亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        改進的粒子群優(yōu)化算法對斷路器儲能彈簧的優(yōu)化設(shè)計

        2019-08-01 01:48:57石麗莉夏克文戴水東鞠文哲
        計算機應(yīng)用 2019年5期
        關(guān)鍵詞:鯰魚效應(yīng)云模型粒子群優(yōu)化算法

        石麗莉 夏克文 戴水東 鞠文哲

        摘 要:針對斷路器儲能彈簧傳統(tǒng)經(jīng)驗試算的設(shè)計方法易導(dǎo)致彈簧結(jié)構(gòu)參數(shù)不合理、斷路器的體積大及分斷性能差的問題,應(yīng)用一種結(jié)合鯰魚效應(yīng)改進的云粒子群優(yōu)化算法對斷路器的儲能彈簧參數(shù)進行優(yōu)化設(shè)計。首先,根據(jù)儲能彈簧的工作原理,推導(dǎo)儲能彈簧的數(shù)學(xué)優(yōu)化設(shè)計模型以及彈簧參數(shù)設(shè)計的約束條件;然后,根據(jù)優(yōu)化模型對算法進行改進,在傳統(tǒng)粒子群優(yōu)化算法的基礎(chǔ)上,引入鯰魚效應(yīng)策略產(chǎn)生多樣候選解,避免算法陷入局部最優(yōu)值,并結(jié)合云模型適時調(diào)整尋優(yōu)速度權(quán)重因子,以加快算法的收斂和提高全局搜索能力;最后,采用改進算法對斷路器的儲能彈簧優(yōu)化模型進行仿真及相應(yīng)的彈簧參數(shù)計算。實驗結(jié)果表明,可以應(yīng)用改進的粒子群優(yōu)化算法對斷路器儲能彈簧進行優(yōu)化設(shè)計,設(shè)計結(jié)果更加小型化、分斷性能更優(yōu)。

        關(guān)鍵詞:儲能彈簧;粒子群優(yōu)化算法;云模型;鯰魚效應(yīng)

        中圖分類號:TP213

        文獻標(biāo)志碼:A

        Abstract: In the traditional way to design the energy storage spring of the circuit breaker the method of experience trial calculation is mainly adopted, which may easily lead to unreasonable parameters of the spring structure, large volume of circuit breaker and poor breaking performance. Therefore, An improved cloud particle swarm optimization algorithm combined with catfish effect was applied to optimize the parameters of energy storage spring of circuit breaker. Firstly, according to the working principle of energy storage springs, the mathematical optimization design model of the energy storage springs and the constraints of the spring parameter design were deduced. Then, improving the algorithm based on the optimization model, on the basis of the traditional particle swarm optimization algorithm, catfish effect strategy was introduced to produce various candidate solutions, avoiding the algorithm falling into local optimal value and the optimization speed weighting factor was adjusted combined with the cloud model to speed up the convergence of the algorithm and improve the ability of global search solutions. Finally, the improved algorithm was used to simulate the optimization model of the energy storage spring of circuit breakers and calculate the corresponding spring parameters. The results show that the improved particle swarm optimization algorithm can achieve miniaturization and better breaking performance of circuit breakers.

        0 引言

        在新能源領(lǐng)域與智能電網(wǎng)的快速發(fā)展大趨勢下,供配電市場規(guī)模不斷擴大,電網(wǎng)的可靠性運行要求也越來越高[1]。斷路器作為常見的開關(guān)器件,用于接通和分斷電流,以保護電氣設(shè)施、配電線路免于由短路引起的過電流受損及過欠壓破壞[2]。隨著日常用電量增多,為確保電網(wǎng)能夠安全工作,對斷路器的優(yōu)化要求日異嚴苛[3]。其中,斷路器優(yōu)化主要體現(xiàn)在節(jié)能化、快速分斷、小型化、可通信等方面[4-5], 因此,設(shè)計高效、穩(wěn)定、安全的斷路器是目前研究的熱點、難點[6-8]。

        在斷路器小型化、快速分斷方面的優(yōu)化,儲能彈簧是斷路器的首要優(yōu)化對象[9]。儲能彈簧設(shè)計時,彈簧力不宜過大從而可以減少機械磨損、減小設(shè)計體積;彈簧力也不宜過小從而觸頭可以快速閉合、分斷電流; 此外,儲能彈簧的設(shè)計還存在諸多復(fù)雜約束,主要包括:剪切強度約束、疲勞強度約束、彈簧剛度約束、細長比約束、共振約束以及彈簧旋繞比約束等[10]。而傳統(tǒng)的斷路器儲能彈簧設(shè)計方法通常采用經(jīng)驗估算、反復(fù)試算、生產(chǎn)大量樣機測試實驗等方式,使得斷路器自身體積設(shè)計過大、設(shè)計粗糙導(dǎo)致斷路器分斷性能差、壽命短。因此,須結(jié)合當(dāng)今先進的仿真優(yōu)化技術(shù),并提出科學(xué)、可靠的斷路器優(yōu)化設(shè)計方案。

        粒子群優(yōu)化(Particle Swarm Optimization, PSO)算法常用來解決具有非線性、多條件、不可微和多極值等特征的工程優(yōu)化問題[11]; 同時,由于PSO算法操作便捷、適用性強,該算法得以在工程設(shè)計、生命科學(xué)演化、電網(wǎng)優(yōu)化、集成測試等方面大量應(yīng)用[12-16]。然而,對于不同實際問題的應(yīng)用,PSO算法的性能都需依情況進行調(diào)整。傳統(tǒng)的PSO算法在迭代之初,速度慣性系數(shù)較大,有利于全局尋優(yōu),此時如果粒子群已經(jīng)在最優(yōu)值范圍附近搜索,但多數(shù)粒子對最優(yōu)值不敏感,會產(chǎn)生盲目尋優(yōu)、算法性能下降等問題;在迭代后期,尋優(yōu)慣性系數(shù)減小有利于局部尋優(yōu),但多數(shù)粒子又可能陷入局部最優(yōu)、粒子多樣性差,從而得不到最優(yōu)解[17]。針對PSO算法還存在的收斂慢、易陷入局部最優(yōu)問題,算法應(yīng)進行必要的改進才能適應(yīng)各種復(fù)雜多約束的優(yōu)化問題,如陳大鵬等[18]在傳統(tǒng)PSO算法中采用慣性權(quán)重因子呈指數(shù)下降的策略,并引入人工免疫思想,形成免疫PSO算法,來增加粒子多樣性,避免粒子陷入局部最優(yōu);范成禮等[19]針對傳統(tǒng)PSO算法在求解高維空間的復(fù)雜問題時易陷入局部最優(yōu)的問題,提出了一種帶反向預(yù)測和斥力因子的改進PSO算法。而對于PSO算法的早熟問題,黃松等[20]則提出了一種自適應(yīng)變異概率PSO算法,研究通過考察粒子聚集度動態(tài)調(diào)節(jié)每代粒子的變異概率,并對全局尋優(yōu)進行高斯和柯西緩和變異、對最差個體最優(yōu)位置進行小波變異,最后證明了改進算法具有較高的收斂精度。此外,李國棟等[21]還提出一種用于定性與定量信息轉(zhuǎn)換的云模型,其中,正態(tài)云模型可將定性的概念通過定量表示,并可以和PSO算法結(jié)合。

        綜上,本文將針對萬能式斷路器儲能彈簧設(shè)計中,彈簧結(jié)構(gòu)參數(shù)設(shè)計粗糙、試算方法復(fù)雜低效等問題,提出應(yīng)用結(jié)合鯰魚效應(yīng)改進的云粒子群優(yōu)化算法,對萬能式斷路器的儲能彈簧進行優(yōu)化仿真設(shè)計。即先推導(dǎo)儲能彈簧優(yōu)化目標(biāo)函數(shù)數(shù)學(xué)模型與彈簧約束條件,再根據(jù)優(yōu)化的數(shù)學(xué)模型及約束條件對粒子群優(yōu)化算法加以改進,最后采用改進的算法優(yōu)化設(shè)計儲能彈簧,并計算出相應(yīng)的彈簧設(shè)計參數(shù)。

        4 結(jié)語

        通過采用改進粒子群優(yōu)化算法優(yōu)化設(shè)計的斷路器儲能彈簧結(jié)構(gòu)參數(shù),可得到如下結(jié)論:

        首先,根據(jù)斷路器的儲能彈簧設(shè)計要求,在滿足彈簧相應(yīng)的工作強度下,采用試算的方式設(shè)計可以得到一組彈簧參數(shù),但試算方式所得結(jié)果相對粗糙,設(shè)計的彈簧體積較大。

        而對斷路器儲能彈簧可進行優(yōu)化建模,并推導(dǎo)約束條件不等式;再采用PSO算法,根據(jù)斷路器相應(yīng)的設(shè)計要求,對算法的求解速度與精度兩方面進行深度改進。其中,引入云模型以加快求解速度,引入鯰魚效應(yīng)策略增加了候選解的多樣性,使得算法求解精度更高。

        最后,應(yīng)用改進后的PSO算法設(shè)計得到的斷路器儲能彈簧質(zhì)量、體積及其他相關(guān)參數(shù),可以在給定參數(shù)設(shè)計范圍內(nèi)快速求解,與試算方式求得結(jié)果進行比較,得到儲能彈簧更小的設(shè)計參數(shù)、質(zhì)量和體積,從而減小儲能彈簧的設(shè)計體積與實現(xiàn)斷路器的快速分斷,并提高了設(shè)計效率。

        此外,CECPSO算法不僅可用于儲能彈簧的優(yōu)化設(shè)計,還可以用于斷路器其他零部件及結(jié)構(gòu)的優(yōu)化設(shè)計,以取代傳統(tǒng)的試算設(shè)計方法。

        參考文獻 (References)

        [1] ??? GHOLIAN A, MOHSENIANRAD H, HUA Y B. Optimal industrial load control in smart grid[J]. IEEE Transactions on Smart Grid, 2016, 7(5): 2305-2316.

        [2] ??? LIU F, LIU W J, ZHA X M. Solidstate circuit breaker snubber design for transient overvoltage suppression at bus fault interruption in lowvoltage DC microgrid [J]. IEEE Transactions on Power Electronics, 2017, 32(4): 3007-3021.

        [3] ??? MAQSOOD A, OVERSTREET A, CORZINE K. Modified zsource DC circuit breaker topologies[J]. IEEE Transactions on Power Electronics, 2016, 31(10): 7394-7403.

        [4] ??? 朱童,余占清,曾嶸,等.混合式直流斷路器模型及其操作暫態(tài)特性研究[J].中國電機工程學(xué)報,2016,36(1):18-30.(ZHU T, YU Z Q, ZENG R, et al. Transient model and operation characteristics researches of hybrid DC circuit breaker [J]. Proceedings of the CSEE, 2016, 36(1): 18-30.)

        [5] ??? PEI X Z, CWIKOWSKI O, SMITH A C. Design and experimental tests of a superconducting hybrid DC circuit breaker [J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 1-5.

        [6] ??? 田園,胡炎.計及保護和斷路器動作不確定性的隱性故障檢測模型[J].電網(wǎng)技術(shù),2016,40(9):2896-2903.(TIAN Y, HU Y. Analytic model of hidden failure detection model considering uncertainty of protection and circuit breaker tripping [J]. Power System Technology, 2016, 40(9): 2896-2903.)

        [7] ??? MAJI T K, ACHARJEE P. Multiple solutions of optimal pmu placement using exponential binary PSO algorithm for smart grid applications [J]. IEEE Transactions on Industry Applications, 2017, 53(3): 2550-2559.

        [8] ??? LIU C L, WEI D, ZHANG B. On novel methods for characterizing the arc/contact movement and its relation with the current/voltage in lowvoltage circuit breaker [J]. IEEE Transactions on Plasma Science, 2017, 45(5): 882-888.

        [9] ??? 李鵬飛,周文俊,曾國,等.高壓斷路器合閘彈簧動態(tài)特性及儲能狀態(tài)檢測方法[J].電工技術(shù)學(xué)報,2016,31(3):104-112.(LI P F, ZHOU W J, ZENG G, et al. The dynamic characteristics and energy storage state detection method of highvoltage circuit breaker closing spring [J]. Transactions of China Electrotechnical Society, 2016, 31(3): 104-112.)

        [10] ?? 趙思洋,汪安本,周文俊,等.基于模糊綜合評判的斷路器操動機構(gòu)彈簧儲能狀態(tài)評估[J].高壓電器,2016,52(6):187-192.(ZHAO S Y, WANG A B, ZHOU W J, et al. State assessment of circuit breaker actuators spring based on fuzzy comprehensive evaluation [J]. High Voltage Apparatus, 2016, 52(6): 187-192.)

        [11] ?? BONYADI M R, MICHALEWICZ Z. Stability analysis of the particle swarm optimization without stagnation assumption [J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 814-819.

        [12] ?? BANERJEE S, GHOSH A, RANA N. An improved interleaved boost converter with PSO based optimal typeIII controller [J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(1): 323-337.

        [13] ?? 王皓,歐陽海濱,高立群.一種改進的全局粒子群優(yōu)化算法[J].控制與決策,2016,31(7):1161-1168.(WANG H, OUYANG H B, GAO L Q. An improved global particle swarm optimization algorithm [J]. Control and Decision, 2016, 31(7): 1161-1168.)

        [14] ?? JIANG S Y, YANG S X. An improved multiobjective optimization evolutionary algorithm based on decomposition for complex pareto fronts [J]. IEEE Transactions on Cybernetics, 2016, 46(2): 421-437.

        [15] ?? 張棟華,李征,蔡旭.基于量子行為粒子群優(yōu)化算法的為電網(wǎng)優(yōu)化配置[J].計算機仿真,2014,31(8):120-124,208.(ZHANG D H, LI Z, CAI X. Microgrid optimization allocation problem based on quantumbehaved particle swarm optimization [J]. Computer Simulation, 2014, 31(8): 120-124, 208.)

        [16] ?? 周海鵬,高芹,蔣豐千,等.自適應(yīng)混沌量子粒子群算法及其在WSN覆蓋優(yōu)化中的應(yīng)用[J].計算機應(yīng)用,2018,38(4):1064-1071.(ZHOU H P, GAO Q, JIANG F Q, et al. Application of selfadaptive chaotic quantum particle swarm algorithm in coverage optimization of wireless sensor network [J]. Journal of Computer Applications, 2018, 38(4): 1064-1071.)

        [17] ?? FONG S M, WONG R, VASILAKOS A V. Accelerated PSO swarm search feature selection for data stream mining big data [J]. IEEE Transactions on Services Computing, 2016, 9(1): 33-45.

        [18] ?? 陳大鵬,張九根,梁星.基于免疫粒子群算法的中央空調(diào)冷凍水系統(tǒng)優(yōu)化控制[J].計算機應(yīng)用,2017,37(9):2717-2721.(CHEN D P, ZHANG J G, LIANG X. Optimal control of chilled water system in central airconditioning based on artificial immune and particle swarm optimization algorithm [J]. Journal of Computer Applications, 2017,37(9): 33-45.)

        [19] ?? 范成禮,邢清華,李響,等.帶反向預(yù)測及斥力因子的改進粒子群優(yōu)化算法[J].控制與決策,2015,30(2):311-315.(FAN C L, XING Q H, LI X, et al. Improved particle swarm optimization algorithm with reverse forecast and repulsion [J]. Control and Decision, 2015, 30(2): 311-315.)

        [20] ?? 黃松,田娜,紀志成.基于自適應(yīng)概率粒子群優(yōu)化算法的研究[J].系統(tǒng)仿真學(xué)報,2016,28(4):874-879.(HUANG S, TIAN N, JI Z C. Study of modified particle swarm optimization algorithm based on adaptive mutation probability [J]. Journal of System Simulation, 2016, 28(4): 874-879.)

        [21] ?? 李國棟,胡建平,夏克文.基于云PSO的RVM入侵檢測[J].控制與決策,2015,30(4):698-702.(LI G D, HU J P, XIA K W. Intrusion detection using relevance vector machine based on cloud particle swarm optimization [J]. Control and Decision, 2015, 30(4): 698-702.)

        [22] ?? MASDARI M, SALEHI F, JALALI M, et al. A survey of PSObased scheduling algorithms in cloud computing [J]. Journal of Network and Systems Management, 2017, 25(1): 122-158.

        [23] ?? CHEN S M, CHIOU C H. Multiattribute decision making based on intervalvalued intuitionistic fuzzy sets, PSO techniques, and evidential reasoning methodology [J]. IEEE Transactions on Fuzzy Systems, 2015, 23(6): 1905-1916.

        [24] ?? 邱飛岳,莫雷平,江波,等.基于大規(guī)模變量分解的多目標(biāo)粒子群優(yōu)化算法研究[J].計算機學(xué)報,2016,39(12):2598-2613.(QIU F Y, MO L P, JIANG B, et al. Multiobjective particle swarm optimization algorithm using large scale variable decomposition [J]. Chinese Journal of Computers, 2016, 39(12): 2598-2613.)

        [25] ?? 鞠文哲,夏克文,戴水東.改進的云粒子群優(yōu)化算法及其斷路器優(yōu)化應(yīng)用[J].計算機應(yīng)用研究, 2018, 25(7):2084-2087.(JU W Z, XIA K W, DAI S D. Improved cloud particle swarm optimization algorithm and its application in circuit breaker optimization[J].Application Research of Computers, 2018, 25(7):2084-2087.)

        [26] ?? 王生生,楊娟娟,柴勝.基于混沌鯰魚效應(yīng)的人工蜂群算法及應(yīng)用[J].電子學(xué)報,2014,42(9):1731-1737.(WANG S S, YANG J J, CHAI S. Artificial bee colony algorithm with chaotic catfish effect and its application [J]. Acta Electronica Sinica, 2014, 42(9): 1731-1737.)

        [27] ?? 劉藝,刁興春,曹建軍,等.求解子集問題的鯰魚效應(yīng)蝙蝠蟻群優(yōu)化[J].系統(tǒng)工程與電子技術(shù),2016,38(10):2441-2448.(LIU Y, DIAO X C, CAO J J, et al. Catfish bat algorithmant colony optimization for subset problems [J]. Systems Engineering and Electronics, 2016, 38(10): 2441-2448.)

        [28] ?? GE H W, SUN L, TAN G Z. Cooperative hierarchical PSO with two stage variable interaction reconstruction for large scale optimization [J]. IEEE Transactions on Cybernetics, 2017, 47(9): 2809-2823.

        猜你喜歡
        鯰魚效應(yīng)云模型粒子群優(yōu)化算法
        基于改進SVM的通信干擾識別
        基于云模型的全國性節(jié)點城市物流產(chǎn)業(yè)集群的競爭力評價
        東方教育(2016年9期)2017-01-17 00:02:02
        基于自適應(yīng)線程束的GPU并行粒子群優(yōu)化算法
        基于混合粒子群算法的供熱管網(wǎng)優(yōu)化設(shè)計
        基于云模型的尾礦庫潰壩風(fēng)險模糊評價模型
        基于改進支持向量機的船舶縱搖預(yù)報模型
        中國水運(2016年11期)2017-01-04 12:26:47
        “鯰魚效應(yīng)”與大學(xué)生英語學(xué)習(xí)動機調(diào)控策略的研究
        青春歲月(2016年21期)2016-12-20 18:54:29
        互聯(lián)網(wǎng)金融的“鯰魚效應(yīng)”給傳統(tǒng)銀行業(yè)帶來了什么
        人民論壇(2016年31期)2016-12-06 11:08:50
        互聯(lián)網(wǎng)金融的“鯰魚效應(yīng)”
        關(guān)于“鯰魚效應(yīng)”在學(xué)生小組學(xué)習(xí)中的運用與反思
        考試周刊(2016年75期)2016-10-12 21:41:48
        日韩欧美第一区二区三区| 久久理论片午夜琪琪电影网| 亚洲av无码精品蜜桃| 日韩无码视频淫乱| 亚洲免费不卡av网站| 日韩精品视频免费在线观看网站| 国产又猛又黄又爽| 成人国产精品免费视频| 国产极品视觉盛宴在线观看| 国产精品髙潮呻吟久久av | 亚洲无线码一区二区三区| 十八岁以下禁止观看黄下载链接| 免费大学生国产在线观看p | 亚洲区偷拍自拍29p| 国产激情小视频在线观看| 日本真人边吃奶边做爽电影| 婷婷丁香五月中文字幕| 久久dvd| 日韩av水蜜桃一区二区三区 | 狠狠综合久久av一区二区| 国产视频毛片| 在线视频日韩精品三区| 青青草精品在线视频观看| 婷婷五月六月综合缴情| 国产美女一级做a爱视频| 丝袜人妻中文字幕首页| 国产国语亲子伦亲子| 亚洲中文久久精品无码ww16| 中国老太老肥熟女视频| 色噜噜色哟哟一区二区三区| 久久精品夜色噜噜亚洲a∨| 久久午夜伦鲁片免费无码| 成人无码激情视频在线观看| 午夜男女靠比视频免费| 亚洲色大成网站www久久九九| 精品国产AⅤ无码一区二区| 亚洲无av码一区二区三区| 无码人妻精品一区二区三区东京热| aaaaa级少妇高潮大片免费看 | 亚洲精品国偷拍自产在线麻豆| 在线视频一区二区日韩国产|