. Li Chen, Su Xiaolei, Zhang Yan, et al. Strategies for water-saving landscape establishments in cities at arid and semi-arid area[J]. Journal of Chinese Urban Forestry, 2016, 14(5): 43-44. (in Chinese with English abstract)

        [4] 黃占斌,張國楨,李秧秧,等. 保水劑特性測定及其在農業(yè)中的應用[J]. 農業(yè)工程學報,2002,18(1):22-26. Huang Zhanbin, Zhang Guozhen, Li Yangyang, et al. Characteristics of aquasorb and its application in crop production[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(1): 22-26. (in Chinese with English abstract)

        [5] 莊文化,馮浩,吳普特. 高分子保水劑農業(yè)應用研究進展[J]. 農業(yè)工程學報,2007,23(6):265-270. Zhuang Wenhua, Feng Hao, Wu Pute. Development of super absorbent polymer and its application in agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(6): 265-270. (in Chinese with English abstract)

        [6] Krul L P, Nareiko E I, Matusevich Y I, et al. Water super absorbents based on copolymers of acrylamide with sodium acrylate[J]. Polymer Bulletin, 2000, 45(2): 159-165.

        [7] 廖人寬,張志成,任樹梅,等. 化學集成調控技術對土壤水氮與玉米產量的影響[J]. 農業(yè)機械學報,2014,45(6):166-171. Liao Renkuan, Zhang Zhicheng, Ren Shumei, et al. Effects of chemical integrated control technology on soil water, soil nitrogen and maize yield[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 166-171. (in Chinese with English abstract)

        [8] 張慧瑛,樊丹陽,盧妹妹,等. 利用小麥秸稈制備的保水劑性能研究[J]. 水土保持通報,2017,37(2):193-198. Zhang Huiying, Fan Danyang, Lu Meimei, et al. Synthesis and water-holding performance of water retaining agent made from wheat straw[J]. Bulletion of Soil and Water Conservation, 2017, 37(2): 193-198. (in Chinese with English abstract)

        [9] 阮建雯,蔡宗壽,余繼文,等. 國內外農作物秸稈固化成型技術研究[J]. 世界農業(yè),2014(4):40-43.

        [10] 薛冬梅,武佩,馬彥華,等. 生物質致密成型技術研究進展[J]. 安徽農業(yè)科學,2018,46(1):32-36,70. Xue Dongmei, Wu Pei, Ma Yanhua, et al. Research progress on technologies of biomass densification[J]. Anhui Agricultural Science, 2018, 46(1): 32-36, 70. (in Chinese with English abstract)

        [11] 夏先飛,肖宏儒,肖蘇偉,等. 生物質致密成型原料預處理技術研究進展及試驗初探[J]. 中國農機化學報,2018,39(2):61-66. Xia Xianfei, Xiao Hongru, Xiao Suwei, et al. Research on the raw materials pretreatment technology of biomass densification process[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(2): 61-66. (in Chinese with English abstract)

        [12] 白陽,閆文剛,劉志剛. 生物質燃料致密成型方式的發(fā)展現狀與展望[J]. 林業(yè)機械與木工設備,2018,46(9):10-15. Bai Yang, Yan Wengang, Liu Zhigang. Development status and prospects of biomass briquette fuel dense molding method[J]. Forestry Machinery and Woodworking Equipment, 2018, 46(9): 10-15. (in Chinese with English abstract)

        [13] 李海亮. 水稻秸稈營養(yǎng)穴盤氣動成型機理及試驗研究[D]. 大慶:黑龍江八一農墾大學,2018. Li Hailiang. Pneumatic Molding Mechanism and Experiment Research on Straw-based Nutrient Seedling-growing Bowl Tray[D]. Daqing: Heilongjiang Bayi Agricultural University, 2018. (in Chinese with English abstract)

        [14] 鮮紅. 我國生物質成型燃料的研究進展[J]. 林業(yè)建設,2017(5):33-36. Xian Hong. Research progress on biomass briquettes in China[J]. Forestry Construction, 2017(5): 33-36. (in Chinese with English abstract)

        [15] 宗煜翔,萬芳新,蒲軍,等. 生物質制粒成型機理的研究現狀[J]. 林業(yè)機械與木工設備,2016,44(7):4-6,11. Zong Yuxiang, Wan Fangxin, Pu Jun, et al. Research situation of biomass pellet forming mechanism[J]. Forestry Machinery and Woodworking Equipment, 2016, 44(7): 4-6, 11. (in Chinese with English abstract)

        [16] Peng J H, Bi H T, Lim C J, et al. Study on density, hardness, and moisture uptake of torrefied wood pellets[J]. Energy Fuels, 2013, 27(2): 967-974.

        [17] Mitchual S J, Frimpong K, Darkwa N A. Effect of species, particle size and compacting pressure on relaxed density and compressive strength of fuel briquettes[J]. International Journal of Energy and Environmental Engineering, 2013, 4(1): 30.

        [18] 涂德浴,李安心,何貴生. 水稻秸稈與木屑混合原料熱壓成型試驗[J]. 農業(yè)工程學報,2015,31(20):205-211. Tu Deyu, Li Anxin, He Guisheng. Hot pressing forming experiment of the rice straw and sawdust mixed material[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(20): 205-211. (in Chinese with English abstract)

        [19] 涂德浴,李安心,何貴生. 水稻秸稈冷壓成型工藝參數優(yōu)化[J]. 中國農業(yè)科技導報,2015,17(3):56-62. Tu Deyu, Li Anxin, He Guisheng. Parameter optimization of rice straw cold press process[J]. Journal of Agricultural Science and Technology, 2015, 17(3): 56-62. (in Chinese with English abstract)

        [20] 李榮麗,劉小勇,張占國,等. 玉米秸稈含水率與常溫壓縮成型壓力之間關系的研究[J]. 工程與試驗,2009,49(3):61-63. Li Rongli, Liu Xiaoyong, Zhang Zhanguo, et al. Study on the relation between percentage of moisture of chopped corn stalks and the force of room temperature compression[J]. Engineering and Test, 2009, 49(3): 61-63. (in Chinese with English abstract)

        [21] 李偉振,姜洋,饒曙,等. 玉米秸稈和木屑及木鈉混配成型工藝參數優(yōu)化[J]. 農業(yè)工程學報,2018,34(1):198-203. Li Weizhen, Jiang Yang, Rao Shu, et al. Parameter optimization of corn stover blended with sawdust and sodium lignosulphonate compression experiments[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 198-203. (in Chinese with English abstract)

        [22] Muazu R I, Stegemann J A. Effects of operating variables on durability of fuel briquettes from rice husks and corn cobs[J]. Fuel Processing Technology, 2015, 133: 137-145.

        [23] Jackson J, Turner A, Mark T, et al. Densification of biomass using a pilot scale flat ring roller pellet mill[J]. Fuel Processing Technology, 2016, 148: 43-49.

        [24] 王瑞麗,魏楷峰,劉洋,等. 飼料用秸稈絲化多頻快速壓縮成型工藝參數優(yōu)化[J]. 農業(yè)工程學報,2016,32(21):277-281. Wang Ruili, Wei Kaifeng, Liu Yang, et al. Optimization of process parameters for multi-frequency rapid compression molding of corn stalk silk used for forage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 277-281. (in Chinese with English abstract)

        [25] 萬述偉,張守才,趙明,等. 豆粕有機肥與化肥配施對大棚春黃瓜產量品質和土壤肥力的影響[J]. 中國農學通報,2013,29(31):188-193. Wan Shuwei, Zhang Shoucai, Zhao Ming, et al. Effect of soybean meal combined application of chemical fertilizer on greenhouse cucumber yield and quality and soil fertility[J]. China Agricultural Science Bulletin, 2013, 29(31): 188-193. (in Chinese with English abstract)

        [26] 王海杰,李萌萌,關二旗,等. 微波處理對豆粕膠黏劑性能影響的研究[J]. 中國油脂,2019,44(3):102-106. Wang Haijie, Li Mengmeng, Guan Erqi, et al. Effect of microwave treatment on properties of soybean meal adhesive[J]. China Oils and Fats, 2019, 44(3): 102-106. (in Chinese with English abstract)

        [27] 國家質量監(jiān)督檢驗檢疫總局. 建設用砂GB/T14684-2011[S]. 北京:中國標準出版社,2011.

        [28] 王功亮,姜洋,李偉振,等. 基于響應面法的玉米秸稈成型工藝優(yōu)化[J]. 農業(yè)工程學報,2016,32(13):223-227. Wang Gongliang, Jiang Yang, Li Weizhen, et al. Process optimization of corn stover compression molding experiments based on response surface method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(13): 223-227. (in Chinese with English abstract)

        [29] 王中華,劉詠梅,吳限彩,等. 聚丙烯酸高吸水樹脂的合成及性能研究[J]. 天津化工,2018,32(5):12-14. Wang Zhonghua, Liu Yongmei, Wu Xiancai, et al. Study on the synthesis and properties of polyacrylic acid high absorbent resin[J]. Tianjin Chemical Industry, 2018, 32(5): 12-14. (in Chinese with English abstract)

        [30] 孫賓賓,楊博. 高吸水樹脂產品吸水保水性能測試方法綜述[J]. 化學工程師,2013,27(10):30-33. Sun Binbin, Yang Bo. Review of measurement methods about water absorption and water retention properties of super-absorbent resin[J]. Chemical Engineer, 2013, 27(10): 30-33. (in Chinese with English abstract)

        Optimization of forming process parameters and water retention performance of straw blocks

        Gong Yuanjuan, Deng Nan, Liu Dejun, Bai Xuewei, Qiu Shuo※

        (,,110161,)

        The preparation of straw-based agricultural water-retaining agent is one of the effective ways to utilize crop resources. It can solve the problems of low soil nutrient content and low utilization rate of cultivated land in arid and semi-arid areas of Northwest Liaoning. However, the characteristics of straw such as dispersed texture, low bulk density, high cost in storage and transportation restrict its large-scale and value-added utilization. As a result, the biomass densification technique has attracted wide attention. To the best of our knowledge, the physical properties of the densified products are influenced by the mixing conditions of raw materials, pressing parameters and types of binders, and addition of high protein yellow soybean meal powder into soil can improve the quality of crops, ripen the soil, kill or inhibit soil harmful bacteria, and achieve the balance of fertilizer supply, while the white sodium polyacrylate as the binder can improve the stability and absorption of the products. Therefore, these two components were mixed with straw blocks proportionally to make samples with different water content in this study, then the mixture was loaded into a compression die (50 mm inner diameter and 80 mm height) that controlled by the WDW-200 electronic universal testing machine. The clamp of the testing machine held the die head and keeps the plumb state. After maximum compression force and compression speed were set by a computer, the machine started to move downward, and densified block was extruded from the die at a room temperature. The quality, diameter and height of the product were measured after a complete relaxation, and the relaxation density was calculated. To explore an optimal forming process of agricultural water-retaining agent, a quadratic general rotary combination design was adopted, with the maximum compression force, moisture content of mixture, compression speed, mass fraction of soybean meal and mass fraction of sodium polyacrylate were test factors. The softwares of Design-Expert 8.0.6 and Excel 2010 were applied for the variance analysis and response surface analysis of experimental results, with the aim to establish mathematical model between the index and each influencing factor, as well as optimize the combination of forming parameters. Furthermore, in the optimum range of relaxation density, the soil condition and climate conditions in Northwest Liaoning were simulated. The water retention capacity of formed blocks with or without the sandy soil medium were evaluated and compared by water release at intervals in a temperature controlled drying oven, and effect of relaxation density was analyzed as well. Results showed that the relaxation density was significantly affected by following four factors (< 0.000 1), and the degree of importance were maximum compressive force > moisture content of mixture > mass fraction of sodium polyacrylate > mass fraction of soybean meal. Under the condition of relaxation density of 460-540 kg/m3, the optimized combinations of cold forming parameters were maximum compression force of 16-20.59 kN, moisture content of mixture of 8.84%-12.96%, compression speed of 95.56-155.51 mm/min, mass fraction of soybean meal of 16.08%-24.02%, mass fraction of sodium polyacrylate of 4.91%-7.15%. The error was 1.03% in the test verification, which was reliable in prediction. The water-holding capacity of formed block was closely related to relaxation density, the water release increased with drying time, but decreased with the increase of relaxation density at the same temperature. Because the block with larger relaxation density had greater binding force on water, the water retention performance was better. By using the softwares of Excel 2010, it was calculated that the block-sand overall porosity decreased, water release decreased slowly and tended to balance with the double action of filling sand and straw block, so water release of block-sand and drying time conformed to the logarithmic model; while in the absence of sand, the regression coefficients of linear fitting (2> 0.98) were greater than those of logarithmic fitting (2> 0.96), so it followed the linear model obviously, the relaxation density was larger, the slope of straight line was smaller, the water retention performance was stronger. In summary, the regression coefficients of two fitting equations were all greater than 0.9, water release in the sandy soil medium was slower and smaller than that without the sandy soil medium, which indicated that water retention performance of block-sand was better, the analysis of water retention was reliable and provided a reference for the application of compound agricultural water retention agent.

        straw; optimization; model; block; forming process; relaxation density; water retention performance

        2019-04-19

        2019-06-02

        國家自然科學基金資助項目(51405311);農業(yè)部公益性行業(yè)科研專項(201503134);遼寧省教育廳重點項目(LSNZD201707)

        宮元娟,博士,教授,博士生導師,主要從事秸稈利用技術與裝備研究。Email:yuanjuangong@163.com

        邱 碩,博士,實驗師,主要從事秸稈利用技術與裝備研究。Email:gcq4032018@163.com

        10.11975/j.issn.1002-6819.2019.12.030

        S216.2;S156.2

        A

        1002-6819(2019)-12-0248-08

        宮元娟,鄧 楠,劉德軍,白雪衛(wèi),邱 碩. 秸稈坯塊成型工藝參數及保水性試驗研究[J]. 農業(yè)工程學報,2019,35(12):248-255. doi:10.11975/j.issn.1002-6819.2019.12.030 http://www.tcsae.org

        Gong Yuanjuan, Deng Nan, Liu Dejun, Bai Xuewei, Qiu Shuo. Optimization of forming process parameters and water retention performance of straw blocks[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 248-255. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.12.030 http://www.tcsae.org

        猜你喜歡
        壓縮力混料砂土
        人工晶狀體的壓縮力評價
        一種具有混料功能的橡膠射出成型機
        飽和砂土地層輸水管道施工降水方案設計
        壓力襪的測試方法比較與分析
        世界上最硬的玻璃
        科教新報(2020年21期)2020-06-05 14:16:07
        龍之中華 龍之砂土——《蟠龍壺》創(chuàng)作談
        基于PLC的混料罐控制系統設計
        電子制作(2016年21期)2016-05-17 03:52:46
        環(huán)模秸稈壓塊機秸稈壓縮力試驗研究
        聚丙烯/CaCO3共混料中CaCO3含量測定方法對比
        一類混料指數模型的D-最優(yōu)設計
        精品无人区无码乱码毛片国产| 亚欧视频无码在线观看| 人妻av中文字幕精品久久| 91精品国产福利在线观看麻豆| 午夜免费视频| 爽爽午夜影视窝窝看片| 日韩精品视频在线观看免费| 青青久久精品一本一区人人| 国产自国产自愉自愉免费24区| 99精品一区二区三区无码吞精| 日本视频中文字幕一区在线| 亚洲一区久久久狠婷婷| 国内自拍情侣露脸高清在线| 撕开奶罩揉吮奶头视频| av无码av在线a∨天堂app| 少妇一区二区三区精选| 精品人妻系列无码人妻漫画 | 国产乱子伦在线观看| 无码高清视频在线播放十区| 免费人成黄页网站在线一区二区| 精品人妻av区乱码| 亚洲中文字幕无码爆乳av| 国产美女av一区二区三区| 亚洲男人免费视频网站| 色哟哟精品视频在线观看| 啪啪免费网站| 亚洲免费av第一区第二区| 无套内射在线无码播放| 日本不卡在线视频二区三区| 国产亚洲精品性爱视频| 一级老熟女免费黄色片| 中文字幕av一区二区三区人妻少妇 | 亚洲日韩精品a∨片无码加勒比| 精品久久久久久777米琪桃花| 91情侣在线精品国产免费| 日韩精品视频在线观看无| 国产免费av片无码永久免费| 亚洲AV秘 无码一区二区三区1| 国内精品少妇久久精品| 国产成人a∨激情视频厨房| 玩弄放荡人妻一区二区三区|