張剛 黃南飛 張?zhí)祢U
摘 要:針對長期演進(jìn)(LTE)移動通信系統(tǒng)下行鏈路傳輸中多用戶的實(shí)時(RT)與非實(shí)時(NRT)業(yè)務(wù)傳輸性能需求問題,提出一種基于用戶加權(quán)平均時延的改進(jìn)型的最大加權(quán)延時優(yōu)先(MLWDF)資源調(diào)度算法。該算法在考慮信道感知與用戶服務(wù)質(zhì)量(QoS)感知的基礎(chǔ)上引入反映用戶緩沖區(qū)狀態(tài)的加權(quán)平均時延因子,該因子通過用戶緩沖區(qū)中待傳輸數(shù)據(jù)與已發(fā)送數(shù)據(jù)的平均時延均衡得到,使具有較大時延和業(yè)務(wù)量的實(shí)時業(yè)務(wù)優(yōu)先調(diào)度,提升了用戶的性能體驗(yàn)。理論分析與鏈路仿真表明,提出算法在保證各業(yè)務(wù)時延及公平性的基礎(chǔ)上,提升了實(shí)時業(yè)務(wù)的QoS性能,在用戶數(shù)量達(dá)到50的條件下,對比MLWDF算法實(shí)時業(yè)務(wù)的丟包率降低了53.2%,其用戶平均吞吐量提升了44.7%,雖犧牲了非實(shí)時業(yè)務(wù)的吞吐量,但仍優(yōu)于VTMLWDF算法。實(shí)驗(yàn)結(jié)果表明,所提算法在多用戶多業(yè)務(wù)傳輸條件下提升了實(shí)時業(yè)務(wù)的傳輸性能,并在QoS性能上明顯優(yōu)于對比算法。
關(guān)鍵詞:長期演進(jìn)系統(tǒng);加權(quán)平均時延;服務(wù)質(zhì)量;資源調(diào)度;實(shí)時業(yè)務(wù);吞吐量
中圖分類號:TP391.9
文獻(xiàn)標(biāo)志碼:A
Abstract: Aiming at the transmission performance requirements of RealTime (RT) services and NonRealTime (NRT) services for multiuser in the downlink transmission of Long Term Evolution (LTE) mobile communication system, an improved Modified Largest Weighted Delay First (MLWDF) scheduling algorithm based on weighted average delay was proposed. On the basis of considering both channel perception and Quality of Service (QoS) perception, a weighted average dealy factor reflecting the state of the user buffer was utilized, which was obtained by the average delay balance of the data to be transmitted and the transmitted data in the user buffer. The RT service with large delay and traffic is prioritized, which improves the user performance experience.
Theoretical analysis and link simulation show that the proposed algorithm improves the QoS performance of RT services on the basis of ensuring the delay and fairness of each service. The packet loss rate of RT service of the proposed algorithm decreased by 53.2%, and the average throughput of RT traffic increased by 44.7% when the number of users achieved 50 compared with MLWDF algorithm. Although the throughput of NRT services are sacrificed, it is still better than VTMLWDF (Virtual Token MLWDF) algorithm. The theoretical analysis and simulation results show that transmission performances and QoS are superior to the comparison algorithm.
0 引言
隨著多媒體業(yè)務(wù)流、實(shí)時游戲和網(wǎng)絡(luò)語音電話業(yè)務(wù)(Voice over Internet Phone, VoIP)等新興業(yè)務(wù)的日益普及,通信技術(shù)需日益完善。改善不同業(yè)務(wù)的服務(wù)質(zhì)量(Quality of Service, QoS)性能是長期演進(jìn)(Long Term Evolution, LTE)[1]系統(tǒng)中基站(eNodeB)需要執(zhí)行的一項(xiàng)重要任務(wù)。LTE下行資源調(diào)度算法[2]是通信系統(tǒng)中的研究熱點(diǎn),在調(diào)度算法中使用由信道質(zhì)量指示(Channel Quality Indicator, CQI)反饋的信道感知和QoS感知實(shí)現(xiàn)了復(fù)雜度和傳輸性能之間的權(quán)衡。由于非實(shí)時(NonRealTime, NRT)與實(shí)時業(yè)務(wù)(RealTime, RT)業(yè)務(wù)的QoS性能差距較大,有必要設(shè)計一種有效的調(diào)度算法來平衡各業(yè)務(wù)之間的QoS需求的算法,這也是本文的研究目標(biāo)。
在最近的研究中,已提出的分組調(diào)度算法從不同角度來滿足LTE系統(tǒng)中各業(yè)務(wù)的QoS需求,其中包含了考慮業(yè)務(wù)狀態(tài)相關(guān)性的無線調(diào)度[3]、保證比特速率的信道感知調(diào)度[4]、增強(qiáng)型時延敏感的調(diào)度[5]以及考慮傳輸能量效率的調(diào)度[6]等,從不同方面對調(diào)度算法進(jìn)行改進(jìn),以提升系統(tǒng)性能。針對QoS參數(shù)性能及低時延需求,文獻(xiàn)[7]在改進(jìn)的最大加權(quán)延時優(yōu)先(Modified Largest Weighted Delay First, MLWDF)算法的基礎(chǔ)上提出虛擬隊(duì)列概念,引入了反映用戶業(yè)務(wù)數(shù)據(jù)的突發(fā)特性和某種QoS特性的數(shù)據(jù)隊(duì)列狀態(tài)信息為用戶提供最小吞吐量保證,但未考慮用戶延遲概念,未能對實(shí)時用戶提供更好的性能體驗(yàn)。文獻(xiàn)[8]在其算法的基礎(chǔ)上加入了隊(duì)首時延因子,初步保證了調(diào)度業(yè)務(wù)流的時延特性,但隊(duì)首時延未能反映用戶緩沖區(qū)的綜合狀態(tài)。文獻(xiàn)[9]在經(jīng)典比例公平算法的基礎(chǔ)上引入加權(quán)平衡時延因子,考慮了用戶緩沖區(qū)狀態(tài),但未考慮其他業(yè)務(wù)的QoS性能,未能給用戶提供較好的用戶體驗(yàn)性能。以上算法均未對QoS性能及用戶的狀態(tài)信息進(jìn)行較好的結(jié)合。
本文提出一種新的基于加權(quán)平均時延的QoS感知算法。該算法考慮了業(yè)務(wù)QoS性能參數(shù)(包括最大容忍丟包率、時延門限、隊(duì)首時延)和信道性能參數(shù)(包括用戶平均吞吐量和信道瞬時傳輸速率),同時引入了反映緩沖區(qū)數(shù)據(jù)時延參量的加權(quán)平均時延因子,當(dāng)用戶的數(shù)據(jù)量時延較大時可優(yōu)先獲得資源。通過仿真平臺LTESim[10]的仿真結(jié)果表明,該算法可提升數(shù)據(jù)量較大的實(shí)時業(yè)務(wù)的吞吐量及公平性,降低其丟包率與時延性能,同時保證了非實(shí)時業(yè)務(wù)的基本傳輸性能。
4 結(jié)語
本文提出了一種新的基于LTE系統(tǒng)集信道感知和QoS感知于一體的加權(quán)平均延遲下行鏈路資源調(diào)度算法,通過對公平性、吞吐量、丟包率和時延四個方面的仿真驗(yàn)證得出結(jié)論,該算法在保證非實(shí)時業(yè)務(wù)基礎(chǔ)傳輸?shù)那疤嵯拢嵘藢?shí)時Video業(yè)務(wù)的吞吐量,降低了業(yè)務(wù)丟包率,達(dá)到了最優(yōu)的用戶性能體驗(yàn)。在以后的研究中,可以針對5G通信系統(tǒng)對于低時延特性進(jìn)行進(jìn)一步研究,提升各業(yè)務(wù)與系統(tǒng)的傳輸性能。
參考文獻(xiàn) (References)
[1] ??? KWAN R, LEUNG C. A survey of scheduling and interference mitigation in LTE [J]. Journal of Electrical and Computer Engineering, 2010, 68(5):1186-1191.
[2] ??? 李宛平.LTE下行資源調(diào)度算法研究[D]. 廣州:華南理工大學(xué), 2016:23-25.(LI W P. Research on LTE downlink resource scheduling algorithm [D]. Guangzhou: South China University of Technology, 2016: 23-25.)
[3] ??? YEN W C,YEN Y C,CHIN W L. Study on state dependent radio resource scheduling for downlink traffic in LTE network[J].Wireless Personal Communications,2017, 96(3):4709-4723.
[4] ??? PABLO A,JORGE N O,PILAR A M. 3GPP QoSbased scheduling framework for LTE[J]. RURASIP Journal on Wireless Communications and Networking,2016,17: 1-14.
[5] ??? PADMAVATHY C,JAYASHREE L S. An enhanced delay sensitive data packet scheduling algorithm to maximizing the network lifetime [J].Wireless Personal Communications, 2017,94(4): 2213-2227.
[6] ??? CHEN W C, CHU Y Y, PENG I H. Energysaving centric uplink scheduling scheme for broadband wireless access networks [J].EURASIP Journal on Wireless Communications and Networking,2014, 70: 1-15.
[7] ??? ITURRALDE M, ALI Y T, WEI A. Performance study of multimedia services using virtual token mechanism for resource allocation in LTE networks[C]// Proceedings of the 2011 IEEE Vehicular Technology Conference. Piscataway, NJ: IEEE, 2011: 1-5.
[8] ??? DARDOURI S, BOUALLEGUE R. A new scheduling algorithm for realtime communication in LTE networks[C]// Proceedings of the 2015 29th International Conference on Advanced Information Networking and Applications Workshops. Piscataway, NJ: IEEE, 2015:267-271.
[9] ??? SIPING L, CHANG M Z, YUE Z Z, et al. Delaybased weighted proportional fair algorithm for LTE downlink packet scheduling[J]. Wireless Personal Communications, 2015, 82(3): 1955-1965.
[10] ?? GIUSEPPER P, LUIGI A G. Simulating LTE cellular systems: an opensource framework[J]. IEEE Transactions on Vehicular Technology, 2010, 60(2): 498-513.
[11] ?? CHANG B J, LIANG Y H, CHANG P Y. Adaptive crosslayerbased packet scheduling and dynamic resource allocation for LTEadvanced relaying cellular communications[J]. Wireless Personal Communications, 2017, 96(1):939-960.
[12] ?? ARKADIUSZ B, KURT T. Comparative performance study of LTE downlink schedulers[J]. Wireless Personal Communications, 2014, 74(2):585-599.
[13] ?? 崔亞南,蘇寒松,劉高華.LTE MAC層低計算量的下行調(diào)度及資源分配[J].計算機(jī)應(yīng)用,2013,33(6):1523-1526.(CUI Y N, SU H S, LIU G H. LTEMAC layer downlink scheduling and resource allocation with low calculation amount[J]. Journal of Computer Applications, 2013, 33(6):1523-1526.)
[14] ?? NADIM K M M, ZURINA B M H, MOHAMED O. Twolevel QoSaware framebased downlink resources allocation for RT/NRT services fairness in LTE networks[J]. Telecommunication System, 2017, 66(3):357-375.
[15] ?? SAMIA D, RIDHA B. Comparative study of downlink packet scheduling for LTE networks [J]. Wireless Personal Communications, 2015, 82(3):1405-1418.
[16] ?? PATRIC S, MARTIN R. Video transport evaluation with H.264 video traces[J]. IEEE Communications Surveys & Tutorials, 2012, 14(4):1142-1165.
[17] ?? The 3rd Generation Partnership Project.3GPP TS 36.213, Evolved Universal Terrestrial Radio Access (EUTRA) [S]. Paris: 3GPP Organizational Partners, 2010:58-60.