裴晶晶,胡 南,張 輝,戴仲然,丁德馨,於照惠
鈾尾礦中不同形態(tài)鈾釋放的影響因素及其相關性
裴晶晶,胡 南,張 輝,戴仲然,丁德馨*,於照惠
(南華大學鈾礦冶生物技術國防重點學科實驗室,極貧鈾資源綠色開發(fā)技術湖南省重點實驗室,湖南 衡陽 421001)
采用正交試驗、連續(xù)提取法及主成分分析,研究了液固比、浸出時間、酸雨pH值、PO43-、CO32-、Ca2+和腐殖酸濃度對鈾尾礦庫內鈾尾礦中不同形態(tài)鈾釋放的影響.結果表明:影響易遷移態(tài)鈾釋放的因素,按重要程度排序為:Ca2+>酸雨pH值>CO32->腐殖酸>浸出時間>PO43->液固比,前4個因素是主要影響因素,且CO32-與酸雨pH值的相關性最強.影響潛在遷移態(tài)鈾釋放的因素,按重要程度排序為:Ca2+>液固比>浸出時間>CO32->腐殖酸>酸雨pH值>PO43-,前4個因素是主要影響因素,且PO43-與酸雨pH值的相關性最強.影響穩(wěn)定態(tài)鈾釋放的因素,按重要程度排序為:PO43->腐殖酸>CO32->酸雨pH值>液固比>Ca2+>浸出時間,前4個因素是主要影響因素,且PO43-與CO32-的相關性最強.
鈾尾礦;鈾釋放;鈾形態(tài);正交設計;主成分分析
鈾礦開采產生了大量鈾尾礦,它們通常被堆置在鈾尾礦庫內[1].鈾尾礦庫內的鈾尾礦在物理風化、化學風化、生物風化和雨水淋溶的作用下,其中的鈾會釋放到環(huán)境中[2],對生態(tài)系統(tǒng)和人類健康形成威脅[3-4].鈾尾礦中鈾的釋放首先取決于鈾的形態(tài).其中水溶態(tài)鈾和可交換態(tài)鈾的活性最高,屬于易遷移態(tài)[5];碳酸鹽結合態(tài)鈾、鐵錳氧化態(tài)鈾及有機結合態(tài)鈾的活性次之[6],屬于潛在遷移態(tài);殘渣態(tài)鈾最穩(wěn)定[7],屬于穩(wěn)定態(tài).其次,鈾尾礦中鈾的釋放受很多地球化學因素的影響,如液固比、pH值、氧化還原條件、無機離子、某些鹽類配體、可溶性有機物和非金屬礦物等[8-11].
研究表明,酸雨pH值越高,鈾尾礦中鈾的釋放速率越慢[12];單獨添加腐殖酸能促進鈾的遷移,且添加量越少促進作用越強[13].單獨添加碳酸鹽和碳酸氫鹽能將鈾提取到溶液中,從而促進鈾的釋放[14-15];而磷酸鹽卻能與放射性核素鈾通過礦化作用絡合形成穩(wěn)定的Ca(UO2)2(PO4)2將鈾固定[16].國內外學者也探究過2種或3種因素的復合作用對鈾釋放的影響,結果發(fā)現(xiàn)酸雨和腐殖酸的綜合作用能抑制鈾的釋放[17];當溶液中HCO3-濃度小于100mg/L時,鈣離子對鈾的釋放沒有明顯的抑制作用[18],而碳酸鹽存在下,中性和微酸性pH值以及一定濃度的鈣離子可以通過吸附作用有效的促進鈾的固定[19].
實際上,鈾尾礦中的鈾是在多種因素的共同作用下而釋放的.本文采用正交試驗、連續(xù)提取法及主成分分析,研究液固比、PO43-濃度、浸出時間、CO32-濃度、Ca2+濃度、酸雨pH值、腐殖酸濃度7個因素對鈾尾礦中易遷移態(tài)、潛在遷移態(tài)及穩(wěn)定態(tài)鈾釋放的影響,對各影響因素的影響程度做定性和定量分析,并給出各影響因素的重要性排序以及因素之間的相關性,為鈾尾礦庫污染的控制提供參考.
鈾尾礦取自中國南方某鈾尾礦庫.樣品的采集選用S形布點法,共選取9個取樣位置點,在每個取樣位置點的周圍先劃出一個5m×5m的正方形[20],再在其4個頂點及對角線的交點向下挖掘20cm取鈾尾礦樣.采集的樣品隨即裝入消毒過的密封取樣袋送回實驗室.在室內,將樣品自然干燥2周,再通過四分法縮分和網格法取樣得到混合均勻的鈾尾礦.其中一部分鈾尾礦用于測定其pH值和粒徑分布等參數(shù),剩余部分經研磨過200目篩后,保存在干燥器皿中備用.
表1 正交試驗方案
選取液固比、PO43-濃度、浸出時間、CO32-濃度、Ca2+濃度、酸雨pH值和腐殖酸濃度7個因素,每個因素分為3個水平,采用L18(37)正交表設計試驗方案,具體試驗條件設置見表1.Ca2+濃度用氯化鈣調節(jié),CO32-濃度用碳酸鈉調節(jié),PO43-濃度用磷酸二氫鈉調節(jié),腐殖酸通過外源添加.根據該鈾尾礦區(qū)酸性降水變化趨勢及華中地區(qū)近幾年酸雨的類型[21],用分析純硫酸和硝酸按3:1的物質的量比配制人工酸雨母液,再將溶液的pH值調節(jié)到指定值配置成模擬酸雨.按照表1進行分組試驗,每組設置3個平行樣.各試驗組以24h為周期,先在恒溫振蕩器中(25℃)以110r/min的轉速水平震蕩8h,保持溶液均勻,然后靜置16h.正交試驗方案中,浸出時間設置了24,72,120h 3個水平,即將上述過程分別重復1次、3次和5次.
1.3.1 初始鈾尾礦中不同形態(tài)鈾含量的測定 采用改良后的連續(xù)提取法對初始鈾尾礦中鈾的形態(tài)進行分析[22].準確稱取研磨至200目,并在105℃干燥箱中干燥24h的鈾尾礦樣品1.0000g置于50mL離心管中,進行連續(xù)提取:(1)水溶態(tài):加入15mL超純水,室溫150r/min震蕩1h后提取上清液,以8000r/ min離心10min,將上清液倒入50mL容量瓶中,用20mL去離子水分2次洗滌離心管,2次離心后的上清液倒入同一50mL容量瓶中,定容;(2)可交換態(tài):取(1)的殘余物,加入15mL濃度為0.4mol/L的MgCl2,室溫150r/min震蕩1h;(3)碳酸鹽結合態(tài):取(2)的殘余物,加入15mL含HOAc(濃度為2mol/L)和NH4Ac(濃度為1mol/L)的混合溶液,室溫150r/min震蕩2h;(4)鐵錳氧化態(tài):取(3)的殘余物,加入15mL含有NH2OH-HCl(濃度為0.1mol/L)和HOAc(體積比為25%)的混合溶液,70℃下180r/min攪拌反應6h;(5)有機結合態(tài):取(4)的殘余物,加入3mL 0.05mol/L HNO3和5mL 30%H2O2(pH 2~3),50℃下180r/min攪拌反應2h,再加入3mL 30% H2O2(pH 2~3)溶液,在50℃下180r/min攪拌反應2h,冷卻后加入5mL含NH4Ac(濃度為3.2mol/L)和HNO3(體積比為20%)的混合溶液,室溫150r/min震蕩30min;(6)殘渣態(tài):取(5)的殘余物,用15mL王水、5mL HF、2mL HClO4、5mL HNO3在150℃消解2h.所有步驟的上清液提取操作均同步驟(1),定容后的濾液用0.22μm的濾膜過濾后分析.
1.3.2 基于正交試驗的不同形態(tài)鈾含量 將正交試驗反應后的溶液8000r/min離心,定容到50mL的容量瓶中,再用0.22μm的濾膜過濾,測定濾液鈾濃度,這部分鈾被定義為水溶態(tài)鈾.正交試驗反應后殘余物中的可交換態(tài)、碳酸鹽結合態(tài)、鐵錳氧化態(tài)、有機結合態(tài)及殘渣態(tài)鈾濃度測定方法同1.3.1中所述.
鈾尾礦pH值采用pH計測量(HACH,HQ430D, USA),鈾濃度采用ICP-MS測定(Agilent,7700Series, USA),X射線熒光光譜儀分析鈾尾礦樣品的化學成分(島津,XRF-1800,日本).
試驗結果采用3次重復試驗結果的平均值±標準誤差表示,并利用SPSS20.0對影響易遷移態(tài)鈾、潛在遷移態(tài)鈾和穩(wěn)定態(tài)鈾的7個因素進行主成分分析.
鈾尾礦的pH值為5.07,呈弱酸性.這可能是由于鈾尾礦顆粒內一些孔隙或微裂隙中還存留有余酸.鈾尾礦的粒徑總體偏大,其中粒徑在1.18~10mm之間的顆粒占73.76%,而低于0.074mm的顆粒僅占2.88%.由表2可知,鈾尾礦主要是由石英和鈣、鋁、鉀、鐵等的氧化物組成,經過風化和雨水淋溶等作用,其中的硫化物或磷化物被氧化,也可能會導致鈾尾礦呈酸性[23].
表2 初始鈾尾礦化學成分
表3 初始鈾尾礦中各形態(tài)鈾含量以及所占百分比
采用一步消解法測得鈾尾礦中鈾的平均含量為230.229mg/kg,連續(xù)提取法得到各形態(tài)鈾含量的總和為233.858mg/kg,兩種方法的結果相近.表3結果顯示,殘渣態(tài)(42.57%)>碳酸鹽結合態(tài)(21.43%)>鐵錳氧化態(tài)(19.83%)>有機結合態(tài)(14.90%)>可交換態(tài)(0.96%)>水溶態(tài)(0.31%).
由表4可知,與初始鈾尾礦的連續(xù)提取結果相比,易遷移態(tài)鈾(水溶態(tài)和可交換態(tài))以及潛在遷移態(tài)鈾(碳酸鹽結合態(tài)、鐵錳氧化態(tài)和有機結合態(tài))含量均升高,而穩(wěn)定態(tài)鈾(殘渣態(tài))的含量均下降.
表4 基于正交試驗的不同形態(tài)鈾含量(mg/kg)
續(xù)表4
將表5中鈾含量均值作為主成分分析的原始數(shù)據矩陣,對其進行主成分分析.
2.3.1 主成分提取 采用SPSS20.0軟件對標準化后的數(shù)據指標進行降維,根據特征值大于1的原則,得到不同形態(tài)鈾所提取的主成分特征值和貢獻率,結果見表6.易遷移態(tài)鈾提取的第1主成分貢獻率為74.399%,第2主成分貢獻率為25.601%,累積貢獻率達到100%.潛在遷移態(tài)鈾提取的第1主成分貢獻率為67.728%,第2主成分貢獻率為32.272%,累積獻率達到100%.穩(wěn)定態(tài)鈾提取的第1主成分貢獻率為57.185%,第2主成分貢獻率為42.815%,累積貢獻率達到100%.這表明提取的2個主成分綜合了7個影響因素的絕大部分信息,能很好的反映原始數(shù)據[24].
表5 不同形態(tài)鈾含量的均值(mg/kg)
表6 主成分特征值及貢獻率
2.3.2 因子載荷及特征向量 用每個因素分別對應的2個主成分的因子載荷值除以相應主成分特征值的算術平方根,可得各因素分別對應的2個主成分的特征向量,再根據主成分計算公式,即得到主成分與7個因素的線性組合.一般認為因子載荷>0.3的因素的影響是顯著的[25].本研究因原始變量較多,故選取因子載荷>0.6,同時特征向量>0.35作為判別主成分是否反映原始信息的標準,這不僅提高了各主成分所反映的因素之間的聚合度[26-27],使得其在同一個維度內具有更好的結構效度,而且綜合了各主成分的特征值與貢獻率的信息,使得各主成分所反映的每個因素的影響程度更加清晰[28].
由表7可知,易遷移態(tài)鈾提取的2個主成分表達式為:
F1=0.3471-0.3872+0.1113+0.4354-
0.3945-0.4276+0.4367(1)
F2=-0.4561+0.3492+0.7233+0.0904-
0.3285-0.1706-0.0637(2)
表7 主成分因子載荷及特征向量
潛在遷移態(tài)鈾提取的2個主成分表達式為:
F3=-0.4091+0.2852+0.3253+0.4554+
0.3775-0.3166+0.4437(3)
F4=-0.3011-0.5222+0.4703-0.0904+
0.3805+0.4826-0.1757(4)
穩(wěn)定態(tài)鈾提取的2個主成分表達式為:
F5=-0.0821+0.4462-0.2843-0.4724+
0.4225+0.4996-0.2527(5)
F6=0.5701+0.2612+0.4753-0.1884-
0.3105-0.0376-0.4997(6)
式中:F1代表易遷移態(tài)鈾提取的第1個主成分,F2代表易遷移態(tài)鈾提取的第2個主成分.F3代表潛在遷移態(tài)鈾提取的第1個主成分,F4代表潛在遷移態(tài)鈾提取的第2個主分.F5代表穩(wěn)定態(tài)鈾提取的第1個主成分,F6代表穩(wěn)定態(tài)鈾提取的第2個主成分.
按照因子載荷>0.6,同時特征向量>0.35的原則,主成分F1主要反映PO43-、CO32-、Ca2+、腐殖酸濃度和酸雨pH值的信息,主成分F2主要反映反映液固比和浸出時間的信息.主成分F3主要反映液固比、CO32-、Ca2+與腐殖酸濃度的信息,主成分F4主要反映PO43-濃度、浸出時間與酸雨pH值的信息.主成分F5主要反映PO43-、CO32-、Ca2+濃度和酸雨pH值的信息,主成分F6主要反映液固比、浸出時間、腐殖酸濃度的信息.
采用加權綜合法[25]取2個主成分的加權平均值進行評價,得到:
F7=0.744F1+0.256F2=0.1411-0.1992+0.2683+
0.3474-0.3775-0.3616+0.3087(7)
F8=0.677F3+0.323F4=-0.3741+0.0242+0.3723+
0.2794+0.3785-0.0586+0.2437(8)
F9=0.572F5+0.428F6=0.1971+0.3672+0.0413-
0.3504+0.1095+0.2706-0.3587(9)
式中:F7代表易遷移態(tài)鈾的最終評價函數(shù),F8代表潛在遷移態(tài)鈾的最終評價函數(shù),F9代表穩(wěn)定態(tài)鈾的最終評價函數(shù).
式(7)表明,PO43-、Ca2+濃度、酸雨pH值與易遷移態(tài)鈾含量呈負相關,而液固比、浸出時間、CO32-、腐殖酸濃度與其呈正相關;式(8)表明,液固比、酸雨pH值與潛在遷移態(tài)鈾含量呈負相關,PO43-、腐殖酸、CO32-、Ca2+濃度、浸出時間與其呈正相關;式(9)表明,液固比、PO43-、Ca2+濃度、酸雨pH值、浸出時間與穩(wěn)定態(tài)鈾含量呈正相關,而CO32-和腐殖酸濃度與其呈負相關.
2.3.3 各影響因素的權重值 將式(7)、(8)、(9)進行歸一化處理,得到各因子的影響權重[29-30],見表8,并依此對各因素影響程度進行評價.
表8 不同因素對不同形態(tài)鈾釋放的影響權重
由表8可知,對于易遷移態(tài)鈾,主要影響因素為Ca2+、酸雨pH值、CO32-和腐殖酸,累積影響權重達69.5%;對于潛在遷移態(tài)鈾,Ca2+、液固比、浸出時間和CO32-累積影響權重達81.1%,是主要影響因素;穩(wěn)定態(tài)鈾的主要影響因素為PO43-、腐殖酸、CO32-和酸雨pH值,累積影響權重達79.6%.
綜合考慮,CO32-為易遷移態(tài)、潛在遷移態(tài)和穩(wěn)定態(tài)鈾共同的主要影響因素;Ca2+為易遷移態(tài)和潛在遷移態(tài)鈾共同的主要影響因素,酸雨pH值為易遷移態(tài)和穩(wěn)定態(tài)鈾共同的主要影響因素,腐殖酸為易遷移態(tài)和穩(wěn)定態(tài)鈾共同的主要影響因素;而液固比、浸出時間僅為潛在遷移態(tài)鈾的主要影響因素.PO43-僅為穩(wěn)定態(tài)鈾的主要影響因素,因此,為了控制鈾尾礦中鈾的釋放,應主要對CO32-、Ca2+、腐殖酸濃度和pH值進行調控,忽略的因素為液固比、浸出時間和PO43-,它們對易遷移態(tài)鈾釋放的影響權重分別為0.070,0.134,0.099;對潛在遷移態(tài)鈾釋放的影響權重分別為0.216,0.215,0.014;對穩(wěn)定態(tài)鈾釋放的影響權重分別為0.116,0.024,0.217.
2.3.4 因素之間的相關性分析 由表9可知,對于易遷移態(tài)鈾,液固比與PO43-之間存在很強負相關.PO43-與腐殖酸兩因素之間的負相關關系也很強.CO32-與酸雨pH值、Ca2+均呈很強負相關,而與腐殖酸呈很強正相關.Ca2+與酸雨pH值的正相關關系很強,而與腐殖酸則呈較強負相關.酸雨pH值與腐殖酸這兩因素也存在很強的負相關.其中CO32-與酸雨pH值的相關系數(shù)最大,相互作用最強.
表9 相關系數(shù)矩陣
對于潛在遷移態(tài)鈾,液固比與浸出時間、Ca2+均呈很強負相關.PO43-與酸雨pH值之間的負相關關系也很強.而浸出時間與Ca2+則呈很強正相關.CO32-與腐殖酸也呈很強正相關.酸雨pH值與腐殖酸之間呈較強的負相關.其中PO43-與酸雨pH值的相關系數(shù)最大,相互作用最強.
對于穩(wěn)定態(tài)鈾,液固比與浸出時間之間的正相關關系很強.PO43-與CO32-存在很強的負相關,而與酸雨pH值的正相關關系較強.浸出時間與Ca2+呈很強負相關.CO32-與酸雨pH值存在很強的負相關作用.Ca2+與酸雨pH值之間的正相關關系較強.其中PO43-與CO32-的相關系數(shù)最大,相互作用最強.
影響易遷移態(tài)鈾的主要因素中,CO32-、腐殖酸濃度與其含量呈正相關,而Ca2+濃度和酸雨pH值與其呈負相關.這可能是由于CO32-和腐殖酸均能吸附鈾及與鈾發(fā)生絡合反應[31-32],所形成的絡合物部分溶解在了溶液中,進而促進了易遷移態(tài)鈾的釋放;而Ca2+可能與鈾絡合生成難溶的Ca(UO2)2(PO4)2,減緩了易遷移態(tài)鈾的釋放[33];較低pH值下鈾的釋放可能存在表面溶解和遷移擴散兩種機制,而較高pH值下只有單一機制[34],且溶液的酸度越低,H+會置換出更多的鈾,從而促進了易遷移態(tài)鈾的釋放.
影響潛在遷移態(tài)鈾的主要因素中,浸出時間、CO32-和Ca2+濃度與潛其含量呈正相關,液固比與其呈負相關.產生這種現(xiàn)象的原因可能是隨著時間的延長,CO32-和Ca2+與鈾形成的絡合物在偏酸性條件下由易遷移態(tài)轉化成了潛在遷移態(tài)[35],從而使得潛在遷移態(tài)鈾的含量增加;液固比越大,粘度越小,導致水-鈾尾礦界面的傳質阻力降低[36],阻止易遷移態(tài)鈾的釋放,使其轉化成潛在遷移態(tài),故潛在遷移態(tài)鈾含量隨液固比的減小而增加.
影響穩(wěn)定態(tài)鈾的主要因素中,CO32-、腐殖酸濃度與其含量呈負相關,PO43-濃度和酸雨pH值與其呈正相關.CO32-因與U(IV)發(fā)生氧化絡合[37],使穩(wěn)定態(tài)鈾含量降低,濃度越大,這種作用越強;腐殖酸中存在許多重要的絡合官能團和螯合基團,可能通過配合作用和吸附作用[38],促使穩(wěn)定態(tài)鈾向易遷移態(tài)轉化,同時腐殖酸的加入使溶液中的有機質含量增加,提高了鈾尾礦中鐵錳氧化物的活性,導致有機物和鐵錳氧化物結合鈾的能力增強,穩(wěn)定態(tài)鈾可能向潛在遷移態(tài)鈾轉化,所以穩(wěn)定態(tài)鈾隨腐殖酸濃度增加而減少;PO43-會與鈾發(fā)生礦化生成難溶的U-P礦物[39], PO43-濃度增加,穩(wěn)定態(tài)鈾也增加;低酸度加速了礦物的溶解[40],故溶液pH值降低,穩(wěn)定態(tài)鈾的含量也隨之降低.
3.1 影響易遷移態(tài)鈾的主要因素按重要程度排序為:Ca2+>酸雨pH值>CO32->腐殖酸;CO32-和腐殖酸濃度的增大會促進其釋放,累積影響權重達32.7%,而Ca2+濃度和酸雨pH值的增大會減緩其釋放,累積影響權重達36.8%.
3.2 影響潛在遷移態(tài)鈾的主要因素按重要程度排序為:Ca2+>液固比>浸出時間>CO32-;浸出時間、CO32-和Ca2+濃度與潛在遷移態(tài)鈾的含量呈正相關,累積影響權重達59.5%,液固比與其含量呈負相關,影響權重為21.6%.
3.3 影響穩(wěn)定態(tài)鈾的主要因素按重要程度排序為:PO43->腐殖酸>CO32->酸雨pH值;CO32-和腐殖酸濃度的增加會促進其釋放,累積影響權重為41.9%, PO43-濃度和酸雨pH值的增加會減緩其釋放,累積影響權重達37.7%.
3.4 綜合考慮,為減少鈾尾礦中鈾的釋放,應適當增大Ca2+濃度,提高pH值,減小CO32-和腐殖酸的濃度,并考慮PO43-、CO32-和酸雨pH值之間的相互作用.
[1] Liu B, Peng T J, Sun H J, et al. Leaching behavior of U, Mn, Sr, and Pb from different particle-size fractions of uranium mill tailings [J]. Environmental Science & Pollution Research, 2017,4(6):1-12.
[2] 黃 超,張 輝,胡 南,等.β-甘油磷酸鈉修復含鈾地下水[J]. 中國環(huán)境科學, 2018,38(9):3391-3397. Huang C, Zhang H, Hu N, et al. Remediation of uranium contaminated groundwater by β-glycerophosphate [J]. China Environmental Science, 2018,38(9):3391-3397.
[3] Sheppard S C, Sheppard M I, Gallerand M O, et al. Derivation of ecotoxicity thresholds for uranium [J]. J. Environ. Radioact, 2005, 79(1):55-83.
[4] Melo D, Burkart W. Uranium: Environmental pollution and health effects [J]. Encyclopedia of Environmental Health, 2011,36(3/4): 526-533.
[5] Rout S, Kumar A, Ravi P M, et al. Understanding the solid phase chemical speciation of uranium in soil and effect of ageing [J]. Journal of Hazardous Materials, 2016,317:457-465.
[6] Ma X L, Zuo H, Tian M J, et al. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques [J]. Chemosphere, 2016,144(3):264-272.
[7] 袁 麗,劉陽生.鉛鋅尾礦中重金屬在模擬酸雨淋溶下的浸出規(guī)律[J]. 環(huán)境工程, 2012,(s2):586-590.Yuan L, Liu Y S, The leaching principles of heavy metals in lead and zinc tailings in simulation acid rain [J]. Environmental Engineering, 2012,(s2):586-590.
[8] Liu C, Zhang S, Zachara J M. Kinetics of uranium(VI) desorption from contaminated sediments: effect of geochemical conditions and model evaluation [J]. Environmental Science & Technology, 2009,43(17):6560-6566.
[9] Fox P M, Davis J A, Hay M B, et al. Rate-limited U(VI) desorption during a small-scale tracer test in a heterogeneous uranium- contaminated aquifer [J]. Water Resources Research, 2013,48(5): 2805-2814.
[10] Othmane G, Allard T, Mori G, et al. Uranium association with iron-bearing phases in mill tailings from Gunnar, Canada [J]. Environmental Science & Technology, 2013,47(22):12695-12702.
[11] Liu B, Peng T J, Sun H J, et al. Release behavior of uranium in uranium mill tailings under environmental conditions [J]. Journal of Environmental Radioactivity, 2017,171:160-168.
[12] 史鴻晉,彭同江,孫紅娟,等.模擬降雨對鈾尾礦中U、Sr、Mn、Fe釋放規(guī)律的影響 [J]. 環(huán)境化學, 2016,235(6):1253-1260. Shi H J, Peng T J, Sun H J, et al. The release properties of U, Sr, Mn and Fe in uranium mill tailings under simulated rainfall [J]. Environmental Chemistry, 2016,35(6):1253-1260.
[13] Chen C, Zhao K, Shang J, et al. Uranium(VI) transport in saturated heterogeneous media: Influence of kaolinite and humic acid [J]. Environmental Pollution, 2018,240:219-226.
[14] Zhou P, Gu B. Extraction of oxidized and reduced forms of uranium from contaminated soils: effects of carbonate concentration and pH [J]. Environmental Science & Technology, 2005,39(12):4435-4440.
[15] Santos E A, Ladeira A C Q. Recovery of uranium from mine waste by leaching with carbonate-based reagents [J]. Environmental Science & Technology, 2011,45(8):3591-3597.
[16] Mehta V S, Maillot F, Wang Z, et al. Effect of co-solutes on the products and solubility of uranium(VI) precipitated with phosphate [J]. Chemical Geology, 2014,364(1):66-75.
[17] 李 娟,郭志英,梁月琴,等.腐殖酸及酸雨對貧鈾在土壤中遷移的影響研究[J]. 中國環(huán)境科學, 2011,31(s1):84-88. Li J, Guo Z Y, Liang Y Q, et al. Impact of humic acid and acid rain on the migration of depleted uranium in soils [J]. China Environmental Science, 2011,31(s1):84-88.
[18] Crane R A, Pullin H, Scott T B. The influence of calcium, sodium and bicarbonate on the uptake of uranium onto nanoscale zero-valent iron particles [J]. Chemical Engineering Journal, 2015,277:252-259.
[19] Stewart B D, Mayes M A, Fendorf S. Impact of uranyl-calcium- carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments [J]. Environmental Science & Technology, 2010, 44(3):928-934.
[20] Gramatica P, Battaini F, Giani E, et al. Analysis of mosses and soils for quantifying heavy metal concentrations in Sicily: a multivariate and spatial analytical approach [J]. Environ. Sci. Pollut. Res. Int., 2006,13(1): 28-36.
[21] 李 澤.模擬酸雨對紅壤性水稻土碳氮磷形態(tài)影響的研究 [D]. 長沙:湖南農業(yè)大學, 2015. Li Z. The research of effects of simulated acid rain on the carbon, nitrogen and phosphorus in red paddy soil [D]. Changsha: Hunan Agricultural University, 2015.
[22] Vandenhove H, Vanhoudt N, Duquène L, et al. Comparison of two sequential extraction procedures for uranium speciation in contaminated soils [J]. Journal of Environmental Radioactivity, 2014, 137:1-9.
[23] Fernandes H M, Ff L S F, Perez V, et al. Radioecological characterization of a uranium mining site located in a semi-arid region in Brazil [J]. Journal of Environmental Radioactivity, 2006,88(2):140- 157.
[24] 宮 健,謝文霞,柴 娜.膠州灣潮灘濕地CHBr3通量特征及影響因素研究 [J]. 中國環(huán)境科學, 2018,38(7):2699-2705. Gong J, Xie W X, Chai N. CHBr3fluxes and controlling factors in tidal flat wetland of Jiaozhou Bay [J]. China Environmental Science, 2018, 38(7):2699-2705.
[25] 林海明,杜子芳.主成分分析綜合評價應該注意的問題[J]. 統(tǒng)計研究, 2013,30(8):25-31. Lin H M, Du Z F. Some problems in comprehensive evaluation in the principal component analysis [J]. Statistical Research, 2013,30(8): 25-31.
[26] 蔣冰艷,何 龍,陳德華,等.深圳近海區(qū)域降水中重金屬濕沉降通量及源解析 [J]. 環(huán)境化學, 2018,37(7):1460-1473. Jiang B Y, He L, Chen D H, et al. Wet deposition flux and sources of heavy metals in precipitation in the coastal area of Shenzhen [J]. Environmental Chemistry, 2018,37(7):1460-1473.
[27] 張子龍,王文全,繆作清,等.主成分分析在三七連作土壤質量綜合評價中的應用 [J]. 生態(tài)學雜志, 2013,32(6):1636-1644. Zhang Z L, Wang W Q, Liao Z Q, et al. Application of principal component analysis in comprehensive assessment of soil quality undercontinuous planting [J]. Chinese Journal of Ecology, 2013,32(6):1636-1644.
[28] Yemefack M, Jetten V G, Rossiter D G, et al. Developing a minimum data set for characterizing soil dynamics in shifting cultivation systems [J]. Soil & Tillage Research, 2006,86(1):84-98.
[29] 彭慧芳,魏久傳,尹會永,等.基于主成分分析法的底板突水危險性評價 [J]. 煤礦開采, 2012, 17(6):101-104. Peng H F, Wei J C, Yin H Y, et al. Evaluation of floor water-burst danger based on principal components analysis [J]. Coal Mining Technology, 2012,17(6):101-104.
[30] 李奇薇.基于正交設計的主成分分析法在煤礦頂板事故安全評價中的應用[D]. 重慶:重慶大學, 2016. Li Q W. Application of orthogonal design and principal component analysis in roof accident safety assessment [D]. Chongqing: Chongqing University, 2016.
[31] Santos E A, Ladeira A C Q. Recovery of uranium from mine waste by leaching with carbonate-based reagents [J]. Environmental Science & Technology, 2011,45(8):3591-3597.
[32] Khalili F, Al-Banna G. Adsorption of uranium(VI) and thorium(IV) by insolubilized humic acid from Ajloun soil-Jordan [J]. Journal of Environmental Radioactivity, 2015,146:16-26.
[33] Latta D E, Kemner K M, Mishra B, et al. Effects of calcium and phosphate on uranium(IV) oxidation: Comparison between nanoparticulate uraninite and amorphous UIV-phosphate [J]. Geochimica Et Cosmochimica Acta, 2016,174:122-142.
[34] Yin M, Sun J, Chen Y, et al. Mechanism of uranium release from uranium mill tailings under long-term exposure to simulated acid rain: Geochemical evidence and environmental implication [J]. Environmental Pollution, 2019,244:174-181.
[35] Alam M S, Cheng T. Uranium release from sediment to groundwater: Influence of water chemistry and insights into release mechanisms [J]. Journal of Contaminant Hydrology, 2014,164(4):72-87.
[36] Liu Y, Qi T, Chu J, et al. Decomposition of ilmenite by concentrated KOH solution under atmospheric pressure [J]. International Journal of Mineral Processing, 2006,81(2):79-84.
[37] Ulrich K U, Ilton E S, Veeramani H, et al. Comparative dissolution kinetics of biogenic and chemogenic uraninite under oxidizing conditions in the presence of carbonate [J]. Geochimica Et Cosmochimica Acta, 2009,73(20):6065-6083
[38] 鄧紅梅,陳永亨,常向陽.腐殖酸對鉈污染土壤中鉈形態(tài)和分布的影響[J]. 生態(tài)環(huán)境學報, 2009,18(3):891-894. Deng H M, Chen Y H, Chang X Y. The effect of humic acid on the species and distribution of thallium in polluted soil [J]. Ecology and Environmental Sciences, 2009,18(3):891-894.
[39] Pinto A J, Gon?alves M A, Prazeres C, et al. Mineral replacement reactions in naturally occurring hydrated uranyl phosphates from the Tarabau deposit: Examples in the Cu-Ba uranyl phosphate system [J]. Chemical Geology, 2012,312–313:18-26.
[40] Cappuyns V, Alian V, Vassilieva E, et al. pH dependent leaching behavior of Zn, Cd and Pb from slags: kinetics and mineralogical control [J]. Waste & Biomass Valorization, 2014,5(3):355-368.
An analysis of influencing factors on the release of different species of uranium from uranium tailings and their correlation.
PEI Jing-jing, HU Nan, ZHANG Hui, DAI Zhong-ran, DING De-xin*, YU Zhao-Hui
(Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources, University of South China, Hengyang 421001, China)., 2019,39(7):3073~3080
The influences of liquid-solid ratio, leaching time, acid rain pH, PO43-, CO32-, Ca2+and humic acid concentration on the release of different species of uranium from uranium tailings in a uranium tailings repository were investigated by using the orthogonal tests, sequential extraction and principal component analysis. The degree of the influence of these factors on the release of the easily mobile species of uranium was in the order Ca2+>acid rain pH>CO32->humic acid>leaching time>PO43->liquid-solid ratio, the first four factors were the main ones, and there was the strongest correlation between CO32-and acid rain pH. The degree of the influence of these factors on the release of the potential migration species of uranium was in the order Ca2+>liquid-solid ratio>leaching time>CO32->humic acid>acid rain pH>PO43-, the first four factors were the main ones, and there was the strongest correlation between PO43-and acid rain pH; and that the degree of the influence of these factors on the release of the stable species of uranium was in the order PO43->humic acid>CO32->acid rain pH>liquid-solid ratio>Ca2+>leaching time, the first four factors were the main ones, and there was the strongest correlation between PO43-and CO32-.
uranium tailings;uranium release;uranium species;orthogonal tests;principal component analysis
X591
A
1000-6923(2019)07-3073-08
裴晶晶(1995-),女,河南西平人,南華大學碩士研究生,主要從事鈾尾礦的污染與防治研究.
2018-12-05
國家自然科學基金重點項目(U1401231);國家自然科學基金面上項目(11775106);湖南省自然科學基金項目(2018JJ3445);湖南省科技廳項目資助(2016SK2014,2017RS3050,2018CT5009)
* 責任作者, 教授, dingdxzzz@163.com