李曉明 應(yīng)毅 曾岳
摘 ?要: 為解決企業(yè)大數(shù)據(jù)平臺(tái)適配靈活性較差、功能化參數(shù)分配不協(xié)調(diào)等問(wèn)題,設(shè)計(jì)基于Java微服務(wù)技術(shù)的新型企業(yè)智能大數(shù)據(jù)平臺(tái)。從服務(wù)接口憑證調(diào)取、賬號(hào)管理、說(shuō)明文檔推送三個(gè)角度完成基于Java微服務(wù)技術(shù)的大數(shù)據(jù)平臺(tái)需求分析調(diào)研。在此基礎(chǔ)上,利用完整的大數(shù)據(jù)框架協(xié)調(diào)智能平臺(tái)接口與服務(wù)模塊間的制約關(guān)系,完成新型企業(yè)智能大數(shù)據(jù)平臺(tái)的搭建,實(shí)現(xiàn)基于Java的微服務(wù)技術(shù)在構(gòu)建企業(yè)智能大數(shù)據(jù)平臺(tái)下的應(yīng)用與開發(fā)研究。對(duì)比實(shí)驗(yàn)結(jié)果表明,與傳統(tǒng)企業(yè)大數(shù)據(jù)平臺(tái)相比,應(yīng)用基于Java微服務(wù)技術(shù)的新型企業(yè)智能大數(shù)據(jù)平臺(tái)后,功能化參數(shù)分配協(xié)調(diào)性得到大幅提升,適配靈活性最大值可達(dá)到90%。
關(guān)鍵詞: Java微服務(wù); 企業(yè)大數(shù)據(jù)平臺(tái); 智能平臺(tái)搭建; 接口憑證; 說(shuō)明文檔; 平臺(tái)接口
中圖分類號(hào): TN915?34; TP399 ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼: A ? ? ? ? ? ? ? ? ? ? ?文章編號(hào): 1004?373X(2019)15?0165?05
Application and development of Java?based micro?service technology in intelligent
big data platform establishment of enterprises
LI Xiaoming1, YING Yi1, ZENG Yue2
(1. School of Computer Science and Engineering, San Jiang University, Nanjing 210012, China;
2. School of Software Engineering, Jinling Institute of Technology, Nanjing 211169, China)
Abstract: In order to solve the problems of poor adaptive flexibility and inconsistent allocation of functional parameters of enterprise big data platform, a new enterprise intelligent big data platform based on Java micro?service technology is designed. The demand analysis and research of big data platform based on Java micro?service technology is completed in three aspects of service interface voucher taking, account management and description document push. On this basis, a complete big data framework is used to coordinate the restrictive relation between interface and service module of the intelligent platform, complete the construction of a new enterprise intelligent big data platform, and realize the application and development of Java?based micro?service technology in the construction of enterprise intelligent big data platform. The comparison experimental results show that, in comparison with the traditional enterprise big data platform, the new enterprise intelligent big data platform based on Java micro?service technology can greatly improve the coordination capacity of functional parameter allocation, and the maximum adaptive flexibility can reach 90%.
Keywords: Java micro?service; enterprise big data platform; intelligent platform set?up; interface credentials; description documents; platform interface
0 ?引 ?言
Java技術(shù)吸納了C++語(yǔ)言的應(yīng)用優(yōu)勢(shì),通過(guò)面向?qū)ο蟮臄?shù)據(jù)編程手段,解決原發(fā)信息節(jié)點(diǎn)指針不明顯的問(wèn)題。從實(shí)用性方面來(lái)看,Java編程技術(shù)具備明顯的語(yǔ)言應(yīng)用優(yōu)勢(shì),能夠充分化簡(jiǎn)復(fù)雜的理論對(duì)象關(guān)系,并以連貫的思維方式、多信息數(shù)據(jù)進(jìn)行編碼處理。傳統(tǒng)企業(yè)大數(shù)據(jù)平臺(tái)以C++語(yǔ)言作為后臺(tái)程序的主要編碼依據(jù),并通過(guò)搭建移動(dòng)設(shè)備瀏覽程序的方式,增加平臺(tái)自身的瀏覽量[1?2]。這種平臺(tái)運(yùn)行方法通過(guò)Logistic回歸法則計(jì)算各窗口的組件化條件,并通過(guò)資源信息整合的方式完成MLP軟件運(yùn)行環(huán)境的搭建。在這種軟件運(yùn)行環(huán)境中,所有與企業(yè)相關(guān)的信息數(shù)據(jù)都可在B/S架構(gòu)模型的促進(jìn)下進(jìn)行自主順序排列,不僅實(shí)現(xiàn)了企業(yè)大數(shù)據(jù)的分層組件化處理,也在一定程度上降低了模塊化信息傳遞風(fēng)險(xiǎn)因素的發(fā)生概率。隨著科學(xué)技術(shù)手段的進(jìn)步,這種傳統(tǒng)的平臺(tái)搭建方法逐漸暴露出功能化參數(shù)分配協(xié)調(diào)程度受限、適配靈活性不達(dá)標(biāo)等應(yīng)用弊端。為解決上述問(wèn)題,引入Java微服務(wù)技術(shù),通過(guò)分析信息流基礎(chǔ)需求的方式,搭建一種新型的企業(yè)智能大數(shù)據(jù)平臺(tái),對(duì)比實(shí)驗(yàn)說(shuō)明這種新型平臺(tái)的實(shí)用性。
1 ?基于Java微服務(wù)技術(shù)的大數(shù)據(jù)平臺(tái)需求分析
通過(guò)接口憑證調(diào)取、企業(yè)賬號(hào)管理等途徑實(shí)現(xiàn)基于Java微服務(wù)技術(shù)平臺(tái)需求分析,完成新型大數(shù)據(jù)平臺(tái)搭建的準(zhǔn)備工作。
1.1 ?Java服務(wù)接口憑證調(diào)取
Java服務(wù)接口憑證調(diào)取需要在安全Open ID協(xié)議的促進(jìn)下,提取企業(yè)智能大數(shù)據(jù)平臺(tái)的access token權(quán)限,并根據(jù)數(shù)據(jù)字符的投放條件規(guī)劃現(xiàn)有待管理企業(yè)微服務(wù)賬號(hào)的基本存儲(chǔ)上限。Open ID協(xié)議是企業(yè)智能大數(shù)據(jù)平臺(tái)中促進(jìn)數(shù)據(jù)傳輸?shù)闹饕浇閇3]。為了實(shí)現(xiàn)多個(gè)企業(yè)微服務(wù)賬號(hào)間的信息互通傳輸,可以利用移動(dòng)端互聯(lián)的技術(shù)手段對(duì)平臺(tái)中企業(yè)核心計(jì)算機(jī)的access token權(quán)限進(jìn)行提取,再增設(shè)一個(gè)新型的平臺(tái)賬號(hào)管理空間用于管理不同Java微服務(wù)對(duì)象的個(gè)人綁定信息[4]。默認(rèn)企業(yè)智能大數(shù)據(jù)平臺(tái)的IP地址為http://getcallbackip.com/cgi?bin/URL,Java服務(wù)接口憑證的調(diào)取操作原理如圖1所示。
1.2 ?企業(yè)微服務(wù)賬號(hào)管理
企業(yè)微服務(wù)賬號(hào)管理可以借助Java服務(wù)接口憑證,確定大數(shù)據(jù)說(shuō)明文檔推送起始點(diǎn)、終止點(diǎn)的具體位置。傳統(tǒng)企業(yè)大數(shù)據(jù)平臺(tái)中所有微服務(wù)賬號(hào)均呈現(xiàn)較為散亂的分布狀態(tài),當(dāng)企業(yè)計(jì)算機(jī)對(duì)賬號(hào)管理空間發(fā)出調(diào)取指令后,這些微服務(wù)賬號(hào)會(huì)同時(shí)進(jìn)入接口節(jié)點(diǎn),并按照賬號(hào)存儲(chǔ)數(shù)據(jù)總量由小到大的順序進(jìn)行調(diào)取檢測(cè),這也是導(dǎo)致傳統(tǒng)平臺(tái)適配靈活性較差的主要原因[5?6]。為有效解決上述問(wèn)題,新型企業(yè)智能大數(shù)據(jù)平臺(tái)在確保Java服務(wù)接口憑證無(wú)誤的前提下,通過(guò)微服務(wù)賬號(hào)管理結(jié)構(gòu)對(duì)所有待檢測(cè)數(shù)據(jù)進(jìn)行類別劃分。當(dāng)企業(yè)計(jì)算機(jī)對(duì)賬號(hào)管理空間發(fā)出調(diào)取申請(qǐng)后,微服務(wù)賬號(hào)管理結(jié)構(gòu)會(huì)在存儲(chǔ)空間內(nèi)進(jìn)行初步篩選,再將滿足調(diào)取要求的企業(yè)微服務(wù)賬號(hào)傳輸至承運(yùn)單元。通過(guò)這種方式提升企業(yè)智能大數(shù)據(jù)平臺(tái)的運(yùn)行管理級(jí)別,并適當(dāng)提升平臺(tái)的適配靈活性,具體企業(yè)微服務(wù)賬號(hào)管理原則如圖2所示。
1.3 ?大數(shù)據(jù)說(shuō)明文檔的推送
大數(shù)據(jù)說(shuō)明文檔推送是基于Java微服務(wù)技術(shù)平臺(tái)需求分析的關(guān)鍵環(huán)節(jié),且該項(xiàng)操作需要在多個(gè)企業(yè)微服務(wù)賬號(hào)的促進(jìn)下為大數(shù)據(jù)框架、服務(wù)接口等平臺(tái)模塊提供物理信息的依存條件[7]。在Java服務(wù)接口憑證滿足平臺(tái)計(jì)算機(jī)調(diào)取規(guī)則的前提下,企業(yè)微服務(wù)賬號(hào)管理會(huì)在企業(yè)計(jì)算機(jī)中長(zhǎng)期存儲(chǔ)。在此運(yùn)行條件下,大數(shù)據(jù)說(shuō)明文檔可以通過(guò)智能界面接口進(jìn)入平臺(tái)的大數(shù)據(jù)框架中,并作為基礎(chǔ)數(shù)據(jù)算子連接平臺(tái)接口及Java服務(wù)模塊間的信息傳輸[8?9]。常規(guī)大數(shù)據(jù)說(shuō)明文檔信息與菜單項(xiàng)列表保持相同的排列順序,在企業(yè)智能大數(shù)據(jù)平臺(tái)處于平穩(wěn)運(yùn)行的條件下,這些待推送的說(shuō)明文檔會(huì)按照企業(yè)計(jì)算機(jī)的調(diào)取規(guī)則進(jìn)行物理排列,并通過(guò)不斷更改組合形態(tài)的方式弱化功能化參數(shù)的傳輸協(xié)調(diào)性,使得企業(yè)信息具備更強(qiáng)的響應(yīng)連接速度。大數(shù)據(jù)說(shuō)明文檔的推送原則如圖3所示。
2 ?企業(yè)智能大數(shù)據(jù)平臺(tái)的構(gòu)建與開發(fā)
在基于Java微服務(wù)技術(shù)平臺(tái)需求分析的基礎(chǔ)上,通過(guò)大數(shù)據(jù)框架完善、智能平臺(tái)接口設(shè)計(jì)、Java服務(wù)模塊實(shí)現(xiàn)三個(gè)步驟,實(shí)現(xiàn)新型企業(yè)智能大數(shù)據(jù)平臺(tái)的構(gòu)建與開發(fā)。
2.1 ?大數(shù)據(jù)架構(gòu)完善
新型企業(yè)平臺(tái)的大數(shù)據(jù)框架在保留B/S架構(gòu)的基礎(chǔ)上,采用Web網(wǎng)絡(luò)結(jié)構(gòu)連接待推送文檔與智能平臺(tái)接口間的數(shù)據(jù)傳輸。這種新型的企業(yè)平臺(tái)大數(shù)據(jù)架構(gòu)采用分層管理模式,以Web瀏覽器作為核心搭建設(shè)備,不僅在應(yīng)用層面上實(shí)現(xiàn)了服務(wù)器功能的高度統(tǒng)一,也在一定程度上深化了瀏覽器的數(shù)據(jù)處理能力。采用新型大數(shù)據(jù)架構(gòu)的企業(yè)服務(wù)平臺(tái)可以輕松實(shí)現(xiàn)軟、硬件運(yùn)行環(huán)境間的功能性轉(zhuǎn)化,且隨著智能平臺(tái)接口數(shù)量的不斷增加,Java服務(wù)模塊可在接收企業(yè)數(shù)據(jù)的同時(shí),通過(guò)大數(shù)據(jù)框架與平臺(tái)核心計(jì)算機(jī)建立物理連接,并在輸入、輸出信道的促進(jìn)下完成物理信息互換操作[10?11]。從功能結(jié)構(gòu)方面來(lái)看,企業(yè)平臺(tái)的大數(shù)據(jù)框架可分為客戶端層、服務(wù)層、數(shù)據(jù)處理層三個(gè)主要層次,且每個(gè)層次中都包含大量的智能平臺(tái)接口,根據(jù)處理數(shù)據(jù)類型的不同,這些接口所具備的物理權(quán)限也都不相同。完整的企業(yè)平臺(tái)大數(shù)據(jù)框架結(jié)構(gòu)如圖4所示。
2.2 ?智能平臺(tái)接口設(shè)計(jì)
新型企業(yè)大數(shù)據(jù)平臺(tái)的智能接口包含JSON,Getrisk,Chronic三種標(biāo)準(zhǔn)類型。其中,JSON平臺(tái)接口主要存在于大數(shù)據(jù)框架結(jié)構(gòu)中的服務(wù)層,是智能性連接服務(wù)的直觀表現(xiàn)形式。該類型的智能平臺(tái)接口滿足Integer企業(yè)數(shù)據(jù)的查詢要求,可在允許存儲(chǔ)空間為空的前提下,對(duì)所有運(yùn)行數(shù)據(jù)庫(kù)中存儲(chǔ)的企業(yè)數(shù)據(jù)信息進(jìn)行調(diào)取、查找[12]。Getrisk平臺(tái)接口主要存在于大數(shù)據(jù)框架結(jié)構(gòu)中的數(shù)據(jù)處理層,可以充分適應(yīng)平臺(tái)存儲(chǔ)結(jié)構(gòu)運(yùn)行要求。該類型的智能平臺(tái)接口始終保持String浮點(diǎn)精度條件,在一切存儲(chǔ)空間不為空的前提下,都可以實(shí)現(xiàn)對(duì)企業(yè)數(shù)據(jù)信息的良性處理[13?14]。Chronic平臺(tái)接口在大數(shù)據(jù)框架中起到傳輸橋梁的作用,其應(yīng)用條件相對(duì)寬泛,不需要對(duì)存儲(chǔ)空間進(jìn)行嚴(yán)格的限制,且能夠?qū)ζ髽I(yè)數(shù)據(jù)信息進(jìn)行較為迅速的連接處理。詳細(xì)智能平臺(tái)接口設(shè)計(jì)標(biāo)準(zhǔn)如表1所示。
參考文獻(xiàn)
[1] 郭嘉,郭曉峰,沈建京.關(guān)于大數(shù)據(jù)中用戶資源信息提取仿真研究[J].計(jì)算機(jī)仿真,2018,35(7):414?417.
GUO Jia, GUO Xiaofeng, SHEN Jianjing. Simulation research on user resource information extraction in big data [J]. Computer simulation, 2018, 35(7): 414?417.
[2] 安強(qiáng)強(qiáng),李趙興,張峰,等.基于機(jī)器學(xué)習(xí)的通信網(wǎng)絡(luò)非結(jié)構(gòu)化大數(shù)據(jù)分析算法[J].電子設(shè)計(jì)工程,2018,26(14):53?56.
AN Qiangqiang, LI Zhaoxing, ZHANG Feng, et al. Machine learning based unstructured large data analysis algorithm for communication networks [J]. Electronic design engineering, 2018, 26(14): 53?56.
[3] 李艷,呂鵬,李瓏.基于大數(shù)據(jù)挖掘與決策分析體系的高校圖書館個(gè)性化服務(wù)研究[J].圖書情報(bào)知識(shí),2016,19(2):60?68.
LI Yan, L? Peng, LI Long. Research on personalized services of university library based on the big data mining and decision analysis system [J]. Document, information & knowledge, 2016, 19(2): 60?68.
[4] 姜俊鋒,丁香乾,侯瑞春,等.基于Citespace Ⅲ的大數(shù)據(jù)研究的可視化分析[J].計(jì)算機(jī)與數(shù)字工程,2016,14(2):291?295.
JIANG Junfeng, DING Xiangqian, HOU Ruichun, et al. Visua?lization analysis about big data research based on citespaceⅢ [J]. Computer and digital engineering, 2016, 14(2): 291?295.
[5] 黃超,余英,張煒,等.對(duì)智能配電網(wǎng)大數(shù)據(jù)統(tǒng)一支撐平臺(tái)體系和構(gòu)架分析[J].自動(dòng)化與儀器儀表,2016,23(7):137?138.
HUANG Chao, YU Ying, ZHANG Wei, et al. Analysis of the unified support platform system and framework for big data in smart distribution network [J]. Automation & instrumentation, 2016, 23(7): 137?138.
[6] 李寒曦,錢杰,汪炎平.基于智能化系統(tǒng)理論的IT智能移動(dòng)巡檢平臺(tái)開發(fā)與研究[J].科技通報(bào),2016,32(3):132?135.
LI Hanxi, QIAN Jie, WANG Yanping. Development of IT intelligent mobile inspection platform based on intelligent theory [J]. Bulletin of science and technology, 2016, 32(3): 132?135.
[7] 田歆,汪壽陽(yáng),鄂爾江,等.零售大數(shù)據(jù)與商業(yè)智能系統(tǒng)的設(shè)計(jì)、實(shí)現(xiàn)與應(yīng)用[J].系統(tǒng)工程理論與實(shí)踐,2017,37(5):1282?1293.
Tian Xin, Wang Shouyang, E Erjiang, et al. Design, implementation and practice of big data and business intelligence system for retail industry [J]. Systems engineering?theory & practice, 2017, 37(5): 1282?1293.
[8] 江凱,蘇謙,白皓,等.大數(shù)據(jù)環(huán)境下高速鐵路線下結(jié)構(gòu)檢測(cè)數(shù)據(jù)管理平臺(tái)設(shè)計(jì)與分析[J].鐵道標(biāo)準(zhǔn)設(shè)計(jì),2016,12(3):24?28.
JIANG Kai, SU Qian, BAI Hao, et al. Design and analysis of data management platform for high speed railway infrastructure inspection [J]. Railway standard design, 2016, 12(3): 24?28.
[9] 何勝,馮新翎,武群輝,等.基于用戶行為建模和大數(shù)據(jù)挖掘的圖書館個(gè)性化服務(wù)研究[J].圖書情報(bào)工作,2017(1):40?46.
HE Sheng, FENG Xinling, WU Qunhui, et al. Research on personalized services of library based on user behavior mode?ling and big data mining [J]. Library and information service, 2017(1): 40?46.
[10] 楊甲甲,趙俊華,文福拴,等.智能電網(wǎng)環(huán)境下基于大數(shù)據(jù)挖掘的居民負(fù)荷設(shè)備識(shí)別與負(fù)荷建模[J].電力建設(shè),2016,37(12):11?23.
YANG Jiajia, ZHAO Junhua, WEN Fushuan, et al. Residential appliance identification and load modeling based on big data mining in smart grid environment [J]. Electric power construction, 2016, 37(12): 11?23.
[11] BACCARELLI E, CORDESCHI N, MEI A, et al. Energy?efficient dynamic traffic offloading and reconfiguration of networked data centers for big data stream mobile computing: review, challenges, and a case study [J]. Computers & chemical engineering, 2016, 91(2): 182?194.
[12] CHEN M, MA Y, SONG J, et al. Smart clothing: connecting human with clouds and big data for sustainable health monito?ring [J]. Mobile networks & applications, 2016, 21(5): 1?21.
[13] HARTMANN P M, ZAKI M, FELDMANN N, et al. Cap?tu?ring value from big data ? a taxonomy of data?driven business models used by start?up firms [J]. International journal of ope?rations & production management, 2016, 36(10): 1382?1406.
[14] ZHANG Q, YANG L, CHEN Z. Privacy preserving deep computation model on cloud for big data feature learning [J]. IEEE transactions on computers, 2016, 65(5): 1351?1362.
[15] LEI Y, JIA F, LIN J, et al. An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data [J]. IEEE transactions on industrial electronics, 2016, 63(5): 3137?3147.
[16] ZHANG Y. GroRec: a group?centric intelligent recommender system integrating social, mobile and big data technologies [J]. IEEE transactions on services computing, 2016, 9(5): 786?795.